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SymAttack: Symmetry-aware Imperceptible Adversarial Attacks
on 3D Point Clouds

ABSTRACT
Adversarial attacks on point clouds are crucial for assessing and

improving the adversarial robustness of 3D deep learning models.

Despite leveraging various geometric constraints, current adversar-

ial attack strategies often suffer from inadequate imperceptibility.

Given that adversarial perturbations tend to disrupt the inherent

symmetry in objects, we recognize this disruption as the primary

cause of the lack of imperceptibility in these attacks. In this paper,

we introduce a novel framework, symmetry-aware imperceptible

adversarial attacks on 3D point clouds (SymAttack), to address

this issue. Our approach starts by identifying part- and patch-level

symmetry elements, and grouping points based on semantic and

Euclidean distances, respectively. During the adversarial attack

iterations, we intentionally adjust the perturbation vectors on sym-

metric points relative to their symmetry plane. By preserving sym-

metry within the attack process, SymAttack significantly enhances

imperceptibility. Extensive experiments validate the effectiveness

of SymAttack in generating imperceptible adversarial point clouds,

demonstrating its superiority over the state-of-the-art methods.

Codes will be made public upon paper acceptance.

CCS CONCEPTS
• Security and privacy→ Software and application security;
• Computing methodologies → Computer vision; Shape rep-
resentations; Shape analysis.

KEYWORDS
Adversarial attacks, Symmetry, 3D point clouds, Deep neural net-

works

1 INTRODUCTION
The rise of deep learning combined with the availability of afford-

able depth-sensing technologies has thrust the analysis of 3D point

clouds through deep neural networks (DNNs) into the forefront of

research [8]. Nevertheless, the progression in this field is challenged

by the vulnerability of DNN classifiers to adversarial attacks, as

highlighted in recent studies [16, 38]. These attacks introduce sub-

tle, often imperceptible, modifications to point cloud inputs, leading

DNN models to make incorrect predictions. Such vulnerabilities

significantly hinder the real-world application of these technolo-

gies, particularly in safety-critical scenarios like autonomous driv-

ing [20]. Therefore, exploring adversarial attacks on point clouds is
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Figure 1: (a) Most 3D objects exhibit symmetry. (b) Tradi-
tional adversarial attacks compromise symmetry in 3D point
clouds, making them easily noticeable. (c) By preserving this
property, SymAttack achieves greater imperceptibility.

crucial for assessing and improving the adversarial robustness of

3D deep learning models against these security concerns.

Achieving imperceptibility is essential for the effective execu-

tion of adversarial attacks on 3D point clouds, leading to extensive

research efforts in this domain. These techniques predominantly

divide into two categories. The first approach involves introduc-

ing objects that are conspicuous yet contextually plausible and

unlikely to arouse suspicion within the given scenario, such as a

toy airplane close to the target object as in [38], or utilizes physics-

based deformations [29] to integrate attacks seamlessly into human

perception. The second, and more widely adopted, strategy aims

to minimize alterations by applying a variety of constraints. Tra-

ditional approaches in this category utilize metrics such as the

𝑙2-norm, Chamfer distance, and Hausdorff distance to quantify and

reduce perturbations. Building on these, more recent innovations

focus on preserving the original geometric features of 3D point

clouds. This is achieved by ensuring geometric consistency [33] or

by directing adjustments along an object’s normal [15] or tangen-

tial planes [9]. Despite these advancements, the imperceptibility of

adversarial attacks on 3D point clouds remains unsatisfactory, e.g.,

visible outliers are still present.

This raises a crucial question: despite the application of geo-

metric constraints, why do adversarial attacks remain perceptible?

Indeed, the effectiveness of imperceptibility hinges on the preserva-

tion of certain regularities provided by these constraints, aligning

with the common understanding that the human eye excels at de-

tecting inconsistencies within regular structures [31]. However,

typical adversarial perturbations tend to disrupt a crucial regularity,

i.e., the symmetrical property, as illustrated in Fig. 1. Therefore,
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addressing the loss of symmetry in adversarial attacks is anticipated

to enhance their imperceptibility.

In this paper, we propose a novel framework named symmetry-

aware imperceptible adversarial attacks on 3D point clouds (SymAt-

tack), designed to enhance imperceptibility by emphasizing the

preservation of symmetry within the attack process. Our strategy

commences with the delineation of symmetric elements in point

clouds. This involves identifying part-level symmetric elements,

distinguished by semantic distances, and patch-level symmetric

elements, which aggregate points based on Euclidean distances,

and then proceed to verification. During the adversarial attack itera-

tions, we intentionally adjust the perturbation vectors on identified

symmetric elements relative to their symmetry plane to conserve

their natural symmetry. As a consequence, our method effectively

minimizes the disruptions in symmetry within adversarial point

clouds, thereby significantly enhancing their imperceptibility. We

validate the effectiveness of our SymAttack framework in attacking

four common DNN classifiers for 3D point clouds. Extensive experi-

mental results show that the generated adversarial point clouds are

significantly more imperceptible, outperforming those generated by

state-of-the-art methods. Besides, we demonstrate that SymAttack

is capable of resisting various adversarial defenses.

