Appendix A Algorithms

Algorithm 1: Stagel: Global GNN Encoder Ng

Input: obstacles O, start vg, goal vy, network g, gy, K9, QW v, Kéz), Qz(f), Vy(z) for i-th
embedding dimension.
Sample n nodes vy, - - - , v, from configuration space of ego-arm robot
Initialize G = {V : {vs,vg,v1,- -+, v}, E : k-NN(V)}
Initialize encoding of vertices and edges
x; = g2 (i, Vg, v — Vg, Ui — v,[3),Yv; €V

Y = gy(vi,vj,v5 —v;), Ve : (v, v5) € E
Initialize obstacle encoding O; = g,(O;) + TE(t),Vt € [0, -+ ,T] using Eq.
Encode obstacles into vertices and edges using Eq. [3]
Message Passing using Eq.
return Encoding of edges {y;}

Algorithm 2: Stage2: Lobal Planner Np

Input: graph G = (V| E), encoding of edges y;, obstacle encoding O, time window w, global
GNN encoder N, local planner A'p, goal-reaching constant 4.
Initialize ¢ = 0,vp = vs, tg = 0,7 = (vo,t0), Eo = {e: (vs,v;) € E, Vv, € V}
repeat
n= NP(Va Eia O7NGati)
select e; = argmax,cp, 7, and e; connects (v;, v;)
if e; is collision-free when start moving from ¢;
tiv1 = ti + A(vi, v5) ; // A(vi,v;) is the travel time from v; to v,
i1 < m U{(v),ti1)}
Vi1 < Vj
Ei+1 = {6 : <’U7;+1,Uk> S E,Vvk S V}
if |[vip1 —vgl[3 <0
return T
t—1+1
else
Ei = Ei \ €j
until £, =
return ()

Algorithm 3: Dijkstra-H

Input: graph G = (V, E), start v, goal vy, goal-reaching constant ¢.
Sample n nodes v1, - - - , v, from configuration space of ego-arm robot.
Initialize G = {V : {vs,vg,v1,- - , v}, B : KNN(V)}
Calculate the shortest distance d,, on the graph from v, to each node v, € V using Dijkstra’s
algorithm.
Initialize ¢ = 0,vp = vs, tg = 0,7 = (vo,t0), Eo = {e: (vs,v;) € E, Vv, € V}
repeat
select v; = argming,, ,,)er; du,
if (v;,v;) is collision-free when start moving from ¢;
tiv1 = ti + A(vi, v5) ; // A(v;,v;) is the travel time from v; to v,
i1 < m U{(v),ti1)}
Vi1 < Vj
Ei+1 = {6 : <vi+1,vk> S E,Vvk € V}
if |[vig1 —vgl[3 <0
return T
1 1+1
else
Ei = Ei \ €j
until £, = 0
return ()
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Appendix B Network Architecture Details

We provide the numbers of network parameters in Table|[I] Please refer to[2|for the overall two-stage
architecture of the proposed GNN-TE.

Table 1: Network Architecture Details

Name Model
Stagel Global GNN Encoder
Node Encoder Net g, MLP((config_size+1)*4,32),MLP(32,32)
Edge Encoder Net g, MLP((config_size+1)*3,32),MLP(32,32)
Obstacle Encoder Net g, MLP(obstacle_size,32), MLP(32,32)
Key Network f (O MLP(32,32)
. )
Attention Net Query Network f Q") : MLP(32,32)
Value Network fv<.>: MLP(32,32)
)
Feedforward Net MLP(32,32),MLP(32,32)
Node Message Passing f, MLP(32%4,32),MLP(32,32)

Edge Message Passing f,

MLP(32%3,32),MLP(32,32)

Stage2 Local Planner

Planner Net fp

MLP(32+obstacle_size*window_size, 64),MLP(64,32),

MLP(32,32), MLP(32,1)

Appendix C Experiments

C.1 Hyperparameters

We provide the hyperparameters in Table

Table 2: Hyperparameters

Hyperparameters Values
k for k-NN 50
Training Epoch before DAgger 200
Training Epoch for DAgger 100
Learning Rate le-3
Temporal Encoding Frequency w | 10000
drg 32
Time Window w 2

