ZERO-SHOT OUTLIER DETECTION VIA SYNTHETICALLY PRE TRAINED TRANSFORMERS: MODEL SELECTION BYGONE!

Anonymous authors

Paper under double-blind review

ABSTRACT

Outlier detection (OD) has a vast literature as it finds numerous applications in environmental monitoring, security, manufacturing, and finance to name a few. Being an inherently *unsupervised* task, model selection is a key bottleneck for OD (both algorithm and hyperparameter selection) without label supervision. There is a long list of techniques to choose from – both classical algorithms and deep neural architectures – and while several studies report their hyperparameter sensitivity, the literature remains quite slim on unsupervised model selection—limiting the effective use of OD in practice. In this paper we present FoMo-0D, for zero/0-shot OD exploring a transformative new direction that *bypasses* the hurdle of model selection altogether (!), thus breaking new ground. The fundamental idea behind FoMo-0D is the Prior-data Fitted Networks, recently introduced by Müller et al. (2022), which trains a Transformer model on a large body of *synthetically* generated data from a prior data distribution. In essence, FoMo-0D is a pretrained Foundation Model for zero/0-shot OD on tabular data, which can directly predict the (outlier/inlier) label of any test data at inference time, by merely a *single forward pass*—making obsolete the need for choosing an algorithm/architecture and tuning its associated hyperparameters, besides requiring no training of model parameters when given a new OD dataset. Extensive experiments on 57 public benchmark datasets against **26** baseline methods show that FoMo-0D performs statistically no different from the 2nd top baseline, while significantly outperforming the majority of the baselines, with an average inference time of 7.7 ms per test sample.

030 031 032

033

003

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

1 INTRODUCTION

Outlier detection (OD) finds applications in many domains such as security, environmental monitoring, finance, and so on. This popularity brings along a large literature that offers a plethora of detection algorithms to choose from given a new OD task. These techniques, however, exhibit several hyperparameters (HPs) that need careful tuning to which they are often quite sensitive (Ma et al., 2023). What makes it notoriously difficult to achieve effective OD performance in practice is *model selection* (both algorithm and HPs) in the *absence of any labels*, as most tasks are unsupervised.¹

In fact, while deep learning and modern architectures have revolutionized many areas of machine
learning (ML), it has not quite been the case for OD—mainly because deep OD models (Pang et al.,
2021) exhibit many more HPs (for architecture, regularization, and optimization) that detection
performance is sensitive to (Ding et al., 2022), as compared to classical methods with only a few HPs.

Large foundation models have stirred up most recent advances in ML, which are (pre-)trained on
massive amounts of data. The most notable progress has been in natural languages and vision, thanks
to the admirable quantity and quality of public text and image datasets. In contrast, public (benchmark)
datasets for OD is minuscule in comparison (Han et al., 2022; Zhao et al., 2021; Steinbuss and Böhm,
2021). Another obstacle for foundation models for tabular OD has been the non-shared feature spaces
of different datasets, unlike the shared pixel or word spaces for images and text.

Recently, the introduction of Prior-data Fitted Networks (PFNs) has marked a milestone as a new approach to ML on tabular data (Müller et al., 2022). PFNs are based on Bayesian non-parametrics

052

¹While semi /supervised settings of OD exist unsupervised OD is preferable in most domains for the capacity

¹While semi-/supervised settings of OD exist, unsupervised OD is preferable in most domains for the capacity to detect novel/emergent types of anomalies, beyond just the known types.

098

099

100

101

102

Table 1: Comparison of methods across datasets. (top row) Rank w.r.t. AUROC performance avg.'ed over 57 datasets is presented for FoMo-0D (with D = 100), **top-10 baselines** with default HPs, and **top-4**⁵ baselines with performance **avg.**'ed over varying HPs (denoted w/ ^{avg}); followed by *p*-values of the pairwise Wilcoxon signed rank test, comparing FoMo-0D to each baseline (from top to bottom) over All (57) datasets, those (42) w/ $d \le 100$ and (46) w/ $d \le 500$ dimensions. FoMo-0D performs as well as (**i.e., statistically no different from**) **the** 2*nd* **best model** (*k*NN, w/ p = 0.106) across All datasets, while it is **comparable to** (p > 0.05) **or better than** (p > 0.95) **all baselines** over datasets w/ $d \le 100$ (aligned w/ pretraining where D = 100) and $d \le 500$ (generalizing beyond pretraining).

	FoMo-0D	DTE-NP	kNN	ICL	DTE-C	LOF	CBLOF	Feat.Bag.	SLAD	DDPM	OCSVM	DTE-NP ^{avg}	$k \mathbf{N} \mathbf{N}^{\mathrm{avg}}$	ICL ^{avg}	DTE-Cav
Rank(avg)	11.886	7.553	9.018	10.851	11.36	12.316	13.342	13.386	12.982	14.061	13.851	9.079	11.105	12.991	22.263
All	-	0.016	0.106	0.462	0.454	0.585	0.750	0.823	0.759	0.901	0.895	0.112 0.752 0.607	0.315	0.670	1.000
$d \leq 100$	-	0.415	0.700	0.949	0.953	0.970	0.971	0.996	0.876	0.980	0.978	0.752	0.860	0.958	1.000
$d \leq 500$	-	0.220	0.569	0.827	0.894	0.960	0.968	0.994	0.910	0.960	0.979	0.607	0.756	0.846	1.000

and meta-learning on large quantities of *synthetically* simulated data from a data prior. The key idea
is to compute a posterior predictive distribution (PPD) for a test point given the training data as input
context. To approximate the PPD, a Transformer (Vaswani et al., 2017) is pre-trained to mimic the
PPD via simulating numerous training datasets from a (general, complex) data prior. For inference,
the fresh training set along with the test samples are passed to the (frozen) pre-trained PFN, which
outputs the predictions in a *single forward pass*, requiring no model training or model selection.
Variants of PFN are shown to match the performance of tree-based models on small classification
datasets (Hollmann et al., 2023) and in time series forecasting with limited data (Dooley et al., 2023).

074 In this paper, we capitalize on these ideas and introduce FoMo-0D; a prior-data fitted Foundation 075 Model for zero- or 0-shot Outlier Detection (for the "Fear of Missing out"-liers). The implication 076 and "gift" of PFNs for unsupervised OD goes beyond those for supervised learning: it helps bypass 077 not only model (parameter) training, but most importantly, the notoriously-hard task of model 078 (hyperparameter) selection altogether. As such, FoMo-0D unlocks zero-shot OD on a new dataset 079 without the need for any algorithm or HP selection. During inference, data is used only as input context to FoMo-0D, and not for parameter training or HP tuning. Arguably, this is a potential game 080 changer for unsupervised OD, especially for practitioners. Figure 1 illustrates the new FoMo-OD 081 paradigm versus the typical OD setting. 082

083 In designing FoMo-0D, we simply use Gaussian mixture models as a simple yet effective tabular data 084 prior, to capture general and diverse inlier data distributions, following current literature (Hollmann 085 et al., 2023; Zhao et al., 2021). We combine these with simulated outlier types common in the real-world; namely local and global subspace outliers (Steinbuss and Böhm, 2021). While the data prior can be extended to comprise more complex data distributions (e.g. through the use of Bayesian 087 Neural Networks (BNNs; (Neal, 2012)) and Structural Causal Models (SCMs; (Pearl, 2009)) as in 088 (Hollmann et al., 2023)), and additional outlier types can be included (e.g. dependency, contextual, 089 etc. outliers), as we show in the experiments, even with the relatively straightforward prior that we 090 employed, FoMo-0D achieves remarkable performance. As shown in Table 1, FoMo-0D pretrained 091 on synthetic datasets with up to 100 dimensions performs statistically no different from all 26 state-092 of-the-art baselines (all p-values > 0.2) on 46 benchmark datasets with dimensionality $d \leq 500$, while significantly outperforming the majority of the baselines (with p > 0.95) (see Appendix Tables 094 12.1&12.2). Further, FoMo-0D takes a mere average of 7.7 ms to infer a test sample since a new dataset requires a single forward pass for inference and no training overhead.