Overall, our contribution is summarized as follows:

• We are the first to attribute the inadequate imperceptibility of

adversarial attacks on 3D point clouds to the large deviation

of symmetry.

• We develop a novel adversarial attack framework that pre-

serves point cloud symmetry by identifying patch- and part-

level symmetry elements and then adjusting the perturba-

tions on them.

• We show by experiments that our SymAttack framework

with preserving symmetry achieves superior performance

in terms of imperceptibility under various metrics.

2 RELATEDWORK
2.1 Adversarial Attacks on 3D Point Clouds
Adversarial attacks, which originated in the domain of 2D image

classification, have expanded to encompass 3D point clouds, in-

troducing distinct challenges. These attacks can generally be cat-

egorized into three types: addition-based, where new points are

introduced to induce misclassification [38]; deletion-based, involv-

ing the strategic removal of pivotal points to influence the model’s

decision [34, 43, 48]; and perturbation-based, which involves mak-

ing subtle modifications to the coordinates of points to deceive the

models [12, 38, 47]. This study focuses on exploring the intricacies

of perturbation-based adversarial attacks.

Pioneering efforts in perturbation-based 3D adversarial attacks

were spearheaded by Xiang et al. [38] and Liu et al. [16], who

skillfully adapted the C&W [1] and FGSM [7] strategies for 3D

contexts. Most subsequent work has built upon their foundations,

introducing additional constraints to achieve specific goals, such as

imperceptibility [15, 33]. Other approaches to adversarial attacks

include the use of isometric transformations, primarily rotations, to

manipulate point clouds [47], and limiting perturbations to a small

subset of points instead of all points [12]. Furthermore, with the rise

of generative adversarial networks (GANs) [6], Lee et al. [13] and

Zhou et al. [49] have also experimented with using GANs to gener-

ate adversarial point clouds. Recently, Tang et al. [29] introduced

a method from a manifold perspective, involving parameter plane

stretching that affects the underlying 2-manifold surface for a more

effective attack. In this paper, we focus primarily on adversarial

attack methods capable of achieving high imperceptibility.

2.2 Imperceptible 3D Adversarial Attacks
To achieve imperceptibility in adversarial attacks on point clouds,

prevalent strategies employ constraints such as the 𝑙2-norm, Cham-

fer distance, and Hausdorff distance to reduce the discrepancies be-

tween the original andmodified point clouds [16, 38, 49]. GeoA
3
[33]

has enhanced these methods by incorporating advanced geometric

regularity constraints, leading to improved outcomes. Subsequent

research has explored the use of directional perturbations, with the

aim of aligning them with each point’s normal vector [15] or along

tangential planes [9], to preserve the natural shape of objects. More

recently, Tang et al. [28] sought to improve imperceptibility from

a manifold perspective by minimizing distortion. Despite its effec-

tiveness, this approach relies on the creation of manifold mappings,

which presents significant challenges for point clouds with com-

plex shapes. In contrast to these approaches, our work highlights

the importance of symmetry preservation—an essential but often

neglected aspect in ensuring the imperceptibility of attacks.

2.3 Deep 3D Point Cloud Classification
Significant advancements have been made in deep learning models

for 3D point cloud classication. Voxel-based methods transform 3D

spaces into voxel grids for analysis with 3D CNNs, as detailed in

studies using binary grids and sophisticated voxel representations

to classify spaces [17]. While these methods have seen improve-

ments, their performance is limited by the need for high resolution.

In contrast, the introduction of PointNet [22] represented a par-

adigm shift, advocating for the direct processing of point clouds.

This innovation has spurred subsequent developments, including

the utilization of hierarchical structures [23], point-specific convo-

lutions [14, 30, 35, 39], and graph-based CNNs [2, 25, 26, 32, 45],

which have continually raised performance standards. For a com-

prehensive review of the state of the art in deep learning models

for 3D point cloud classification, please refer to the survey pa-

pers [8, 10]. In this paper, we aim to attack these DNN classifiers in

an imperceptible manner.

2.4 Symmetry for 3D Shape Processing
In the field of 3D shape processing, symmetry stands as a pivotal

aspect influencing various research domains [19]. It plays a critical

role in object detection, significantly contributing to the accurate

determination of object’s 6D poses [46], and facilitates the segmen-

tation process, enabling the division of point clouds into distinct

and meaningful segments [4, 42]. Additionally, the integration of

symmetry in shape matching substantially improves alignment

accuracy [11, 41]. In this paper, we attribute the lack of impercepti-

bility in adversarial attacks on 3D point clouds to the disruptions

in symmetry, and we seek to preserve symmetry while applying

adversarial perturbations to enhance imperceptibility.
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Figure 2: Illustration of our SymAttack framework: given a symmetric point cloud as input, the approach first identifies part-
and patch-level symmetric elements and then iteratively generates and adjusts initially asymmetric perturbations on points
within symmetric elements to maintain symmetry.