C.2 Overall Performance

We provide the detailed overall performance in Table 3] ] and

Table 3: Success Rate (%)

2Arms Kuka-4DoF | Kuka-5DoF | Kuka-7DoF 3Arms Kuka3Arms
random | 100£0.00 | 100%0.00 100+0.00 100£0.00 | 100£0.00 | 100+0.00
SIPP hard | 100£0.00 | 100+0.00 100=0.00 100£0.00 | 100£0.00 | 100+0.00
random | 94.120.02 | 97.8%0.01 | 97.620.00 | 98.8x0.01 | 92.1%0.01 | 97.4%0.01
GNN-TE hard | 62.5£0.02 | 34.9%0.00 | 37.9%0.15 | 38.1%£0.12 | 52.5£0.03 | 42.120.08
random | 94.120.01 | 97.5%0.01 | 97.720.00 | 98.8£0.01 | 91.50.01 | 97.3%0.01
GNN-TE w/o Dagger 5.4 [ 38 120.03 | 33.320.00 | 36.8%0.14 | 36.5%0.11 | 51.6£0.05 | 42.6%0.08
- random | 89.7+0.03 | 96.320.01 | 96.2%0.01 | 97.7%0.01 | 85.940.01 | 93.940.01
Dijkstra-H hard | 0.00£0.00 | 0.00£0.00 | 0.00£0.00 | 0.00£0.00 | 0.00£0.00 | 0.00£0.00
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Table 4: Path Time Ratio

2Arms Kuka-4DoF Kuka-5DoF Kuka-7DoF 3Arms Kuka3Arms
random | 100%0.00 100+0.00 100+0.00 100+0.00 100+0.00 100+0.00
SIPP hard 100+0.00 100=0.00 T00=0.00 100%0.00 100%0.00 100=0.00
random | 107.55+2.33 | 132.71x4.46 | 171.39+12.04 | 172.83+8.77 | 120.76+7.89 | 186.18+23.96
GNN-TE hard | 12331=7.71 | 189.54%5.41 | 183.33x48.26 | 167.65247.7 | 134.5429.76 | 152.52£22.31
random | 109.67£5.46 | 148.1+13.59 | 161.40£16.50 | 170.05£9.11 | 130.48+11.74 | 181.74=18.98
GNN-TE w/o Dagger (.0 121.4128.85 | 250.26%82.5 | 232.67299.79 | 193.12%42.4 | 154.85%23.81 | 164.67240.65
- random | 123.73+8.29 | 212.09+20.73 | 198.72+14.7 | 199.22+23.02 | 177.88+19.59 | 189.23%5.64
Dijkstra-H hard 7 7 7 7 7 7
Table 5: Collision Checking
2Arms Kuka-4DoF Kuka-5DoF Kuka-7DoF 3Arms Kuka3Arms
random 60440.21+£1543.21 171336.68+2061.60 | 196567.99+1152.81 | 268602.98+780.07 96713.81+3945.07 269033.61+1159.78
SIPP hard 1080768.34+81176.44 145280.09+1448.0 182696.61+£1271.86 | 257783.45+742.83 | 114337.00+£3560.95 255173.7+£2099.46
random 17.24+8.45 37.36+4.74 56.89+5.41 61.99+8.08 33.08+7.95 72.63+13.13
GNN-TE hard 47.31+7.72 155.7+£96.49 108.25+48.29 110.65+39.63 65.93+14.84 90.42+25.61
random 21.13%£11.71 42.00+4.60 61.79+10.39 69.39+10.67 47.48+14.40 73.33+11.57
GNN-TE w/o Dagger —5rq 17912885 T60.43+70.64 166.61£86.29 164 41%88.98 98.67+37.69 98.41232.15
.. random 56.21+23.56 236.50+17.60 229.35+21.66 236.95+34.93 103.74+19.57 237.93+12.83
Dijkstra-H hard 7 7 7 / / /

C.3 Optional Backtracking Search

We provide the results of GNN-TE and Dijkstra-H with backtracking (top-5) in 2Arms environment
in[6] Our method outperforms the heuristic method with and without the backtracking search.

