
Published in Transactions on Machine Learning Research (07/2024)

A Appendix

A.1 A General Auditor for finite hypothesis classes

Algorithm 4 A General Auditor for finite hypothesis classes
1: S0 := H where |H| is finite; stop_flag := False; t := 1; ‘ := eps
2: while !stop_flag do

3: xt := picking_next_query(St≠1)
4: Auditor receives label yt and explanation et from the DS
5: St+1 := update_search_space(St, xt, yt, et)
6: Y_a, stop_flag = check_stopping_condition(St)
7: end while

8: return Y_a

Algorithm 5 check_stopping_condition()
1: Input: St

2: if ’h œ St, s(h) > eps then

3: decision = Yes, stop_flag = True
4: else if ’h œ St, s(h) Æ eps then

5: decision = No, stop_flag = True
6: else

7: decision = None, stop_flag = False
8: end if

9: return decision, !stop_flag

Algorithm 6 picking_next_query()
1: Input: St

2: for x œ X do

3: for (e, y) œ E ◊ Y do

4: St+1 = update_search_space(St, x, y, e)
5: end for

6: valuex = minE◊Y |St|/|St+1|
7: end for

8: return argmaxxœX valuex

Algorithm 7 update_search_space()
1: Input: S, x, y, e
2: Snew := {h œ S|h(x) = y, check_consistent_explanation(x, eh(x), e)} {//Explanation method depen-

dent consistency check}
3: return Snew

A.2 Auditing Linear Classifiers with Counterfactual Explanations

In this section, we will prove that auditing linear classifiers using counterfactual explanations requires only
one query. We denote our auditor by AlgLCc, as outlined in Alg. 1. The proof goes by noting that the
counterfactual explanation xÕ returned by the DS is very close to the projection of input x and that x ≠ xÕ

is parallel to w. We consider the d-th feature to be our feature of interest without loss of generality.
Lemma 3. Given hyperplane wT x + b = 0, point x and its projection on the hyperplane xÕÕ, x ≠ xÕÕ = ⁄w

where ⁄ = wT x+b
ÎwÎ2

2
.

17

Published in Transactions on Machine Learning Research (07/2024)

Algorithm 8 AlgLCc : Auditing Linear Classifiers using Counterfactuals
1: Query any point x from the DS
2: Auditor receives label y and explanation xÕ from the DS
3: ŵ Ω x ≠ xÕ

4: if ŵi = 0 (ith feature is the FoI) then

5: return No
6: else

7: return Yes
8: end if

Proof. The projection, xÕÕ, of x on the hyperplane wT x+b = 0, is found by solving the following optimization
problem.

min
xÕÕ

ÎxÕÕ
≠ xÎ

2

s.t. wT xÕÕ + b = 0
(1)

Let L(xÕÕ, ⁄) be the lagrangian for the above optimization problem.

L(xÕÕ, ⁄) = ÎxÕÕ
≠ xÎ

2 + 2⁄(wT xÕÕ + b)

= ÎxÕÕ
Î

2 + ÎxÎ
2

≠ 2x€xÕÕ + 2⁄w€xÕÕ + 2⁄b

= ÎxÕÕ
Î

2 + ÎxÎ
2

≠ 2(x ≠ ⁄w)€xÕÕ + 2⁄b

(2)

Taking derivative of the lagrangian with respect to xÕÕ and equating with zero we get,

ˆL

ˆxÕÕ = 2xÕÕ
≠ 2(x ≠ ⁄w) = 0

x ≠ xÕÕ = ⁄w
(3)

By substituting above equation in the constraint for the optimization problem wT xÕÕ + b = 0, we get ⁄ =
w€x+b

ÎwÎ2
2

.

Theorem 3.2. For any ‘ œ [0, 1], auditor AlgLCc is an (‘,0)-auditor for feature sensitivity and hypothesis
class HLC with T = 1 query.

Proof. Recall that the counterfactual explanation returned by the DS for input x is given as xÕ =
argminxÕ:h(xÕ) ”=h(x) d(x, xÕ) where d(x, xÕ) = Îx ≠ xÕ

Î2.