Our contributions: We summarize the main contributions of our work as follows.

- A Foundation Model for Tabular OD: We present FoMo-0D, *the first foundation model for zero-shot OD* on tabular datasets. FoMo-0D is a Prior-data Fitted Network (PFN) (Müller et al., 2022) that is pretrained on many synthetically generated datasets drawn from a novel data prior that we introduce to capture various inlier and outlier distributions. The pretrained FoMo-0D can then directly compute the posterior predictive distribution (PPD) of test points in a new dataset.
- Unsupervised Outlier Model Selection Made Obsolete: The most outstanding property of FoMo-0D is its *zero-shot inference* on a new dataset via a single forward pass, fully abolishing the need not only for model training on a new dataset, but importantly also the notorious task of algorithm selection and hyperparameter tuning in the absence of labeled data.
- Scalable Pre-training Design: To unlock the premise of large-scale pretraining on numerous large datasets, (1) we implement a new mechanism to speed up sample-to-sample attention from

quadratic to *linear time* complexity—enabling *larger datasets*; and (2) we scale up on-the-fly data synthesis through data transformation—enabling *more datasets* in less time.
 The second sec

 Fast Inference at Detection Time: Thanks to a pretrained prior-data fitted Transformer, FoMo-0D bypasses both model (parameter) training and selection, both of which can be slow for modern deep OD models with many hyper/parameters. Rather, it takes *fraction of a second* to label a test point through a single forward pass that can be parallelized across test samples. Such speedy inference also unlocks the potential for deploying FoMo-0D in *real time* on data streams.

Effectiveness: We evaluate FoMo-0D on 57 public benchmark datasets (Han et al., 2022) from diverse domains and compare against 26 baselines from classical to modern (Livernoche et al., 2024), where FoMo-0D significantly outperforms the majority of the baselines while performing statistically no different from the top 2nd baseline, at the fraction of the compute cost.

As FoMo-0D proposes a paradigm shift for OD, abolishing model training and selection altogether, while delivering unreasonable effectiveness on benchmark datasets even with a basic data prior, we expect FoMo-0D will trigger further work in both research and practice. To this end, we make all of our codebase for synthetic data generation, model training, and our pretrained FoMo-0D checkpoints, openly available at https://anonymous.4open.science/r/PFN40D.

123 124 125

126 127

128

119

120

121

122

2 PROBLEM AND PRELIMINARIES

2.1 Semi-supervised Outlier Detection

129 Outlier detection (OD) methods can be categorized based on the availability of labeled data. In 130 supervised OD, the task is similar to binary classification with imbalanced classes (as outliers typically 131 make up only a small portion of the overall data). The more difficult unsupervised setting assumes 132 the "contaminated" training data contains both inliers and outliers, but without any labels. A semi-133 supervised or one-class classification approach lies between these two extremes, where only inlier data is available for training, but unknown outliers may appear during inference. Semi-supervised 134 OD is used in practice where it is easy to gather inlier data, but learning from known, labeled outliers 135 is undesirable because outliers are hard to collect and/or new, unknown outlier types are likely to 136 arise in future test data that renders learning only from the known outliers suboptimal/risky. 137

Note that semi-supervised OD may be a *misnomer* from the supervised ML perspective, where
semi-supervised classification assumes the presence of some labeled instances from all classes in
the training data. As such, model selection continues to be as difficult for semi-supervised OD as
unsupervised OD, where no labeled outliers exist in the input/training data in both settings.

We focus on semi-supervised OD. Formally, let $\mathcal{D}_{in} = \{(\mathbf{x}_1, y_1) \dots, (\mathbf{x}_n, y_n)\}$ denote the input data containing only inliers $\mathbf{x}_i \in \mathbb{R}^d$, where $y_i = 0 \ \forall i \in [n]$, and \mathcal{D}_{test} depicts the test data comprising both inliers and outliers. The task is to assign labels to $\mathbf{x}_i \in \mathcal{D}_{test}$ given the inlier-only input \mathcal{D}_{in} .

146 147

154

2.2 BACKGROUND ON PRIOR-DATA FITTED NETWORKS

148Posterior Predictive Distribution (PPD): In the Bayesian framework for supervised learning, the149prior defines a hypotheses space Φ which expresses our beliefs about the data distribution before150seeing any data. Each hypothesis $\phi \in \Phi$ describes a mechanism by which the data is generated. The151posterior predictive distribution $p(\cdot|\mathbf{x}_{test}, \mathcal{D}_{train})$ provides a framework for making prediction on152new, unseen test data \mathbf{x}_{test} , conditioned on observed training data $\mathcal{D}_{train} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$.153Based on Bayes' Theorem, the PPD can be derived by the integration over the space of hypotheses Φ :

$$p(y_{\text{test}}|\mathbf{x}_{\text{test}}, \mathcal{D}_{\text{train}}) = \int_{\Phi} p(y_{\text{test}}|\mathbf{x}_{\text{test}}, \phi) p(\mathcal{D}_{\text{train}}|\phi) p(\phi) d\phi,$$
(1)

where $p(\phi)$ denotes the prior probability and $p(\mathcal{D}|\phi)$ is the likelihood of the data \mathcal{D} given ϕ .

PFNs and PPD Approximation: As obtaining the above PPD is generally intractable, Prior-data
Fitted Networks (PFNs) are proposed to approximate the PPD (Müller et al., 2022). Unlike traditional
machine learning models that are trained directly on observed datasets, PFNs are pre-trained offline
on simulated datasets that are generated according to a prior distribution. Specifically, it contains the
pre-training and inference stages described as the following.

Figure 1: (best in color) Comparison of typical OD vs. the FoMo-0D settings. Given a new un/semisupervised OD dataset, FoMo-0D not only eliminates the need for model training, but most importantly, also abolishes the onerous task of model selection (algorithm and hyperparameters) w/out labels.

178 Pre-training on synthetic data. At the beginning of the pre-training stage, massive synthetic training 179 datasets are generated, by first sampling a hypothesis (i.e., the generating mechanism) $\phi \sim p(\phi)$, and then sampling a dataset $\mathcal{D} \sim p(\mathcal{D}|\phi)$. For training purposes, each dataset \mathcal{D} can be split as $\mathcal{D}_{\text{test}} \subset \mathcal{D}$ and $\mathcal{D}_{\text{train}} = \mathcal{D} \setminus \mathcal{D}_{\text{test}}$. Thus the PFN with parameters θ can be optimized by making predictions on data points in D_{test} . For a test point $(\mathbf{x}_{\text{test}}, y_{\text{test}}) \in \mathcal{D}_{\text{test}}$, the training loss is formulated as 182

$$\mathcal{L} = \mathbb{E}_{\{\{\mathbf{x}_{\text{test}}, y_{\text{test}}\} \cup \mathcal{D}_{\text{train}}\} \sim p(\mathcal{D})} \left[-\log q_{\theta}(y_{\text{test}} | \mathbf{x}_{\text{test}}, \mathcal{D}_{\text{train}}) \right].$$
(2)

185 The above loss can also be interpreted as minimizing the expected KL divergence between $p(\cdot|\mathbf{x}, D)$ 186 and $q_{\theta}(\cdot|\mathbf{x}, \mathcal{D})$ (Müller et al., 2022). In practice, a PFN model q_{θ} is typically implemented by a Transformer-based architecture (Vaswani et al., 2017), which takes $(\mathbf{x}_{test}, \mathcal{D}_{train})$ as input, where 187 $\mathbf{x}_{test} \in \mathcal{D}_{test}$ and \mathcal{D}_{train} contains an arbitrary number of instances. The output is the conditional class 188 probabilities for \mathbf{x}_{test} . As the whole training set \mathcal{D}_{train} is passed as input/context to the Transformer, 189 it learns to predict class labels through sample-to-sample attention. 190