Table 6: The performance of backtracking search in the 2Arms environment

SIPP || Dijkstra-H | GNN-TE || Dijkstra-H w. BT | GNN-TE w. BT
Success Rate random | 100% 89.70% 94.10% 94.10% 98.00 %
hard 100% 0% 62.50% 50.70% 89.30%
Path Time Ratio random | 100% 123.61% 107.65% 123.61% 107.65%
hard 100% / 128.22% 276.25% 128.22%
Collision Checks random | 60K 55.88 17.17 55.88 17.17
hard 1081K / 52.68 1161.29 52.68

We also provide the success rate of GNN-TE with backtracking in all the environments in[7} As the
DoF and the complexity of the configuration space increase, the searching space grows and requires
more backtracking steps. Thus the increase in success rate by backtracking may not be as significant
as in the simple settings if we keep the backtracking steps the same. However, GNN-TE still shows a
significant advantage over Dijkstra-H even with backtracking in all the settings.

Table 7: Success rates of GNN-TE and Dijkstra-H with backtracking search

2Arms Kuka-4DoF | Kuka-5DoF | Kuka-7DoF 3Arms Kuka3Arms
Dijkstra-H 89.7£0.03 | 96.3+0.01 96.2+0.01 97.7x0.01 | 85.9+0.01 | 93.9+0.01
GNN-TE 94.1x0.02 | 97.8+0.01 97.6x0.00 98.8£0.01 | 92.1x0.01 | 97.4x0.01
random pyrpcha Hw. BT | 94.120.01 | 96.7%0.02 96.2+0.01 07.8+0.01 | 92.4+0.01 | 94.2+0.01
GNN-TE w. BT | 98.0+0.01 | 97.8+0.01 97.7+0.00 98.9+0.01 | 97.1x0.01 | 97.4+0.00
Dijkstra-H 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0 0.0£0.0
GNN-TE 62.5+0.02 | 34.9x0.00 37.9+0.15 38.1x0.12 | 52.5£0.03 | 42.1x0.08
hard  prksira-Hw. BT | 50.720.06 | 10.120.01 5.8+0.40 2.8+0.24 | 45.8+0.05 2.7%0.01
GNN-TE w. BT | 89.3x0.03 | 36.4x0.00 40.8+0.15 39.4:0.12 | 82.6x0.02 | 44.3x0.01

C.4 Comparison with End-to-End RL

We compare our approach with RL-based approaches, DQN-GNN and PPO-GNN specifically. The
two algorithms both encode the graph using GNN as ours in stage 1. DQN-GNN, similar to our
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local planner, learns a network to evaluate the Q value of the subsequent edge as a priority value.
PPO-GNN learns a policy network that output the next configuration, and we project it onto the
nearest vertex on the graph encoded by GNN. We define the reward as —10 for collision, 10 for
reaching the goal, and the distance displacement for non-collision configurations.

In the general RL setting, we do not expect the generalization capability of algorithms. But as a
general graph encoder, GNN can achieve generalization between graphs. Based on this, we train
DQN-GNN and PPO-GNN across problems and test their performance. On training set, DQN-GNN
achieves 54.5% success rate while PPO-GNN only achieves 21.1%. We also provide results on
randomly generated test cases and hard cases in Table[8] We can observe that GNN-TE significantly
outperforms all the RL approaches. Moreover, the advanced inductive bias of GNN for discrete
decision-making problems explained why DQN-GNN has better performance than PPO-GNN in
both randomly sampled cases and hard cases. Nevertheless, DQN-GNN and PPO-GNN both cannot
efficiently find plans, especially in hard cases. This is because RL-based approaches have trouble
finding a feasible path without demonstration from the oracle and only rely on rewards in challenging
problems.

Table 8: Table for RL Approaches in 2Arms Environment

GNN-TE | DQN-GNN | PPO-GNN
random 94.10% 62.40% 9.80%
Success Rate hard 62.50% 2.00% 0.70%
] : random | 103.55% | 105.47% 119.73%
Path Time Ratio hard | 102.43% | 109.76% 134.15%
Collision Checking raﬁli(()im 233 ‘6'(6)3 ggg

C.5 Comparison with OracleNet-D

We compare GNN-TE with a learning-based approach OracleNet-D by modifying OracleNet [1] to
the dynamic version. Concretely, we concatenate the trajectories of obstacles to the input in every
roll-out of OracleNet to inform the network of the dynamic environment We provide the results in
2Arms environment in Table E (For a fair comparison, we present the result of GNN-TE without
DAgger. And the collision checking is not provided because OracleNet-D generates and rolls out the
path iteratively without checking the collision.)