3 PROBLEM FORMULATION
3.1 Typical Adversarial Attacks
Given a point cloud P in R𝑛×3 with its corresponding label 𝑦 from

the set {1, ...,𝐶}, where 𝐶 is the number of categories, the goal of

perturbation-based adversarial attacks is to fool a 3D deep classifi-

cation model F into making incorrect predictions. This is accom-

plished by crafting an adversarial point cloud P𝑎𝑑𝑣 through the

application of imperceptible perturbations. The generation of the

adversarial point cloud is formally defined as:

𝑃𝑎𝑑𝑣𝑖 = 𝑃𝑖 + 𝜎𝑃𝑖 ·
−→
𝑑𝑃𝑖 , (1)

where 𝑃𝑖 is the 𝑖-th point in P, 𝜎𝑃𝑖 denotes the magnitude of pertur-

bation on 𝑃𝑖 , and
−→
𝑑𝑃𝑖 is the unit vector direction of the perturbation.

The process to determine the perturbation 𝜎𝑃𝑖 ·
−→
𝑑𝑃𝑖 involves

solving the optimization problem below, typically using gradient

descent methods:

min𝐿𝑚𝑖𝑠 (F ,P𝑎𝑑𝑣, 𝑦) + 𝜆1𝐷 (P,P𝑎𝑑𝑣), (2)

where 𝐿𝑚𝑖𝑠 (·, ·, ·) is the loss function aimed at inducing misclassi-

fication, e.g., the negation of cross-entropy loss, 𝐷 (·, ·) represents
the distortion constraints to maintain imperceptibility, and 𝜆1 is a

balancing parameter. Here, our primary emphasis is on untargeted

attacks, and the framework can be easily adapted to accommodate

targeted attacks as well.

Discussion. Traditional strategies for ensuring imperceptibility

in adversarial attacks typically involve the application of geomet-

ric constraints, such as the 𝑙2-norm, Chamfer distance, Hausdorff

distance, and curvature, to regulate perturbations. However, these

approaches often neglect a critical aspect—symmetry. The human

visual system is highly sensitive to deviations in symmetry, em-

phasizing the necessity of preserving this feature to secure the

imperceptibility of adversarial point clouds.

3.2 Symmetry-aware Adversarial Attacks
Symmetry is a fundamental attribute of geometric shapes, often

observed when one half of an object serves as a mirror reflection of

the other half. Suppose point 𝑃𝑖 and its counterpart 𝑃𝑖 are symmetric

with respect to the symmetry plane S, symmetry-aware adversarial
attacks require that the adversarial perturbation vectors applied

to 𝑃𝑖 and 𝑃𝑖 must also be symmetric relative to S. Formally, this

requirement can be expressed as:

𝑀𝑖𝑟𝑟𝑜𝑟 (𝜎𝑃𝑖 ·
−→
𝑑𝑃𝑖 ,S) = 𝜎

𝑃𝑖
· −→𝑑
𝑃𝑖
, (3)

where𝑀𝑖𝑟𝑟𝑜𝑟 (𝜎𝑃𝑖 ·
−→
𝑑𝑃𝑖 ,S) denotes the perturbation vector mirrored

across the symmetry plane S.
Bymaintaining the symmetry of perturbations on two symmetric

points within 3D shapes, such adversarial attacks preserve the

original shape’s symmetry, thereby achieving a superior level of

imperceptibility compared to conventional methods.

4 METHOD
In this section, we detail the process of detecting symmetric ele-

mentswithin a point cloud and subsequently introduce the symmetry-

aware imperceptible adversarial attacks framework (SymAttack).

Please refer to Fig. 2 for an illustration.

4.1 Symmetric Element Detection
Given that the requirement for adversarial attacks to maintain

symmetry across the entire shape is overly stringent, we opt for

selecting a subset of representative symmetric elements. We begin

by identifying the symmetry plane, proceed by sampling symmetric

elements, and finally verify them.

4.1.1 Identify Symmetry Plane. The symmetry plane in an object

is an imaginary plane that divides the object into two equal parts,

which are mirror images of each other with respect to this plane.

Ideally, if you flip the object along its symmetry plane, the two

sides will align perfectly. A classic example is the exterior of most

cars, where the left side mirrors the right side across the vehicle’s

longitudinal plane, as illustrated in Fig. 2.

To identify the symmetry plane S, we utilize the octree repre-
sentation combined with the principal axis transform to accurately

assess the degree of symmetry in objects, as described in [18]. It

is possible for an object to have multiple planes of symmetry; our

analysis focuses on the plane demonstrating the highest degree of

symmetry. Additionally, a minimal value in this assessment sug-

gests the lack of a symmetry plane within the object.