191 Inference on real-world data. In the inference stage, a fresh real-world dataset \mathcal{D}_{train} and some test 192 instance \mathbf{x}_{test} are fed into the (frozen) pre-trained model, which computes the PPD $q_{\theta}(\cdot | \mathbf{x}_{\text{test}}, \mathcal{D}_{\text{train}})$ 193 in a single forward process. Importantly, PFNs do not require gradient-based parameter tuning on data observed at inference time, where the training and prediction are delivered through a one-step 194 forward process in less than a second (Hollmann et al., 2023). 195

196 In summary, PFNs are trained once offline, and can be used many times for zero-shot inference when 197 new datasets with different characteristics are input. The main benefit is that no training or tuning is required at the inference stage. This type of learning ability is also termed as in-context learning 199 (ICL) (Xie et al., 2021), which was shown to be an effective paradigm for various tasks in NLP with 200 the stream of large language models (Brown et al., 2020). In fact, ICL with PFNs is recently shown 201 to be a promising paradigm for supervised classification on tabular datasets (Hollmann et al., 2023).

202 203 204

175

176

177

181

183

3 **FoMo-0D**: A New PFN for 0-shot OD – Model Selection Bygone!

205 Inspired by the recent PFNs (Müller et al., 2022) and their successful applications in supervised 206 classification (Hollmann et al., 2023) and time series forecasting (Dooley et al., 2023), we propose 207 FoMo-0D, a prior-data fitted Foundation Model for 0-shot Outlier Detection. FoMo-0D is (pre)trained 208 on a large body of synthetically generated OD datasets toward zero-shot inference on a new dataset. 209 Most notable of our zero-shot FoMo-0D is its elimination of the need not only for model training on a 210 new dataset, but especially also for model selection (both algorithm and HPs), which is notoriously-211 hard without any labeled data. By breaking such new ground, and its effectiveness on many benchmark datasets compared to classical and modern baselines, we expect FoMo-0D will become a milestone in 212 future research and practice of OD. The new FoMo-0D paradigm (right) versus the typical OD setting 213 (left) is illustrated in Figure 1. 214

215 In the following we describe our OD data prior, training of FoMo-0D on prior-simulated datasets, inference on new datasets, and our specific model architecture and improvements for scalable training.

216 3.1 DESIGNING A DATA PRIOR FOR OUTLIER DETECTION 217

218 Arguably, what has triggered the recent breakthroughs in NLP and CV is the massive amounts of 219 datasets available for (pre)training, along with high-capacity model architectures. In comparison to the natural language and image domains, the quantity (and quality) of publicly available tabular 220 OD datasets is minuscule. Even in the presence of large quantities of data, in training their Chronos 221 foundation models for time series forecasting, Ansari et al. (2024) show that using synthetic data in 222 combination with real-world data improves the overall zero-shot performance. For these reasons, we design a new data prior from which we simulate numerous OD datasets for pretraining FoMo-0D. 224

225 Ideally the data prior should reflect distributions as general and diverse as seen in real-world datasets, however, "finding a prior supporting a large enough subset of possible [data generating] functions 226 isn't trivial" (Nagler, 2023). Surprisingly, in contrast, our initial attempt has been sufficient to achieve 227 remarkable performance even with a relatively straightforward and simple-to-implement data prior, 228 which we describe next. 229

230 Inlier synthesis: We simulate inliers by simply drawing from a Gaussian Mixture Model (GMM) with *m*-clusters in *d*-dimensions, with centers $\mu_{jk} \in [-5, 5], j \in [m], k \in [d]$ and diagonal² Σ_j with entries in [-5, 5]. In each step of every epoch during pretraining, we create batch size B different 232 GMMs with varying $m \leq M$ and $d \leq D$ chosen uniformly at random from [M] and [D], respectively. 233 From each GMM, we draw a set of S inliers, defined as instances within the 90%-ile of the GMM. 234

235 **Outlier synthesis:** Following the previous literature on outlier synthesis (Han et al., 2022), we 236 generate subspace outliers by first drawing a subset of dimensions \mathcal{K} at random, where $|\mathcal{K}| \leq d$, and 237 then generate S points from the corresponding "inflated" GMMs, which share the same centers μ_i 's with the original GMM but with the inflated (diagonal) covariances $5 \times \Sigma_{i,kk}$'s for $k \in \mathcal{K}$. Outliers 238 239 are defined as points outside the 90%-ile of the original GMM. We label each sample based on its Mahalanobis distance computed analytically (see Property B.2 in the Appendix). 240

241 Specifically, we simulate datasets containing 2S = 10,000 samples (half inlier, half outlier) from 242 the two corresponding GMMs (original and inflated) with up to M = 5 clusters and up to D = 100243 dimensions. Example 2 - d synthetic datasets are illustrated in Appendix A.

244 **Remarks:** We emphasize once again that our model is not trained on **any** real-world data and rather, 245 on purely synthetic data (although future work can combine existing benchmark OD datasets with 246 synthesized data, as was done for Chronos (Ansari et al., 2024)). Notably, our GMM-based data 247 prior can be seen as extremely basic. While it has been our intent to extend our preliminary attempt 248 toward designing a sophisticated data prior for OD, we found to our surprise that even with such an 249 elementary prior, FoMo-0D performs remarkably well against numerous SOTA baselines. Therefore, 250 we present FoMo-0D using this effortless approach for its simplicity to showcase the prowess of PFNs for OD. Future work can employ BNNs and SCMs (Hollmann et al., 2023), and other outlier types 251 (contextual, dependency, etc. (Steinbuss and Böhm, 2021)) toward a more comprehensive data prior. 252

254 3.2 (PRE)TRAINING AND INFERENCE

253

255

259

268

269

Model (Pre)Training (Once, Offline): FoMo-0D is a Prior-data Fitted Network (PFN, see Section 256 2.2) based on the Transformer architecture. In the synthetic prior-data fitting phase, it is trained 257 on datasets drawn from our OD data prior for tabular data that we introduced in Section 3.1. Each 258 dataset is simulated from a different GMM configuration based on randomly drawn parameters, and consists of varying number of training samples and dimensions to capture the diversity in real-world 260 tabular datasets. Detailed steps are outlined in Algo. 1 in Appendix C.2, and described as follows.

261 Each time, we first draw a hypothesis (i.e. GMM configuration) uniformly at random, that is $\phi = \{d \in [D], m \in [M], \{\mu_j\}_{j=1}^m \in [-5, 5]^d, \{\Sigma_j\}_{j=1}^m; diag(\Sigma_j) \in [-5, 5]^d\}$, and then generate 262 263 a dataset $\mathcal{D} = \{\mathcal{D}_{in}, \mathcal{D}_{out}\}$ containing synthetic inlier and outlier samples from the drawn hypothesis 264 and its variance-inflated variant, respectively. 265

266 We optimize FoMo-0D's parameters θ to make predictions on $\mathcal{D}_{test} = {\mathcal{D}_{test}^{in}, \mathcal{D}_{test}^{out}}$, conditioned on the inlier-only training data $\mathcal{D}_{train} \subset \mathcal{D}_{in}$ based on the cross-entropy loss (see Eq. (2)). During 267

²In our early experiments, we found no difference in terms of test performance on synthetic datasets between using diagonal and non-diagonal Σ , however, it is easier to compute the inverse of diagonal Σ for generation.

training, $\mathcal{D}_{\text{test}}$ contains a *balanced* number of inlier and outlier samples, where $\mathcal{D}_{\text{test}}^{\text{in}} = \mathcal{D}_{\text{in}} \setminus \mathcal{D}_{\text{train}}$, and $\mathcal{D}_{\text{test}}^{\text{out}} \subset \mathcal{D}_{\text{out}}$ contains an equal number of samples as $\mathcal{D}_{\text{test}}^{\text{in}}$. To vary the training data size, we subsample $\mathcal{D}_{\text{train}}$ of randomly drawn size $n \in [n_L, n_U]$, where n_L and n_U denote the lower and upper bounds. In our current implementation, we set $n_L = 500$, and $n_U = 5,000$.