The projection of x on the hyperplane, xÕÕ is the closest point to x on the hyperplane. Therefore xÕ = xÕÕ +�
where � is a vector in the direction of w, � = “w, “ is a very small non-zero constant.

Therefore, x ≠ xÕ = x ≠ (xÕÕ + �) = (x ≠ xÕÕ) + �.
Using lemma 3,

ŵ := x ≠ xÕ = ⁄w + “w = c0w, (4)
where c0 is a non-zero constant. (x ≠ xÕ is non-zero due to the definition of counterfactuals, specifically that
they have di�erent labels.)

If wd = 0, then it implies that ŵd = 0 and the feature has no e�ect on the prediction. Thus the score
function is zero. Since AlgLCc returns a No when ŵd = 0, it is always correct in this case. For all the other
cases when wd ”= 0, it implies that ŵd ”= 0 and therefore, the feature has an e�ect on the prediction. Since
AlgLCc returns a Yes when ŵd ”= 0, it is always correct.

Also ” = 0 since our auditor and DS are deterministic.

18

Published in Transactions on Machine Learning Research (07/2024)

Note that this is partial learning since 1) we do not need to learn w exactly and 2) we do not need to learn
the bias term b.

A.3 Connection between Model Parameters and Score Function

Notation For vector v, the ith feature is denoted vi.
Let hypothesis hw,b œ HLC. When w, b are clear from the context, we simply write h. Let wÕ be the
(d ≠ 1)-dimensional vector [w1 . . . wd≠1]T . Hence w is a concatenation of wÕ and wd, denoted by the
shorthand w = [wÕ, wd]. We assume that Îw

Õ
Î2 = 1.

Let x be a d-dimensional input to this hypothesis. Let xÕ be the (d ≠ 1)-dimensional vector [x1 . . . xd≠1]T .
Let x̄ = [x1 . . . xd≠1, 1]€. Without loss of generality, let the dth feature be the feature of interest and
xd œ {0, 1}.
The score function for a hypothesis h is given as, s(h) = Pr

!!
xi, xj

"
forms a responsive pair

"
where

!
xi, xj

"

is sampled uniformly from the set of all pairs and labeled by h. Henceforth we use this score function.

In the following theorem, we bound the fraction of responsive pairs, also our score function, using the weight
of our feature of interest, wd. The score function is bounded by c · |wd| where c depends on the dimension of
the input. This implies that if |wd| is small, there are not a lot of responsive pairs (low score function value).
Theorem 1. Assume ’x œ X , Îx̄Î2 Æ 1. Let h[wÕ,wd],b œ HLC. Then

s(h) Æ c · |wd| (5)

where c = 2d≠2

fi(d≠1
2)·�(d+1

2)
is a constant for finite dimension d and � is Euler’s Gamma function.

Proof. Let P be the set of all pairs of points. Let xi and xj denote two inputs forming a pair. Let the pair
(xi, xj) drawn uniformly from P form a responsive pair.

From the definition of a pair, xi and xj only di�er in the dth feature. Hence,

w€xj + b = wÕ€xÕj + b + wdxj
d

= wÕ€xÕi + b + wd

!
1 ≠ xi

d

"

= wÕ€xÕi + b + wd ≠ wdxi
d.

(6)

Without loss of generality, let xi
d = 0, hence xj

d = 1.
Therefore,

w€xj + b = wÕ€xÕi + b + wd (7)

Next, writing the definition of a responsive pair for HLC we get,

sign
!
w€xi + b

"
”= sign

!
w€xj + b

"
(8)

Substituting eq. 7 into the RHS of eq. 8, we get,

sign
!
w€xi + b

"
”= sign

!
wÕ€xÕi + b + wd

"
(9)

Expanding the LHS of eq. 9 and substituting xi
d = 0, we get,

sign
!
wÕ€xÕi + b

"
”= sign

!
wÕ€xÕi + b + wd

"
(10)