4.1.2 Sampling Symmetric Elements on One Side. To facilitate the

measurement and enforcement of symmetry, we concentrate on

symmetric elements, i.e., points, parts, or components that, when

aligned relative to a symmetry plane, display mirrored counterparts.

2024-04-13 09:13. Page 3 of 1–9.
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For each element 𝐸𝑖 and its counterpart 𝐸𝑖 , this principle can be

formally defined as:

𝑀𝑖𝑟𝑟𝑜𝑟 (𝐸𝑖 ,S) = 𝐸𝑖 . (4)

An exemplary case is observed in automobiles, where features such

as wheels, windows, and doors are symmetrically aligned across

the vehicle’s central symmetry plane.

To capture symmetric elements, we initially identify part-level

elements with semantic features, such as the wheels of a car. Subse-

quently, we sample patch-level elements from the remaining point

cloud to ensure comprehensive coverage of the entire shape. For

convenience, we conduct sampling only on one side of the shape.

Sampling Part-level Elements. We start with farthest point sam-

pling to select key points {𝑄𝑖 }𝑖=1:𝐾 . Utilizing these points, we pro-

ceed to create part-level elements by employing flooding, guided

by the criterion 𝐸1
𝑖
= {𝑃 |𝑑𝑆 (𝑓 (𝑃), 𝑓 (𝑄𝑖 )) < 𝜏𝑠 }, where 𝑑𝑆 (·, ·) mea-

sures the semantic distance, 𝑓 (·) is a function implemented by the

pretrained auto-encoder, e.g., Point-M2AE [44], to extract semantic

features, and 𝜏𝑠 is a threshold. It’s noteworthy that multiple key

points can converge into a single element. For efficiency, we specif-

ically exclude elements containing more than 𝜏𝑃 points, yielding

the final collection of part-level elements E1
.

Sampling Patch-level Elements. To ensure that elements cover

the entire surface of the object, in regions not occupied by part-level

elements, we localize patch-level elements in areas surrounding

𝑄𝑖 as center points. This is achieved through the criterion 𝐸2
𝑖
=

{𝑃 |𝑑𝐸 (𝑃,𝑄𝑖 ) < 𝜏𝑟 }, where 𝑑𝐸 (·, ·) measures the Euclidean distance,

and 𝜏𝑟 is a predefined threshold. This procedure results in the final

collection of patch-level elements, denoted as E2
.

4.1.3 Symmetry Verification. Given elements on one side, we pro-

ceed to identify their corresponding counterparts on the opposite

side and verify their symmetry. Specifically, for any given 𝑃 ∈ 𝐸,

where 𝐸 ∈ E1 ∪ E2
, we locate its counterpart on the opposite side

as the point closest to𝑀𝑖𝑟𝑟𝑜𝑟 (𝑃,S), thereby forming 𝐸′ symmet-

rical to 𝐸. To verify their symmetry, we measure the 𝑙2 distance

between element 𝐸 and its mirror 𝐸′ relative to the symmetry plane.

Elements with an average distance greater than 𝜏𝑣 are filtered out.

4.2 Symmetry-aware Imperceptible Adversarial
Attacks

During the adversarial attack process, we aim to maintain the ob-

ject’s inherent symmetry; that is, if a symmetric element on the

object undergoes an adversarial perturbation, its mirrored counter-

part receives a symmetrically equivalent perturbation. This method,

named symmetry-aware imperceptible adversarial attacks (SymAt-

tack), comprises two main iterative steps: generating initial pertur-

bations, and symmetry-aware adjustment, as illustrated in Fig. 2.

Generating Initial Perturbations.We simply employ IFGM [3]

to generate initial perturbations. It is noteworthy that alternative

methods could also be employed.

Symmetry-aware Adjustment. Given a point 𝑃𝑖 ∈ 𝐸 with its ad-

versarial perturbation 𝜎𝑃𝑖 ·
−→
𝑑𝑃𝑖 , and the perturbation of its mirrored

counterpart point 𝑃𝑖 , i.e., 𝜎𝑃𝑖
· −→𝑑
𝑃𝑖
, across the symmetry plane S,

we adjust their directions as follows:

−→
𝑑𝑃𝑖

∗
= Normalize(−→𝑑𝑃𝑖 + 𝛼 · (Mirror(−→𝑑

𝑃𝑖
,S) − −→

𝑑𝑃𝑖 )),
−→
𝑑
𝑃𝑖

∗
= Normalize(−→𝑑

𝑃𝑖
+ 𝛼 · (Mirror(−→𝑑𝑃𝑖 ,S) −

−→
𝑑
𝑃𝑖
)),

(5)

where 𝛼 is the step size for direction adjustment and Normalize()
is an operation that normalizes a vector to unit length.