FoMo-0D is trained on 200,000 batches (200 epochs \times 1,000 steps/epoch) of B = 8 generated datasets in each batch. While this pretraining phase can be expensive, it is done *only once, offline*. Moreover, we introduce several scalability improvements to speed up pretraining, as discussed later in Section 3.3. Full details on the training and implementation of FoMo-0D are given in Appendix C.

Zero-shot Inference (on Unseen Dataset): During the inference phase, our pretrained-in-advance
 FoMo-0D can be employed on any unseen real-world dataset. In fact, we apply the same single
 pretrained network on all benchmark datasets in our experiments in this paper.

Specifically, for a new semi-supervised OD task with inlier-only training data \mathcal{D}_{train} and mixed 282 test data \mathcal{D}_{test} , feeding $\langle \mathcal{D}_{train}, \mathbf{x}_{test} \rangle$ as input to FoMo-0D (for each $\mathbf{x}_{test} \in \mathcal{D}_{test}$ separately) yields 283 the PPD $q_{\theta}(y|\mathbf{x}_{\text{test}}, \mathcal{D}_{\text{train}})$ in a single forward pass. As such, FoMo-0D performs model "training" 284 and prediction *simultaneously* at test time. In fact, as the entire training data is passed as context, 285 FoMo-0D leverages in-context learning (ICL) (Xie et al., 2021; Garg et al., 2022) for inference. 286 The key contribution of FoMo-0D goes beyond eliminating gradient-based model training for a new 287 dataset: because no model training is required, one thus neither needs to choose any specific OD 288 model to train, nor grapple with tuning any hyperparameters of the said model—rendering model 289 selection an obsolete concern for the future of OD. Additionally, the speedy, easily parallelizable 290 inference (for *less-than-a-second* per test sample) is then the "icing on the cake". 291

For a visual summary, Figure 1 (right) illustrates (top) pretrain & (bottom) test phases of FoMo-0D.

293 294

295

3.3 ARCHITECTURE AND SCALABILITY

Architecture and sample-to-sample attention: Like existing PFNs in the literature, FoMo-OD is
 based on the Transformer architecture (Vaswani et al., 2017), encoding each sample's feature vector as
 a token, and allowing token representations to attend to each other, hence enabling *sample-to-sample attention*. We also adopt the three adaptations of TabPFN (Hollmann et al., 2023), which (1) computes
 self-attention among all the training samples but only *cross*-attention from test samples to the training
 samples, (2) enables variable feature dimensionality by zero-padding, and (3) randomly rotates input
 samples while omitting positional encodings to achieve model invariance to sample permutations in
 the dataset. We defer the architecture details to the original papers.

Given $\mathcal{D}_{train} = {\mathbf{x}_1, \dots, \mathbf{x}_n}$, each self-attention layer outputs n embeddings ${\mathbf{z}_i}_{i=1}^n$; where the *i*-th token is mapped via linear transformations to a key \mathbf{k}_i , query \mathbf{q}_i and value \mathbf{v}_i based on which the *i*-th output is computed by weighing all \mathbf{v}_j 's by the normalized dot product between \mathbf{q}_i and all the \mathbf{k}_j 's (i.e. sample-to-sample dot product similarity) as

$$\mathbf{z}_{i} = \sum_{j=1}^{n} \operatorname{softmax}(\left\{ \left\langle \mathbf{q}_{i}, \mathbf{k}_{j'} \right\rangle \right\}_{j'=1}^{n})_{j} \cdot \mathbf{v}_{j} \quad .$$

$$(3)$$

310 The sample-to-sample attention is intriguing from the perspective of OD: Many classical OD algo-311 rithms (Aggarwal, 2013) are based on nonparametrics; in particular, they make use of the distances 312 to the k nearest neighbors (kNNs) of a point to compute its outlierness (where k is a critical hy-313 perparameter (HP)). One can think of FoMo-0D as mimicking non-parametric models but by using 314 parametric attention mechanisms. Interestingly, PFNs are much more robust and flexible than kNN315 based OD approaches, for (1) sample-to-sample relations are not pre-specified but rather learned through attention weights, and thus (2) they are not limited to just the nearest neighbors but rather can 316 learn which training points are worth attending to, and last but not least (3) as attention is dataset-wide 317 across all points, there is no need for specifying a cut-off HP value like k, to which most kNN based 318 OD techniques are sensitive to (Aggarwal and Sathe, 2015; Campos et al., 2016; Goldstein and 319 Uchida, 2016; Ding et al., 2022)-to reiterate, algorithm & HP selection is bygone with FoMo-0D. 320

While intuitively beneficial for OD, "vanilla" attention among the training samples incurs quadratic
 complexity. To be able to seize the benefits with scale, we incorporate a scalable architecture to our
 design, as we describe next. The scale up also unlocks a larger context (i.e. dataset) size for FoMo-0D,
 enabling its pretraining on larger datasets for potentially better generalization.

Scaling up attention with "routers": The $O(n^2)$ quadratic sample complexity at pretraining presents an obstacle for achieving high performance at inference. From dataset size perspective, it limits pretraining to relatively small training datasets. From context size perspective, it limits in-context learning that typically benefits from longer context lengths (Xie et al., 2021).

Toward a high-performance pretrained model, we scale up FoMo-0D's attention via the "router mechanism" of Zhang and Yan (2023). As shown in Figure 2, the main idea is to learn a small number ($R \ll n$) of "routers" or representatives, which gather information from all n samples and then distribute the information back to the n output embeddings, creating what-looks-like a "bottleneck" attention mechanism—reducing complexity from $O(n^2)$ to O(2Rn) = O(n). This design allows FoMo-0D training to scale linearly with respect to both dimensionality d and also dataset size n.

Concretely, the representatives first aggregate information from all samples by serving as query in multi-head self-attention (MSA) and the embedding array of all samples becomes both key and value:

$$\mathbf{M} = \mathsf{MSA}_1(\mathbf{R}, \mathbf{Z}, \mathbf{Z}) , \qquad (4)$$

where $\mathbf{R} \in \mathbb{R}^{R \times d}$ depicts the *learnable* vector array of representatives and M denotes the aggregated messages. Then, the routers distribute the received information among samples by using the sample embeddings as query and the aggregated messages as both key and value:

348

377

$$\hat{Z} = MSA_2(\mathbf{Z}, \mathbf{M}, \mathbf{M})$$
. (

Figure 2: FoMo-0D architecture employs the "router (5) mechanism" for scalable attention.

Finally, we obtain $\overline{Z} = \text{LayerNorm}(\overline{Z} + \mathbf{Z})$ after layer normalization. Note that the test samples only attend to the training samples' embeddings, computed in the described manner across layers, which finally feed into the prediction head for estimating each test sample's PPD at the output layer.

Scaling up (pre)training data synthesis with linear transforms: Besides the scalability challenge
 associated with architecture/attention, another computational challenge in pretraining FoMo-0D arises
 from drawing samples from the data prior. That is, generating samples from a pre-specified data
 distribution requires considerable time, especially in high dimensions³, provided the large number of
 datasets we sample (concretely, a batch size of 8 datasets over 1,000 steps each for 200 epochs).