Eq. 10 implies the following,

19

Published in Transactions on Machine Learning Research (07/2024)

0 Æ wÕ€xÕi + b ∆ wÕ€xÕi + b + wd < 0
0 > wÕ€xÕi + b ∆ wÕ€xÕi + b + wd Ø 0

(11)

Combining the two equations in eq. 11 we get,

0 Æ wÕ€xÕi + b < ≠wd

0 < ≠
!
wÕ€xÕi + b

"
Æ wd

(12)

Note that the model (defined by w, b) is fixed. Hence the variables in the above conditions are the inputs x.
Note that only one of the conditions in eq. 12 can be satisfied at any time, based on whether wd Ø 0 or
wd < 0. The fraction of the inputs which satisfy one of the above conditions correspond to the fraction of
responsive pairs and hence is the value of the score function.

Conditions in eq. 12 correspond to intersecting halfspaces formed by parallel hyperplanes. If Îx̄Î2 Æ r,
the region of intersection can be upper bounded by a hypercuboid of length 2r in d ≠ 2 dimensions and
perpendicular length between the two hyperplanes l = |wd|

ÎwÕ Î2
in the (d ≠ 1)-th dimension.

Hence, we can upper bound score function s(h) as,

s(h) Æ
(2r)d≠2

· l

Vd≠1(r) (13)

where l = |wd|
ÎwÕ Î2

and Vd≠1(r) is the volume of the (d ≠ 1)-dimensional ball given by fi(d≠1)/2

�(d≠1
2 +1)rd≠1 and � is

Euler’s Gamma function.

Upon simplification we get,

s(h) Æ
2d≠2

fi(d≠1
2)

l

r�
!

d+1
2

" (14)

Assuming r = 1 and ÎwÕ
Î2 = 1, we can write eq. 14 as,

s(h) Æ c · |wd| (15)

where c = 2d≠2

fi(d≠1
2)·�(d+1

2)
is a constant for small dimensions.

A.4 Auditing Linear Classifiers with Anchor Explanations

Imperfect Precision. When the precision is not perfect, the anchor augmentation scheme (lines 11-13
in Alg. 2) is not as straightforward. Essentially we cannot assign the same label to all randomly sampled
points in the hyperrectangle. To overcome this problem we can use some heuristics and tricks. (a) Note that
we wish to exploit the information given by anchors to automatically label samples, but due to imperfect
precision there will be errors in this labeling if we use our old augmentation scheme – this is analogous to
active learning with noisy labels and we can explore existing literature in this field to deal with this problem.
(b) We can internally consider a smaller hyperrectangle than that supplied by the data scientist and only
sample from that – this can reduce the error arising from potential wrong labeling (c) We can also ask for
labels for some points within each anchor - this might help due to the structure of linear classifiers (only
points closer to the decision boundary can have imperfect precision) and the fact that the problem only
arises when the precision is somewhere in between 0 and 1, it does not arise at the ends or closer to 0 or 1.
Imperfect precision can potentially increase the number of queries or the computations required for anchor
augmentation.

Alabdulmohsin et al. (2015) proposed a query synthesis spectral algorithm to learn homogeneous linear
classifiers in O(d log 1

�) steps where � corresponds to a bound on the error between estimated and true

20

Published in Transactions on Machine Learning Research (07/2024)

classifier. They maintain a version space of consistent hypotheses approximated using the largest ellipsoid
Áı = (µı, �ı) where µı is the center and �ı is the covariance matrix of the ellipsoid. They prove that
the optimal query which halves the version space is orthogonal to µı and maximizes the projection in the
direction of the eigenvectors of �ı.

We propose an auditor AlgLCa as depicted in alg. 2 using their algorithm. The anchor explanations are
incorporated through anchor augmentation. But, in the worst-case anchors are not helpful and hence the
algorithm reduces essentially to that of Alabdulmohsin et al. (2015) (without anchors). In this section we
find the query complexity of this auditor.