For the magnitude adjustment, we set them to be equal by taking

the minimum between the two:

𝜎𝑃𝑖 = min(𝜎𝑃𝑖 , 𝜎𝑃𝑖 ),
𝜎
𝑃𝑖

= min(𝜎𝑃𝑖 , 𝜎𝑃𝑖 ) .
(6)

Through the iterative execution of these processes, we success-

fully generate symmetric adversarial perturbations, thereby pre-

serving the point cloud’s symmetry to a certain extent. This preser-

vation enables us to achieve a higher level of imperceptibility.

5 EXPERIMENTS
5.1 Experimental Setup
Implementation. We implement the SymAttack framework us-

ing PyTorch [21]. Semantic distances are calculated using features

extracted and normalized from the penultimate layer of Point-

M2AE [44]. We set the semantic distance threshold, 𝜏𝑠 , at 0.001.

The threshold for the number of points in a part, 𝜏𝑃 , is set to 64

to prune excessively large parts, and the distance threshold for

defining patches, 𝜏𝑟 , is set at 0.1. For symmetry verification, the

threshold 𝜏𝑣 is set to 0.01. The step size for direction adjustment, 𝛼 ,

is established at 0.5. All experiments are conducted on a worksta-

tion equipped with dual 2.40 GHz CPUs, 128 GB of RAM, and eight

NVIDIA RTX 3090 GPUs.

Datasets. For our evaluation, we employ two renowned public

datasets: ModelNet40 [37] and ShapeNet Part [40]. Within the Mod-

elNet40 dataset, we allocate 9,843 point clouds for the training

phase and 2,468 for testing. Similarly, for the ShapeNet Part dataset,

14,007 point clouds are designated for training, with 2,874 set aside

for testing. To standardize the process, we uniformly sample 1,024

points from the surface of each object and scale them to fit within

a unit cube, following the methodology described in [22].

Victim DNN Classifiers.We employ four well-established deep

point cloud classifiers as victim models, including the multilayer

perceptron (MLP)-based PointNet [22], the hierarchical neural net-

work PointNet++ [23], the graph-based DGCNN [32], and the

convolution-based PointConv [35]. These models are trained follow-

ing the methodologies outlined in their respective original papers.

Adversarial Attack Baselines. To thoroughly validate the effec-

tiveness of our method, we select six established adversarial attack

methods as baselines. This selection encompasses gradient-based

methods such as IFGM [3] and PGD [3], direction-based attacks like

SI-Adv [9] and ITA [15], along with optimization-based strategies

including GeoA
3
[33] and 3d-Adv [38].

Evaluation Setting and Metrics. To ensure a fair comparison,

all attack methods are configured to achieve their highest possible

attack success rate (ASR), which is the proportion of adversarial

point clouds that effectively fool the DNN classifiers. In this max-

imal adversarialness setting [29], we assess the imperceptibility

of the attacks. Specifically, we employ six established metrics to

2024-04-13 09:13. Page 4 of 1–9.
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Table 1: Comparison on the perturbation sizes required by different methods to reach their highest achievable ASR in attacking
PointNet, PointNet++, DGCNN and PointConv trained on ModelNet40 and ShapeNet Part.

Model Attack

ModelNet40 ShapeNet Part

ASR CD HD 𝑙2 GR Curv EMD ASR CD HD 𝑙2 GR Curv EMD

(%) (10
−4
) (10

−2
) (10

−2
) (10

−2
) (%) (10

−4
) (10

−2
) (10

−2
) (10

−2
)

P
o
i
n
t
N
e
t

PGD 100 7.155 5.025 0.981 0.302 1.624 2.315 100 13.172 17.068 1.569 0.521 3.679 3.358

IFGM 100 0.845 2.673 0.789 0.314 0.775 0.864 100 3.328 10.269 0.785 0.408 0.619 0.556

GeoA
3

100 4.646 0.497 1.307 0.121 0.396 2.319 100 7.531 1.444 2.655 0.146 0.465 4.101

3d-Adv 100 6.115 4.372 0.863 0.25 1.215 1.41 100 15.659 5.495 1.787 0.279 4.006 3.693

SI-Adv 100 2.768 2.595 0.731 0.22 0.271 0.725 100 3.435 3.692 0.881 0.233 0.441 0.825

ITA 100 2.747 0.414 0.534 0.122 0.555 1.214 100 5.872 1.917 1.002 0.181 1.016 2.035

Ours 100 0.451 0.915 0.228 0.086 0.109 0.425 100 0.589 0.998 0.334 0.110 0.317 0.340

P
o
i
n
t
N
e
t
+
+

PGD 100 5.182 0.636 0.753 0.125 1.508 2.146 100 10.09 3.257 1.342 0.215 3.969 3.328

IFGM 100 3.558 1.162 0.64 0.146 1.149 1.454 100 4.532 3.608 0.548 0.22 1.824 1.584
GeoA