To give an idea, sampling a dataset with n = 10,000 points in d = 100 dimensions using 10 CPUs in parallel takes ≈ 0.4 seconds (see Appendix Figure 7). Across 200 training epochs with 1,000 steps each, it adds up to more than 177 hours just to generate 1,6 million datasets on-the-fly. Of course, one can trade storage with compute-time by generating all these datasets apriori via massive parallelism. Nevertheless, synthetic data generation demands considerable time (and/or storage).

To scale up data synthesis, FoMo-0D employs two distinct strategies. First, we propose *reuse at epoch level*: that is, one can reuse the same 8K unique datasets at every epoch, or in general, the same $8K \times P$ datasets periodically at every P epochs. A larger P would lead to more diversity in terms of the overall pretraining data used.

366 Second, and more innovatively, we propose reuse at dataset level via transformation: that is, having 367 generated one unique dataset $\mathbf{X} \in \mathbb{R}^{n \times d}$ from a GMM, we propose a linear transform $T(\mathbf{x})$ of the 368 form $\mathbf{W}\mathbf{x} + \mathbf{b}$ for randomly drawn parameters $\mathbf{W} \in \mathbb{R}^{d \times d}$ and $\mathbf{b} \in \mathbb{R}^d$ (see Appendix B.1).⁴ This 369 simple yet efficient transformation creates a new dataset, akin to one being drawn from another GMM 370 with centers $T(\boldsymbol{\mu}_j) = \mathbf{W}\boldsymbol{\mu}_j + \mathbf{b}$ and covariance $T(\boldsymbol{\Sigma}_j) = \mathbf{W}\boldsymbol{\Sigma}_j\mathbf{W}^T, \forall j \in [m]$. Note that we do 371 not actually materialize these parameters but only transform the dataset. As we show in the following, 372 such transformations preserve the Mahalanobis distances as well as the percentile thresholds for 373 labeling points as inlier/outlier. Details and proofs are given in Appendix B.

³⁷⁴ ³This is because the inverse of the $(d \times d)$ covariance matrix plays a crucial role in the process of generating samples from a GMM, which has $\mathcal{O}(d^3)$ time complexity. (It is also partly the reason why we use diagonal Σ_j 's in our data prior.) In addition, Mahalanobis distance for labeling inliers/outliers also requires the inverse.

⁴In practice, we apply the linear transform on the subspace of inflated features only, wherein inliers and outliers are defined, which remains to be a multi-variate GMM.

Lemma 1 Linear transform T with invertible W on \mathcal{G}_m^d preserves Mahalanobis distances.

Lemma 2 Linear transform T with invertible W on \mathcal{G}_m^d preserves the percentiles of the GMM.

The implication of these lemmas is that a linear transformation of a dataset from a GMM retains the identity of the inliers and outliers, i.e. no relabeling is required. Moreover, notice that as a byproduct we obtain a transformed dataset as though it is drawn from a GMM with a *non-diagonal* covariance matrix which, besides the time savings, offers a slightly more complex data prior.

To reach 8K unique datasets for each epoch, we first generate 500 datasets from different GMMs (with varying configurations), and then employ 15 different linear transformations to each unique dataset by varying W and b. Drawing each (W, b) takes ≈ 0.02 seconds, while the matrix-matrix product of X ($n \times d$) and W ($d \times d$) takes negligible time (for $d \le 100$). Thus, obtaining a transformed dataset offers $20 \times$ speed-up compared to generating one (0.02 vs. 0.4 seconds).

- 4 EXPERIMENTS
- 4.1 Setup

390 391

392 393

We present the experiment setup briefly, including important notes on data synthesis, real-world datasets, baselines, metrics and HPs. For additional details, we refer to Appendix D.

Pre-training Dataset Synthesis: During pretraining, we generate unique GMM datasets by first drawing a configuration, including dimensionality $d \in [D]$, number of components $m \in [M]$, centers $\{\mu_j\}_{j=1}^m$ (each $\mu_j \in [-5,5]^d$) and covariances $\{\Sigma_j\}_{j=1}^m$ (diag $(\Sigma_j) \in [-5,5]^d$). We set M = 5and vary $D \in \{20, 100\}$ to study pretraining with relatively small and high dimensional datasets, respectively. We synthesize inliers and outliers as described in Section 3.1.

402 Real-world Benchmark Datasets: While pretraining is purely on synthetic datasets, we evaluate
403 FoMo-0D on 57 real-world datasets from the ADBench benchmark (Han et al., 2022) (see Table 15).

We use 5 train/test splits of each dataset via different seeds and report mean performance and standard deviation. Note that the baselines require model re-training and inference for each D_{train}/D_{test} split, while FoMo-0D uses the splits only for inference as D_{train} is merely passed as context.

Baselines: We compare FoMo-0D against 26 baselines, from classical/shallow methods to modern/deep models. The baselines are imported from one of the latest papers that proposed the SOTA
diffusion-based model DTE (Livernoche et al., 2024), and its three variants; DTE-C, DTE-IG, and
DTE-NP. We defer to the original paper for additional details.

412 **Model Implementation:** We trained our final model for 200,000 steps with a batch size of 8 datasets. 413 That is, our FoMo-OD is trained on 1,600,000 synthetically generated datasets. This training takes 414 about 25 hours on 1 GPU (Nvidia RTX A6000). Each dataset had a fixed size of 10,000 samples, 415 with $|\mathcal{D}_{\text{train}}| \in [n_L = 500, n_U = 5000]$, and the rest used as $\mathcal{D}_{\text{test}}$ with *balanced* number of inliers 416 and outliers. Other implementation details of FoMo-OD, including the training algorithm, model 417 architecture, data synthesis and reuse, and hardware are provided in Appendix C.

418 Metrics and Hypothesis Testing: Detection performance is w.r.t. 3 widely-used metrics for OD:
 419 AUROC; area under ROC curve, AUPR; area under Precision-Recall curve, and F1 score; using
 420 threshold at the true number of outliers in the test data (varies by dataset).

To compare methods, we compute their rank on each dataset (lower is better), and present average rank across datasets. This is an alternative to the average metric (e.g. AUROC), which is not meaningful when task difficulties and hence metric values vary widely. In addition, we perform significance tests to compare two methods statistically, using the one-sided paired Wilcoxon signed rank test (Demšar, 2006) between FoMo-OD and a baseline based on the performances across all datasets and report the *p*-values. We consider results to be significant at 0.05 following convention.

427 Hyperparameters (HPs): Importantly, Livernoche et al. (2024) picked for each baseline the best-428 performing set of HPs as recommended by the authors in their original paper. As for their own DTE, 429 which behaves similar to kNN, they use k = 5 and set the *same* k for the kNN baseline (Ramaswamy 430 et al., 2000) to be consistent. However, it is well known that kNN is sensitive to the value of k431 (Aggarwal and Sathe, 2015), and so are many other OD models to their respective HPs (Campos et al., 2016; Goldstein and Uchida, 2016; Zhao et al., 2021; Ding et al., 2022). 432 Therefore, we compare to the performance results of these baselines as imported from DTE's Tables 433 13, 14 and 15, respectively for AUROC, F1, and AUPR (Livernoche et al., 2024). In addition, we also 434 compare to the **top-4**⁵ best performing baselines (in order: DTE-NP, kNN, ICL, and DTE-C) on their 435 average performance across a list of different HP settings (which reflects their expected performance 436 under HP values selected at random, in the absence of any other prior knowledge), which is the recommended approach by Goldstein and Uchida (2016) "to get a fair evaluation when comparing 437 [OD] algorithms". We annotate the method name with ^{avg} for the version with performance averaged 438 over varying HPs. The detailed list of HP values for each top baseline is given in Appendix D.4. 439

440 441 Overall, we compare FoMo-0D to 30 baselines; 26 from Livernoche et al. (2024) and ^{avg} of the top-4.