Table 9: Table for GNN-TE and OracleNet-D in 2Arms Environment

SIPP | Dijkstra-H | GNN-TE | OracleNet-D
random | 100% 89.70% 94.10% 53.90%
Success Rate hard | 100% 0.00% 58.10% 10.80%
) _ | random | 100% | 120.61% | 113.94% 1130.76%
Avg Path Time Ratio - 97— 100% i 118.92% | 813.00%

We observe that the performance of OracleNet-D falls behind GNN-TE both on success rate and
the average time ratio. This result shows that encoding environmental information is important for
the planner in a dynamic environment. As mentioned in [[1], the configuration of the robot and the
environmental information form different distributions and the mapping is challenging. We believe
GNN with the attention mechanism and temporal encoding provides a good solution to the problem.
Also, GNN-TE benefits from the second-stage local planner, which takes local temporal obstacle
information into consideration.

'We use the original code from repository https:/github.com/mayurj747/oraclenet-analysis
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C.6 Ablation Study on Varying Training Set Sizes
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Figure 7: Results on varying training set sizes in 2Arms environment. We observe that GNN-TE
benefits from increasing the training problems, both in better success rate and less collision checking.
Left: A scatter plot visualizes the relevance between the success rate and the collision checking
regarding the training size. The number on each point indicates the training size. Right: An equivalent
plot that clearly shows the performance boost benefited from a larger training size. Higher success
rate (blue curve) and lower collision checking (orange curve) are favored.

We train GNN-TE on varying training problems (specifically 100, 200, 300, 400, 500, 1000, 1500,
2000, 2500, 3000) and test on the same random sampled and hard problems in 2Arms environment.

We observe that GNN-TE benefits from increasing the training problems, both in better success rate
and less collision checking. From the plot in the right column of the figure, we observed that the
trends are prone to be log-like. It shows that the performance will be saturated as the training set
covers the problem distribution.

C.7 Ablation Study on Basic GNN

In Table |10, we provide the overall performance gain by all the components of GNN-TE over the
basic GNN (GNN-basic) in 2Arms environment. Specifically, in the first stage, GNN-basic removes
the attention mechanism and temporal encoding. And in the second stage, GNN-basic only inputs
the obstacle encoding at the current time step.

Table 10: Overall performance gain over basic GNN

SIPP | Dijkstra-H | GNN-TE | GNN-basic
random | 100% | 89.70% 94.10% 92.70%
Success Rate hard 100% 0.00% 62.50% 32.00%
- [ random | 100% | 123.73% | 107.78% | 112.42%
Avg Path Time Ratio hard | 100% 7 122.13% | 185.92%
random K 21 17.44 28.
Avg Collision Checking ahi% 18311( 56/ 1523 1089?7%
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C.8 Failure Modes in 2Arms Environment

We provide visualizations of GNN-TE failing to find feasible solutions in 2Arms environments. We
find there are mainly two modes: it fails to make a detour in Fig. [8 or gets too close to the moving
obstacles in Figl9] In Fig. [8] we can observe that GNN-TE plans to directly get to the goal while the
feasible path is to make a detour to avoid the obstacle. In Fig. [9, although GNN-TE can follow the

correct direction but fail in getting too close to the obstacle arm.

GNN-TE SIPP

£

| k]
- -

Figure 8: Failure mode: the planner fails to make a detour. Our planner controls the arm in black and
white.

Figure 9: Failure mode: the planner gets too close to the obstacle. Our planner controls the arm in
black and white. Though the planner follows the correct direction, it gets too close to the obstacle

arm, which leads to the collision.