3
100 6.579 0.461 1.615 0.114 0.762 2.919 100 7.701 0.847 2.875 0.105 1.375 4.176

3d-Adv 100 8.915 3.564 1.535 0.141 1.288 2.784 100 9.564 3.778 2.014 0.197 3.021 3.59

SI-Adv 100 9.399 2.377 1.422 0.185 1.061 2.684 100 9.266 3.233 1.535 0.203 1.146 2.811

ITA 100 6.792 0.708 0.998 0.121 3.533 2.272 100 5.202 0.802 0.999 0.11 3.423 2.152

Ours 100 0.801 1.023 0.381 0.073 0.328 1.159 100 2.357 1.435 0.517 0.092 0.768 1.671

D
G
C
N
N

PGD 100 19.968 5.098 1.933 0.267 4.924 4.785 100 63.556 27.557 5.224 0.511 7.275 9.233

IFGM 100 15.791 12.391 1.622 0.363 2.849 3.777 100 19.623 26.04 2.069 0.504 4.954 4.387

GeoA
3

100 7.566 0.546 1.585 0.119 0.741 3.083 100 27.612 3.748 5.798 0.199 0.165 7.502

3d-Adv 100 10.345 3.807 3.589 0.227 5.997 6.685 100 21.553 8.531 2.258 0.282 5.119 4.628

SI-Adv 100 7.146 1.691 1.087 0.143 0.666 2.495 100 11.685 3.019 1.772 0.160 5.054 3.646

ITA 100 3.249 0.524 0.552 0.114 0.971 1.359 100 27.633 4.597 2.492 0.244 3.847 4.696

Ours 100 1.346 0.761 0.407 0.079 0.305 1.144 100 4.356 1.202 0.312 0.134 0.217 1.908

P
o
i
n
t
C
o
n
v

PGD 100 14.551 2.216 1.442 0.184 3.491 3.862 100 42.202 9.949 3.784 0.252 6.866 7.277

IFGM 100 7.959 2.608 1.015 0.184 1.741 2.427 100 16.139 8.776 1.812 0.231 3.526 3.807

GeoA
3

100 6.809 0.644 2.169 0.119 1.119 3.556 100 9.383 1.222 4.224 0.12 1.19 5.391

3d-Adv 100 11.213 1.763 1.176 0.163 3.279 2.807 100 21.034 3.687 2.277 0.193 4.912 4.548

SI-Adv 100 6.060 1.784 0.977 0.144 0.576 2.081 100 11.281 3.500 1.741 0.165 1.949 3.514

ITA 100 5.539 0.480 0.833 0.111 1.904 1.971 100 3.082 1.452 1.375 0.146 3.654 2.925

Ours 100 1.433 2.163 0.405 0.089 0.316 1.813 100 2.432 0.794 0.314 0.096 0.448 2.164

thoroughly measure distortions: Chamfer distance (CD) [5], Haus-

dorff distance (HD) [27], 𝑙2-norm (𝑙2), curvature (Curv), geometric

regularity (GR) [33], and earth mover’s distance (EMD) [24].

5.2 Comparison with State-of-the-art Methods
Attack and Imperceptibility Performance. The results pre-

sented in Tab. 1 demonstrate that all methods can achieve a 100%

attack success rate against the four DNN classifiers, but many of

them introduce relatively large perturbations; for instance, PGD

induces a distortion of approximately 7 × 10
−4

in terms of CD.

By applying symmetry constraints, our method achieves the best

performance across all datasets and DNN classifiers on five imper-

ceptibility metrics and is predominantly optimal on the HD metric,

thereby confirming the superiority of our approach.

Visualization. To illustrate how our approach enhances imper-

ceptibility, we present visualizations of adversarial point clouds

generated using various attack strategies on ModelNet40 aimed at

fooling PointNet, as depicted in Fig. 3. Point cloudsmodified by PGD

and IFGM exhibit noticeable outliers due to their less restrictive

deformation techniques. In contrast, methods like GeoA
3
, SI-Adv,

and ITA, which leverage the geometric properties of shapes for

modifications, result in significantly fewer visible outliers. Notably,

SymAttack, by preserving the symmetry of the shape, produces

adversarial point clouds that are virtually free of outliers, thereby

underscoring the effectiveness and superiority of our method in

generating imperceptible attacks.

Undefendability Performance. We evaluate the robustness of

SymAttack against various defense solutions, including simple ran-

dom sampling (SRS), statistical outlier removal (SOR), denoiser and

upsampler network (DUP-Net) [50], and IF-Defense [36]. The re-

sults, shown in Tab. 2, reveal that SymAttack keeps a success rate of

over 99% against SRS, SOR, and DUP-Net defenses, and it still holds

a 91% success rate against the strong IF-Defense. This performance

validates SymAttack’s effectiveness against defenses.