Notation In AlgLCa, Átı = (µtı, �tı) denotes the largest ellipsoid that approximates the version space
(corresponds to search space in our case) at time t where µtı is the center and �tı is the covariance matrix
of the ellipsoid at time t. N t is the orthonormal basis of the orthogonal complement of µtı and N tÕ is its
transpose. –tı is the top eigenvector of the matrix N tÕ�tıN t. In the implementation by Alabdulmohsin
et al. (2015), some warm-up labeled points are supplied by the user, we denote this set as W . Let W (t)
denote the t-th element of this set. Let the dth feature be the feature of interest without loss of generality.

Algorithm 9 AlgLCa : Auditing Linear Classifiers using Anchors
1: Input: T , augmentation size s, set of warm-up labeled points W
2: set of queried points Q := ÿ, l :=size(W)
3: for t = 1, 2, 3, . . . , T + l do

4: if t <= l then

5: (x, y) := W (t)
6: Q Ω Q fi (x, y)
7: goto step 15
8: else

9: Query point xt := N t–tı from the DS
10: Auditor receives label y and explanation Ax from the DS
11: Q Ω Q fi (xt, y)
12: Sample randomly q points xt1 . . . xtq from Ax

13: Q Ω Q fi {(xt1, y) . . . (xtq, y)}
14: end if

15: Á(t+1)ú =
!
µ(t+1)ı, �(t+1)ı

"
:= estimate_ellipsoid(Q)

16: N t+1 := update_N(µ(t+1)ı)
17: –(t+1)ı := update_alpha(N t+1, �(t+1)ı)
18: {//Exact formulae for steps 15, 16 and 17 can be found in Alabdulmohsin et al. (2015)}
19: end for

20: ŵ = µT +1

21: if |ŵi| Æ � (ith feature is the FoI) then

22: return No
23: else

24: return Yes
25: end if

Anchor
Augmentation

Next we give a bound on the number of queries required to audit using AlgLCa. With worst-case anchors, it
means that we are just using the algorithm of Alabdulmohsin et al. (2015), essentially without explanations
and anchor augmentation. The auditor has a fixed ‘ that it decides beforehand. AlgLCa decides how many
times it must run the algorithm of Alabdulmohsin et al. (2015) such that for the fixed ‘, it satisfies def. 2.

Theorem 3.3. For every dimension d, there exists c > 0 such that for any ‘ œ (0, 1), auditor AlgLCa is an
(‘, 0)-auditor for feature sensitivity and HLC with T = O

!
d log 2c

‘

"
queries.

21

Published in Transactions on Machine Learning Research (07/2024)

Proof. Let w be the true classifier and ŵ be the estimated classifier learnt by AlgLCa.

Let the di�erence between w and ŵ be bounded by � as follows,

Îw ≠ ŵÎ2 Æ �. (16)

The value of � will be set later on. Since AlgLCa uses |ŵd| to make its decision, the worst case is when the
entire error in estimation is on the dth dimension. Hence, we consider |wd ≠ ŵd| Æ �.

To guarantee that the auditor is an (‘, 0)-auditor we need to verify for every hypothesis in the class that if
s(·) = 0, then the answer is No and if s(·) > ‘, then the answer is Yes, see def. 2.

Importantly, s(w) is zero only if wd = 0 from theorem 1. If wd = 0 ∆ |ŵd| Æ �, by eq. 16. Since AlgLCa
returns a No for |ŵd| Æ �, AlgLCa satisfies def. 2 when s(w) = 0 with ” = 0.

Next, we have the case s(w) > ‘ when auditor should return a Yes with high probability. AlgLCa returns a
Yes when |ŵd| > �. Hence for AlgLCa to be correct, we need that s(w) > ‘ imply that |ŵd| > �.