Appendix D Limitations and Future Work

D.1 Discussions on Using GNNs and Attention Mechanism

Motion planning has been a longstanding challenge in robotics, especially in dynamic environments.
Our approach uses a learning-based approach leveraging Graph Neural Networks to efficiently tackle
this problem. GNNs show great capability in capturing geometric information and are invariant to the
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permutations of the sampled graph. Another challenge in dynamic environment is that the difference
in distributions of the robot configuration and the environmental information makes the mapping
and motion planning challenging. Our approach tackles this by introducing the attention mechanism
with temporal encoding to learn the correlation between the temporal positions of obstacles and the
ego-arm configuration on the graph. It is efficient because, as for a configuration node on the graph,
the obstacles’ positions of some time steps are more important than others, as the obstacles may have
more possibilities of colliding with the ego-arm at those time steps. So, in this case, the obstacles of
those time steps should be given more importance in modeling. Also, the attention mechanism can
take time sequences with variable length as inputs.

Regardless of the empirical efficiency, the performance of the GNN-based approach is still bounded
by the sampled configurations. It can only be boosted by a sufficient number of nodes on the graph,
especially in a complex environment and with a robot with a high degree of freedom. It is still an
open problem how many samples would be sufficient for the GNN to capture the geometric pattern
from the configuration space.

D.2 Limited Performances on Hard Problems

Although GNN-TE can achieve a better success rate than other learning-based approaches, it is
still not complete and has limited performance on hard problems (see Section for examples
of failure modes). A direction of solving this problem is to do hard example mining and train on
those problems, where we train GNN-TE on extra hard examples and test its performance, and the
success rate rises from 62.5% to 71.3% on 2Arms environment. However, in general, we believe the
safety and reliability of learning-enabled systems are always a core issue that needs to be solved after
learning-based approaches show clear benefits.

For motion planning, a potential future direction is to integrate our learning-based component with
monitoring. Such monitoring identifies hard graph structures that are out-of-distribution for the
neural network components. It ensures that the learning-based components are only used when the
planning can be safely accelerated, in which case they will provide great benefits in reducing collision
checking and overall computation. When hard or out-of-distribution cases occur, the planner should
fall back to more complete algorithms such as SIPP. There also has been much ongoing development
in frameworks for ensuring the safe use of learning-based components in planning and control, which
we believe is orthogonal to our current work. For example, [3] provides reviews learning-based
control and RL approaches that prioritize the safety of the robot’s behavior.

D.3 Trade-off Between Quality and Efficiency

Another observation from the result is the trade-off between quality (success rate of finding paths) and
efficiency (number of collision checks). In this work, we further add backtracking, where we keep
a stack of policy edges of the top-n priority values and allow the algorithm to take the sub-optimal
choices if it fails. Therefore, the backtracking will increase the collision checking with the hope of
finding a solution. Although adding this or other systematic searching algorithms can improve the
quality in the sacrifice of efficiency, we think the actual bottleneck might still be the priority values
as the heuristic produced by the model. We believe this trade-off may be a crucial learning-based
dynamic motion planning topic and needs future investigations.

D.4 Problem Distribution and Generalization

As most learning-based approaches would assume, our model needs to be trained on the same actor
and obstacle arms as it’s tested on. Both the sampled graph and the expert trajectory are implicitly
conditioned on the kinematic structure. This assumption aligns with the most immediate use of
learning-based components for reducing repeated planning computation in a relatively fixed setting
of arm configurations. We believe learning planning models that can be generalized to arbitrary arms
and obstacles is still challenging for the community, for it requires an in-depth study of other issues
that have not been fully understood, such as the inherent generalization properties of graph neural
networks. As shown in [9], there still exists the trade-off between expressivity and generalization in
GNN. We leave this topic to future works.
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Appendix E  More Snapshots in Different Environments

In this section, we show more snapshots of baselines SIPP, GNN-TE, Dijkstra-H in different envi-
ronments. In those environments and cases, GNN-TE succeeds in finding a near-optimal path while
Dijkstra-H fails.

SIPP GNN-TE Dijkstra-H
0;. !: . 9&

<
[ ]

7

SIPP

Figure 10: Snapshots: 2Arms

Dijkstra-H

Figure 11: Snapshots: 3Arms
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SIPP GNN-TE Dijkstra-H

Figure 12: Snapshots: Kuka-4DoF

SIPP GNN-TE Dijkstra-H

-ﬁ@ t‘@ .

Figure 13: Snapshots: Kuka-5DoF
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SIPP GNN-TE Dijkstra-H

>
Figure 14: Snapshots: Kuka-7DoF

SIPP GNN-TE Dijkstra-H

Figure 15: Snapshots: Kuka3Arms
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