Table 2: Comparison on ASR (%) of different methods in
attacking PointNet with andwithout defense onModelNet40.

Defense IFGM 3d-Adv AdvPC GeoA
3

ITA SI-Adv Ours

- 100.0 100.0 100.0 100.0 100.0 100.0 100.0

SOR 21.20 17.19 33.60 62.47 90.37 97.40 100.0

SRS 91.69 22.53 98.87 72.65 91.85 85.78 99.84

DUP-Net 16.29 12.30 29.00 73.70 85.41 95.80 99.80

IF-Defense 13.80 13.70 16.77 6.04 69.32 80.30 91.68
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Figure 3: Visualizations of original and adversarial point clouds generated to fool PointNet on the ModelNet40 dataset using
different adversarial attack methods. The predicted categories before and after attack from top to bottom are: airplane →
plant; car→ tent; cup→ vase; guitar→ keyboard; lamp → wardrobe; table → desk; chair→ stool.

5.3 Ablation Studies and Other Analysis
Effects of Two Different Symmetric Elements. To assess the

significance of two types of symmetric elements, we compare the

effectiveness of various SymAttack variants. Results in Tab. 3 indi-

cate that removing any type of symmetric elements, i.e., part- and

patch-level, degrades the imperceptibility of SymAttack, validat-

ing the importance of both types of elements. For a more intuitive

understanding of the impact of removing one type of symmetric

elements on the results, we also visualize the generated adversarial

point clouds. As seen in Fig. 4, the absence of any one type of el-

ement leads to increased noise. Specifically, the lack of part-level

elements has a more significant impact, underscoring the impor-

tance of maintaining symmetry in semantically consistent regions.

Visualization of Symmetry Plane and Sampled Symmetric
Elements. To validate the efficacy of our method for detecting

symmetric elements, we showcase visualizations of original point

clouds, identified symmetry planes, and both part-level and patch-

level symmetric elements in Fig. 5. Observations confirm that all

symmetry planes are accurately detected and that critical object

components are correctly identified as part-level symmetric el-

ements, with patch-level symmetric elements being evenly dis-

tributed across the surface. Notably, objects lacking distinct compo-

nents, such as lamp, do not feature part-level symmetric elements.

These findings robustly affirm the effectiveness of our symmetric

element detection methodology, enhancing the implementation of

symmetry-aware adjustments.
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Figure 4: Visualizations of original and adversarial point clouds generated by SymAttack and its variants, which exclude
part-level and patch-level symmetry, to fool PointNet on the ModelNet40 dataset. Labels in blue represent the ground truth
categories, while gray labels indicate the predicted categories post-attack.

Figure 5: Visualizations of original point clouds, selected part-level symmetric elements in yellow, patch-level symmetric
elements in red, and adversarial point clouds generated by SymAttack to fool PointNet on the ModelNet40 dataset. Labels in
blue represent the ground truth categories, while gray labels indicate the predicted categories post-attack.

Table 3: Comparison on the attack and imperceptibility performance of SymAttack with and without considering part- and
patch-level symmetry.

Model Attack

ModelNet40 ShapeNet Part

ASR CD HD 𝑙2 GR Curv EMD ASR CD HD 𝑙2 GR Curv EMD

(%) (10
−4
) (10

−2
) (10

−2
) (10

−2
) (%) (10

−4
) (10

−2
) (10

−2
) (10

−2
)

PointNet

Ours w/o part 100 1.073 2.465 0.662 0.234 0.325 0.992 100 1.321 2.411 1.013 0.282 0.735 0.794

Ours w/o patch 100 0.576 1.297 0.409 0.173 0.284 0.675 100 0.925 1.623 0.531 0.247 0.497 0.694

Ours 100 0.451 0.915 0.228 0.086 0.109 0.425 100 0.589 0.998 0.334 0.110 0.317 0.340

Effects of Different Perturbation Magnitude Settings.We in-

vestigate the effect of different perturbation magnitude settings

on the performance of SymAttack during the symmetry-aware ad-

justment process. The settings explored include maintaining the

original magnitude and adjusting the magnitudes on two symmet-

ric points to either the larger or smaller values between them. The

results, presented in Tab. 4, demonstrate that these variations in

2024-04-13 09:13. Page 7 of 1–9.
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Table 4: Comparison on attack and imperceptibility performance of SymAttack under different perturbationmagnitude settings.
"Ours (N)" indicates no change to the original perturbation magnitude, while "Ours (L/S)" denotes adjusting the perturbation
magnitude of two symmetric points to either the larger or smaller of the two.