We can upper bound s(w) using eq. 14 as,

s(w) Æ c · |wd| (17)

Since ‘ < s(w),

‘ < c · |wd| (18)

Since |wd ≠ ŵd| Æ �,

‘ Æ c (|ŵd| + �) (19)

On rearranging,

‘

c ≠ � Æ |ŵd| (20)

Eq. 20 connects ‘ with � and ŵd. For s(w) > ‘, |ŵd| should be greater than � for AlgLCa to be correct.
Hence, lower bounding the LHS of eq. 20 we get,

� Æ
‘

c ≠ �

� Æ
‘

c ≠ �

� Æ
‘

2c

(21)

We set � = ‘
2c .

From Lemma 1, AlgLCa reduces to Alabdulmohsin et al. (2015)’s spectral algorithm in the worst-case. This
algorithm has a bound of O(d log(1

�)). Hence, the query complexity of AlgLCa is O(d log(2c
‘)).

22

Published in Transactions on Machine Learning Research (07/2024)

A.5 Auditing Decision Trees

Algorithm 10 findpath(x, P)
1: Given : Query x and explanation paths set P
2: for path p œ P do

3: not_p := False
4: for (fi, vi, diri) œ p do

5: if (diri ==Æ & xfi > vi)||(diri ==Ø & xfi < vi) then

6: not_p := True
7: goto line 3
8: end if

9: end for

10: if not_p == False then

11: return True {Query satisfies a pre-existing path}
12: end if

13: end for

14: return False

Algorithm 11 perturb(x, p)
1: Given : Query x and corresponding explanation path p = [(f, v, dir = {Æ / Ø})] {Two directions of

inequality are used for ease of illustration. The code is generalizable to include other conditions easily.}
2: Randomly pick a tuple (f, v, d) from p
3: if dir ==Æ then

4: Perturb xf such that xf > v
5: else

6: Perturb xf such that xf < v
7: end if

8: x := x\xf
fi xf

9: return x

Theorem A.1. For any ‘ œ [0, 1], auditor AlgDT is an (‘,0)-auditor for feature sensitivity and hypothesis
class HDT with T = O(V) queries where V is the number of nodes in the decision tree.

Proof. Let L be the number of leaves and V be the number of nodes in the decision tree. The total number
of queries asked by 3 equals the number of paths in the tree. The number of paths in a binary decision tree
equals the number of leaves L and L = (V + 1)/2. Once the auditor makes V queries, it has explored all
the paths in the tree and hence knows the tree exactly. Therefore with O(V) queries, it can give the correct
auditing decision precisely.

A.6 Manipulation-Proofness

Yan and Zhang (2022) define manipulation-proofness as follows. Given a set of classifiers V , a classifier h,
and a unlabeled dataset S, define the version space induced by S to be V (h, S) := {hÕ

œ V : hÕ(S) = h(S)}.
An auditing algorithm is ‘-manipulation-proof if, for any hú, it outputs a set of queries S and estimate ŝ
that guarantees that maxhœV(hú,S) |s(h) ≠ ŝ| Æ ‘.

Our anchor and decision tree auditors are manipulation-proof trivially since the version space size at the
end of auditing is 1. Our counterfactual auditor is manipulation-proof since only those classifiers which
have wi = 0 will be in the version space.

23

Published in Transactions on Machine Learning Research (07/2024)

A.7 Experiments

For Adult dataset, the output variable is whether Income exceeds $50K/yr. For Covertype, the output
variable is whether forest covertype is category 1 or not. For Credit Default, the output is default payment
(0/1).

24

	Introduction
	Preliminaries
	An Example of Auditing Through `Feature Sensitivity'
	Linear Classifiers
	Counterfactual Explanations
	Anchor Explanations

	Decision Trees

	Auditor through connections with Active Learning
	Experiments
	Anchor Augmentation of Typical Anchors
	Average Queries for Decision Tree Auditing

	Discussion
	Related Work
	Conclusions and Future Work
	Appendix
	A General Auditor for finite hypothesis classes
	Auditing Linear Classifiers with Counterfactual Explanations
	Connection between Model Parameters and Score Function
	Auditing Linear Classifiers with Anchor Explanations
	Auditing Decision Trees
	Manipulation-Proofness
	Experiments