- 442 4.2 RESULTS
- 443

Detection performance: Table 1 presented the comparison of FoMo-0D w/ D = 100 to all baselines w.r.t. average rank across datasets as well as pairwise Wilcoxon signed rank tests based on AUROC (for full results on all datasets and all metrics, see Appendix G). We find that among 30 baselines and 2 variants of FoMo-0D (w/ D = 100 and D = 20), FoMo-0D w/ D = 100 performs as well as the 2nd best model (kNN with default HP; k = 5) on all datasets. While DTE-NP outperforms FoMo-0D with author-recommended k = 5, we find that DTE-NP^{avg} is on par with FoMo-0D.

Against all other baselines, we obtain notably large p-values. Typically, p > 0.05 implies no statistical difference between two methods. On the other hand, the large p-values we obtain that are often larger than 0.50 suggest that the odds are tilted towards FoMo-0D to outperform.

FoMo-0D w/ D = 100 performs statistically no different from all baselines on datasets with $d \le 100$ (i.e., "at its own game" when pretraining data dimensions align with real-world datasets), while it *outperforms the majority of baselines* (p > 0.95). These results also hold on datasets with $d \le 500$.

Table 2 shows similar results for FoMo-0D w/ D = 20, which is pretrained on datasets with considerably fewer dimensions. Even in this limited setting, its performance is remarkable: against 30 baselines, it performs on par with the 3rd best baseline (ICL, with default HP). The *p*-value is even larger (0.437) when compared to ICL^{avg}. Moreover, on datasets with $d \le 20$ which align with its pretraining data, all *p*-values are larger than 0.5, where it outperforms the top 5th baseline and the majority of others. These are outstanding results for a model pretrained purely on synthetic datasets from a simple data prior in small dimensions, showcasing the prowess of PFNs for OD.

463 Table 2: Comparison of methods across datasets. (top row) Rank w.r.t. AUROC performance avg.'ed 464 over 57 datasets is presented for FoMo-0D (with D = 20), top-10 baselines with default HPs, and 465 top- 4^5 baselines with performance avg.'ed over varying HPs (denoted w/ a^{vg}); followed by p-values 466 of the pairwise Wilcoxon signed rank test, comparing FoMo-0D to each baseline (from top to bottom) 467 over All (57) datasets, those (24) w/ $d \le 20$ and (38) datasets w/ $d \le 50$ dimensions, respectively. 468 Even with small D = 20, FoMo-OD performs as well as (i.e., statistically no different at 0.05 from) 469 the top 3rd baseline (ICL, w/ p = 0.089) across All datasets, while it outperforms the top 5th (LOF) 470 and onward baselines over datasets w/ $d \leq 20$ (aligned w/ pretraining where D = 20) and $d \leq 50$ 471 (generalizing beyond pretraining). (setting: D = 20, P = 50, R = 500, train/inference context size=5K, no data transformation) 472

	FoMo-0D	DTE-NP	kNN	ICL	DTE-C	LOF	CBLOF	Feat.Bag.	SLAD	DDPM	OCSVM	DTE-NP ^{avg}	$k NN^{avg}$	ICL ^{avg}	DTE-C ^{avg}
Rank(avg)	12.59	7.19	8.57	10.34	10.79	11.82	12.81	12.8	12.52	13.50	13.34	8.60	10.63	12.44	21.43
All	-	0.001	<u>0.019</u>	0.089	0.159	0.394	0.434	0.703	0.516	0.752	0.679	0.007	0.062	0.437	1.0
$d \le 20$	-	0.572	0.789	0.968	0.616	0.993	0.989	1.0	0.978	0.906	0.992	0.813	0.924	0.999	1.0
$d \leq 50$	-	0.347	0.794	0.893	0.946	0.997	0.988	1.0	0.963	0.994	0.986	0.574	0.847	0.995	1.0

476 477

473 474 475

478

479 480

481

482 483 484

485

Running time: Table 3 presents the total training time and the average inference time per test sample, as measured on our largest benchmark dataset, for FoMo-0D and the top-3 baselines. Given

Figure 3 shows the distribution of ranks across datasets for each of the 32 methods. While paired

significant tests are the most conclusive, FoMo-0D achieves relatively small average rank as well as

notably low ranks across datasets that is also visually better than the majority of the baselines.

⁵To rank the baselines, we compute the 26×26 pairwise *p*-values based on the Wilcoxon signed rank test, as shown in Appendix Figure 16, and rank the baselines w.r.t. their mean *p*-value.

Figure 3: (best in color) Rank (w.r.t. AUROC performance, lower is better) distribution across
 datasets shown via boxplots for (from top to bottom) FoMo-0D in red, all 26 baselines as ordered by
 mean *p*-value⁵ (shallow and deep baselines resp. in green and blue), and top-4 baselines' ^{avg} variants.

a new dataset, FoMo-0D bypasses model training (and HP tuning) and directly performs inference,
with an average of 7.7 ms per sample (see Appendix Figure 6). In comparison, all baseline methods
need to train on each individual dataset preceding inference. This training time can be high for
deep learning based models like ICL, and further compounded with training *multiple* models for
hyperparameter tuning purposes. Even for non-parametric and/or shallow models like *k*NN and
DTE-NP (which queries *k* nearest neighbors), the training involves various data pre-processing steps
such as constructing a tree-like data structure for fast (often approximate) *k*NN distance querying.

Table 3: Training and inference time (in milliseconds) comparison between FoMo-0D and the top-3⁵
 baselines (w/ *default* HPs, *excluding* the time for model selection/hyperparameter optimization) on
 our largest dataset (namely, donors, see Appendix Table 15).

Method	FoMo-0D	DTE-NP	kNN	ICL
Training time (total)	none	56.83	1433.74	186461.48
Inference time (per sample)	7.7	0.76	0.17	0.01

4.3 ABLATION ANALYSES

Due to space limits, we present the detailed ablation analyses in Appendix E. We discuss the effect of D in E.1, the cost and performance of varying R in E.2 and E.3, the context size in E.4, the reuse periodicity P in E.5, the effect of data transformation T on performance and speed up in E.6 and E.7, data diversity and prolonged training in E.8, and quantile transformation on ADBench in E.9.

5 RELATED WORK

Due to space limits, we present the detailed related work in Appendix J.

531 6 CONCLUSION

We introduced FoMo-0D, the first foundation model for outlier detection (OD) on tabular data. It capitalizes on the in-context learning ability of a Transformer model pretrained on a large number of synthetic datasets that can then perform zero-shot inference on a new dataset by directly passing it as input context. FoMo-0D breaks new ground by fully abolishing notoriously-hard model selection.
Further, FoMo-0D offers extremely fast inference thanks to a mere single forward pass. Against 26 baselines on 57 public datasets from diverse domains, FoMo-0D performs on par with the 2nd best baseline, while significantly outperforming the majority of baselines. We leave improving the data prior and extending beyond tabular OD, among others, as future directions. For a detailed discussion on limitations and future directions, we refer to Appendix K.

540 REFERENCES

565

566

567

570

592

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 2023. Gpt-4 technical
report. *arXiv preprint arXiv:2303.08774* (2023).

- Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, and Frank Hutter. 2024. Efficient bayesian learning curve extrapolation using prior-data fitted networks. *Advances in Neural Information Processing Systems* 36 (2024).
- 549 Charu C. Aggarwal. 2013. *Outlier Analysis*. Springer.
- Charu C. Aggarwal and Saket Sathe. 2015. Theoretical foundations and algorithms for outlier ensembles. *Acm sigkdd explorations newsletter* 17, 1 (2015), 24–47.
- 553 Charu C. Aggarwal and Saket Sathe. 2017. *Outlier Ensembles An Introduction*. Springer.
- Samet Akcay, Amir Atapour-Abarghouei, and Toby P Breckon. 2019. Ganomaly: Semi-supervised
 anomaly detection via adversarial training. In ACCV. Springer, 622–637.
- Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. 2022. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems* 35 (2022), 23716–23736.
- Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
 Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
 2024. Chronos: Learning the language of time series. *arXiv preprint arXiv:2403.07815* (2024).
 - Lion Bergman and Yedid Hoshen. 2020. Classification-Based Anomaly Detection for General Data. In *International Conference on Learning Representations*.
- Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000. LOF: Identifying
 Density-Based Local Outliers. In *International Conference on Management of Data*.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In *Advances in Neural Information Processing Systems*, Vol. 33. 1877–1901.
- Guilherme O Campos, Arthur Zimek, Jörg Sander, Ricardo JGB Campello, Barbora Micenková,
 Erich Schubert, Ira Assent, and Michael E Houle. 2016. On the evaluation of unsupervised outlier
 detection: measures, datasets, and an empirical study. *Data mining and knowledge discovery* 30 (2016), 891–927.
- George Casella and Roger Berger. 2024. *Statistical inference*. CRC Press.
- Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep learning for anomaly detection: A survey.
 arXiv preprint arXiv:1901.03407 (2019).
- Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. *The Journal of Machine learning research* 7 (2006), 1–30.
- Xueying Ding, Lingxiao Zhao, and Leman Akoglu. 2022. Hyperparameter sensitivity in deep outlier detection: Analysis and a scalable hyper-ensemble solution. *Advances in Neural Information Processing Systems* 35 (2022), 9603–9616.
- 593 Xueying Ding, Yue Zhao, and Leman Akoglu. 2024. Fast Unsupervised Deep Outlier Model Selection with Hypernetworks. *ACM SIGKDD* (2024).

594 Samuel Dooley, Gurnoor Singh Khurana, Chirag Mohapatra, Siddartha Venkat Naidu, and Colin 595 White. 2023. ForecastPFN: Synthetically-Trained Zero-Shot Forecasting. In Thirty-seventh Con-596 ference on Neural Information Processing Systems. 597 Xuefeng Du, Yiyou Sun, Jerry Zhu, and Yixuan Li. 2024. Dream the impossible: Outlier imagination 598 with diffusion models. Advances in Neural Information Processing Systems 36 (2024). 600 Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei Shu. 2022. Zero-shot out-of-distribution 601 detection based on the pre-trained model CLIP. In Proceedings of the AAAI conference on artificial 602 intelligence, Vol. 36. 6568-6576. 603 Benjamin Feuer, Niv Cohen, and Chinmay Hegde. 2023. Scaling TabPFN: Sketching and Feature 604 Selection for Tabular Prior-Data Fitted Networks. In NeurIPS 2023 Second Table Representation 605 Learning Workshop. 606 607 Benjamin Feuer, Robin Tibor Schirrmeister, Valeriia Cherepanova, Chinmay Hegde, Frank Hutter, 608 Micah Goldblum, Niv Cohen, and Colin White. 2024. TuneTables: Context Optimization for 609 Scalable Prior-Data Fitted Networks. arXiv:2402.11137 [cs.LG] 610 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. 2022. What can transformers 611 learn in-context? a case study of simple function classes. Advances in Neural Information 612 Processing Systems (2022). 613 614 Markus Goldstein and Andreas Dengel. 2012. Histogram-based outlier score (HBOS): A fast 615 unsupervised anomaly detection algorithm. KI-2012: poster and demo track 1 (2012), 59–63. 616 Markus Goldstein and Seiichi Uchida. 2016. A comparative evaluation of unsupervised anomaly 617 detection algorithms for multivariate data. PloS one 11, 4 (2016). 618 619 Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Simhadri, and Prateek Jain. 2020. DROCC: 620 Deep Robust One-Class Classification. In Proceedings of the 37th International Conference on 621 Machine Learning (ICML'20). JMLR.org, Article 348, 11 pages. 622 Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Ming Tang, and Jinqiao Wang. 2024. 623 AnomalyGPT: Detecting industrial anomalies using large vision-language models. In Proceedings 624 of the AAAI Conference on Artificial Intelligence, Vol. 38. 1932–1940. 625 626 A. Gut. 2009. An Intermediate Course in Probability. Springer New York. 627 Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. 2022. Adbench: Anomaly 628 detection benchmark. Advances in Neural Information Processing Systems 35 (2022). 629 630 Haoyang He, Jiangning Zhang, Hongxu Chen, Xuhai Chen, Zhishan Li, Xu Chen, Yabiao Wang, 631 Chengjie Wang, and Lei Xie. 2024. A diffusion-based framework for multi-class anomaly detection. 632 In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 8472–8480. 633 Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. Advances 634 in Neural Information Processing Systems 33 (2020), 6840–6851. 635 636 Hadi Hojjati, Thi Kieu Khanh Ho, and Narges Armanfard. 2022. Self-supervised anomaly detection: 637 A survey and outlook. arXiv preprint arXiv:2205.05173 (2022). 638 Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. 2023. TabPFN: A 639 Transformer That Solves Small Tabular Classification Problems in a Second. In The Eleventh 640 International Conference on Learning Representations. 641 642 Jongheon Jeong, Yang Zou, Taewan Kim, Dongqing Zhang, Avinash Ravichandran, and Onkar 643 Dabeer. 2023. Winclip: Zero-/few-shot anomaly classification and segmentation. In Proceedings 644 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 19606–19616. 645 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, 646 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language 647 models. arXiv preprint arXiv:2001.08361 (2020).

648 649	Diederik P Kingma. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).
650	Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization.
651	arXiv:1412.6980 [cs.LG]
652	Andere Li Chan Oin Marine Klaft Dadharia Sandh Mais Dudalah and Stanhan Mandt 2022
653	Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, and Stephan Mandt. 2023. Zero-Shot Anomaly Detection via Batch Normalization. In <i>Thirty-seventh Conference on Neural</i>
654	Information Processing Systems.
655	nyormanon i rocessing bystems.
656	Aodong Li, Yunhan Zhao, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, and Stephan
657	Mandt. 2024. Anomaly Detection of Tabular Data Using LLMs. <i>arXiv preprint arXiv:2406.16308</i>
658	(2024).
659	Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In 2008 Eighth IEEE
660	International Conference on Data Mining. 413–422.
661	Hastian Liu, Chunguan Li, Oingyang Wu, and Yang Jao Lee. 2024. Vigual instruction tuning
662 663	Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2024. Visual instruction tuning. <i>Advances in neural information processing systems</i> 36 (2024).
664	Victor Livernoche, Vineet Jain, Yashar Hezaveh, and Siamak Ravanbakhsh. 2024. On Diffusion
665	Modeling for Anomaly Detection In <i>ICLR</i> .
666	
667	Philipp Liznerski, Lukas Ruff, Robert A Vandermeulen, Billy Joe Franks, Klaus-Robert Müller, and Marius Kloft. 2022. Exposing outlier exposure: What can be learned from few, one, and zero
668	outlier images. arXiv preprint arXiv:2205.11474 (2022).
669	outier mages. <i>urxtv preprint urxtv.2205.</i> 11474 (2022).
670	Junwei Ma, Valentin Thomas, Guangwei Yu, and Anthony L. Caterini. 2024. In-Context Data
671 672	Distillation with TabPFN. CoRR abs/2402.06971 (2024).
673	Martin Q Ma, Yue Zhao, Xiaorong Zhang, and Leman Akoglu. 2023. The need for unsupervised
674	outlier model selection: A review and evaluation of internal evaluation strategies. ACM SIGKDD
675	Explorations Newsletter 25, 1 (2023), 19–35.
676	Convert Müller Metthics France Nach Hallmann and Frank Hatter 2022 DEN-4DO. in content
677	Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. 2023. PFNs4BO: in-context learning for Bayesian optimization. In <i>International Conference on Machine Learning</i> .
678	Carning for Dayesian optimization. In miernational Conference on Machine Learning.
679	Samuel Müller, Noah Hollmann, Sebastian Pineda-Arango, Josif Grabocka, and Frank Hutter. 2022.
680	Transformers Can Do Bayesian Inference. ICLR (2022).
681	Thomas Nagler. 2023. Statistical Foundations of Prior-Data Fitted Networks In ICML (Proceedings
682	of Machine Learning Research, Vol. 202). PMLR.
683	$\mathbf{D}_{\mathbf{A}} = \left\{ \mathbf{D}_{\mathbf{A}} = \mathbf{D}_{\mathbf{A}} \right\} = \left\{ \mathbf{D}_{\mathbf{A}} = \mathbf{D}_{\mathbf{A}} = \mathbf{D}_{\mathbf{A}} = \left\{ \mathbf{D}_{\mathbf{A}} = \mathbf{D}_{\mathbf{A}} \right\} = \left\{ \mathbf{D}_{\mathbf{A}} = \mathbf{D}_{$
684	Radford M Neal. 2012. <i>Bayesian learning for neural networks</i> . Vol. 118. Springer Science & Business Media.
685	Business Media.
686	Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. 2021. Deep learning for
687	anomaly detection: A review. ACM computing surveys (CSUR) 54, 2 (2021), 1–38.
688 689	Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. 2021. Deep learning on a data diet:
690	Finding important examples early in training. Advances in neural information processing systems
691	34 (2021), 20596–20607.
692	L to D of 2000 C = 1/c Contribution of Door
693	Judea Pearl. 2009. Causality. Cambridge University Press.
694	Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
695	Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable
696	visual models from natural language supervision. In International conference on machine learning.
697	Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient algorithms for mining
698	outliers from large data sets. In ACM SIGMOD international conference on management of data.
699	
700	Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. 2021. Zero-shot text-to-image generation. In <i>International conference on</i>
701	machine learning. Pmlr, 8821–8831.