Model Attack

ModelNet40 ShapeNet Part

ASR CD HD 𝑙2 GR Curv EMD ASR CD HD 𝑙2 GR Curv EMD

(%) (10
−4
) (10

−2
) (10

−2
) (10

−2
) (%) (10

−4
) (10

−2
) (10

−2
) (10

−2
)

PointNet

Ours (N) 100 0.451 0.915 0.228 0.086 0.109 0.425 100 0.589 0.998 0.334 0.110 0.317 0.340

Ours (L) 100 0.464 1.113 0.238 0.102 0.117 0.454 100 0.611 1.107 0.356 0.121 0.384 0.394

Ours (S) 100 0.445 0.927 0.226 0.085 0.097 0.411 100 0.553 0.998 0.316 0.106 0.312 0.327

Table 5: Comparison on attack and imperceptibility performance of different methods, both with and without applying our
symmetry-aware adjustment in attacking PointNet on ModelNet40 and ShapeNet Part.

Model Attack

ModelNet40 ShapeNet Part

ASR CD HD 𝑙2 GR Curv EMD ASR CD HD 𝑙2 GR Curv EMD

(%) (10
−4
) (10

−2
) (10

−2
) (10

−2
) (%) (10

−4
) (10

−2
) (10

−2
) (10

−2
)

P
o
i
n
t
N
e
t

IFGM 100 0.845 2.673 0.789 0.314 0.775 0.864 100 3.328 10.269 0.785 0.408 0.619 0.556

Sym-IFGM 100 0.796 1.71 0.367 0.148 0.164 0.449 100 1.372 2.530 0.689 0.297 0.602 0.441
GeoA

3
100 4.646 0.497 1.307 0.121 0.396 2.319 100 7.531 1.444 2.655 0.146 0.465 4.101

Sym-GeoA
3

100 3.653 0.488 1.159 0.117 0.289 1.918 100 3.332 1.163 2.241 0.140 0.333 4.124

ITA 100 2.747 0.414 0.534 0.122 0.555 1.214 100 5.872 1.917 1.002 0.181 1.016 2.035

Sym-ITA 100 1.314 0.682 0.457 0.124 0.249 0.341 100 3.736 1.678 0.882 0.185 0.762 1.254
SI-Adv 100 2.768 2.595 0.731 0.22 0.271 0.725 100 3.435 3.692 0.881 0.233 0.441 0.825

Sym-SI-Adv 100 0.563 1.13 0.284 0.104 0.133 0.519 100 0.717 1.246 0.416 0.135 0.381 0.415

Figure 6: Imperceptibility of SymAttackmeasured by CD and
HD in attacking four DNN classifiers on ModelNet40, with
and without considering high-order symmetry (HO).

magnitude settings have minimal impact on the outcomes. How-

ever, setting the perturbation magnitudes on symmetric points

to the smaller of the two values consistently yields better results.

Therefore, we adopt this setting in our methodology.

Analysis on High-order Symmetry. Many objects, particularly

parts within an object such as the four wheels of a car, possess more

than one plane of symmetry. Thus, we delve into second-order sym-

metry, entailing the utilization of two symmetry planes. For each

identified symmetric element, we conduct a symmetry-aware ad-

justment individually for both symmetry planes. The results show-

cased in Fig. 6 reveal that integrating high-order symmetry indeed

leads to a modest enhancement in the imperceptibility of attacks

across all four DNN classifiers, although the degree of improvement

is somewhat restrained. As a result, we opt to utilize a single plane

of symmetry in this paper.

Generalization Ability of Symmetry Persevering. To evaluate

the generalizability of our symmetry-preserving strategy, we incor-

porate it into four established iterative adversarial attack methods:

IFGM, GeoA
3
, SI-Adv, and ITA. Results, as shown in Tab. 5, indicate

that these methods, augmented with our symmetric elements detec-

tion and symmetry-aware adjustment, exhibit significant improve-

ments across most performance metrics under identical parameter

settings. These outcomes substantiate the broad applicability and

effectiveness of our symmetry-preserving approach.

Analysis on Asymmetric Cases. We also investigate the efficacy

of SymAttack in attacking objects that are not perfectly symmetrical.

The visualizations of table and guitar in the bottom row of Fig. 4

indicate that, compared to entirely symmetrical cases, adversarial

point clouds generated from asymmetrical objects contain a small

number of noise points. Aside from this, the imperceptibility of the

generated adversarial point clouds remains impressively high. This

demonstrates a certain level of robustness in our method when

dealing with asymmetric cases to some extent.

6 CONCLUSION
In this paper, we have proposed SymAttack, a novel framework

for imperceptible adversarial attacks on 3D point clouds. The ra-

tionale involves identifying a subset of representative symmetric

elements and then adjusting the perturbations on points located

within symmetric elements to maintain symmetry. Extensive exper-

iments validate that SymAttack successfully generates adversarial

point clouds with significantly enhanced imperceptibility.

Limitation and Future Work. Our method assumes that the

object’s shape is generally symmetrical, which means it may not

work well with severely asymmetrical shapes. In the future, we aim

to develop a method for identifying local symmetries and apply our

approach to these locally symmetrical regions.
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