702 703 704	Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. 2024. Pretraining task diversity and the emergence of non-bayesian in-context learning for regression. <i>Advances in Neural Information Processing Systems</i> (2024).
705 706 707 708	Danilo Rezende and Shakir Mohamed. 2015. Variational Inference with Normalizing Flows. In Proceedings of the 32nd International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 37). PMLR, Lille, France, 1530–1538.
709 710 711	Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech Samek, Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller. 2021. A unifying review of deep and shallow anomaly detection. <i>Proc. IEEE</i> 109, 5 (2021), 756–795.
712 713 714 715	Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Emmanuel Müller, and Marius Kloft. 2018. Deep One-Class Classification. In International Conference on Machine Learning. 4393–4402.
716 717	Tom Shenkar and Lior Wolf. 2022. Anomaly Detection for Tabular Data with Internal Contrastive Learning. In <i>International Conference on Learning Representations</i> .
718 719 720 721	Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. 2022. Beyond neural scaling laws: beating power law scaling via data pruning. <i>Advances in Neural Information Processing Systems</i> 35 (2022), 19523–19536.
722 723 724	Georg Steinbuss and Klemens Böhm. 2021. Benchmarking unsupervised outlier detection with realistic synthetic data. <i>ACM Transactions on Knowledge Discovery from Data (TKDD)</i> 15, 4 (2021), 1–20.
725 726	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In <i>NIPS</i> . 5998–6008.
727 728 729	Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. 2021. An explanation of in-context learning as implicit bayesian inference. <i>arXiv preprint arXiv:2111.02080</i> (2021).
730 731 732	Hongzuo Xu, Yijie Wang, Juhui Wei, Songlei Jian, Yizhou Li, and Ning Liu. 2023. Fascinating supervisory signals and where to find them: Deep anomaly detection with scale learning. In <i>International Conference on Machine Learning</i> . PMLR, 38655–38673.
733 734 735 736	Jaemin Yoo, Tiancheng Zhao, and Leman Akoglu. 2023. Data Augmentation is a Hyperparameter: Cherry-picked Self-Supervision for Unsupervised Anomaly Detection is Creating the Illusion of Success. <i>Trans. Mach. Learn. Res.</i> 2023 (2023).
737 738 739	Sangwoong Yoon, Young-Uk Jin, Yung-Kyun Noh, and Frank Park. 2023. Energy-based models for anomaly detection: A manifold diffusion recovery approach. <i>Advances in Neural Information Processing Systems</i> 36 (2023), 49445–49466.
740 741 742	Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. 2022. Scaling vision trans- formers. In <i>Proceedings of the IEEE/CVF conference on computer vision and pattern recognition</i> .
743 744	Yunhao Zhang and Junchi Yan. 2023. Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting In <i>ICLR</i> .
745 746 747	Yue Zhao and Leman Akoglu. 2024. Toward unsupervised outlier model selection. In International Conference on Automated Machine Learning (AutoML).
748 749	Yue Zhao, Ryan Rossi, and Leman Akoglu. 2021. Automatic unsupervised outlier model selection. Advances in Neural Information Processing Systems 34 (2021), 4489–4502.
750 751 752	Yue Zhao, Sean Zhang, and Leman Akoglu. 2022. Toward unsupervised outlier model selection. In 2022 IEEE International Conference on Data Mining (ICDM). IEEE, 773–782.
753 754 755	Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Dae ki Cho, and Haifeng Chen. 2018. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection. In <i>International Conference on Learning Representations</i> .

⁷⁵⁶ A Illustration of synthetic data in 2-d

We visualize our synthetic data in Figure 4, with 3 randomly created 2-d GMMs with the number of clusters (N = 1, 2, 3). We choose the 80th percentile as the criterion, such that inliers are samples drawn from the GMM and within the 80th percentile, and outliers are samples drawn from the inflated GMMs and outside of the 80th percentile.

Figure 4: Illustration of synthetic data in 2D with 80th percentile as the criterion.

B LINEAR TRANSFORM FOR SCALABLE GMM DATA SYNTHESIS

B.1 DEFINITIONS

 Definition 1 (Gaussian Mixture Model) We denote an *m*-cluster *d*-dimension Gaussian Mixture Model as $\mathcal{G}_m^d = \{(w_j, \mu_j, \Sigma_j)\}_{j=1}^m$, which is the weighted sum of *m* Gaussian distributions:

$$p(\mathbf{x}) = \sum_{j=1}^{m} w_i \cdot g(\mathbf{x} | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j) , \qquad (6)$$

where $w_j \in \mathbb{R}^+$ is the weight for the *j*-th Gaussian $\mathcal{N}(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$ with $\sum_{j=1}^m w_j = 1$, and $g(\cdot | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$ is the density of the *j*-th component/cluster, with mean/center $\boldsymbol{\mu}_j \in \mathbb{R}^d$ and covariance $\boldsymbol{\Sigma}_j \in \mathbb{R}^{d \times d}$ being positive semi-definite, such that $\mathbf{x}^T \boldsymbol{\Sigma}_i \mathbf{x} \ge 0$, for all $\mathbf{x} \in \mathbb{R}^d$.

Definition 2 (Linear Transform) We denote a linear transformation T in \mathbb{R}^d as:

$$\Gamma(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b} , \qquad (7)$$

where $\mathbf{x} \in \mathbb{R}^d$, and $\mathbf{W} \in \mathbb{R}^{d \times d}$, $\mathbf{b} \in \mathbb{R}^d$ are the parameters of T.

Definition 3 (Mahalanobis Distance) The Mahalanobis distance dist_M between a point $\mathbf{x} \in \mathbb{R}^d$ and a Gaussian distribution $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is defined as:

$$\operatorname{list}_{M}(\mathbf{x}) = \sqrt{(\mathbf{x} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})} .$$
(8)

Definition 4 (χ_d^2 -distribution) The Chi-squared distribution χ_d^2 with *d* degrees of freedom is the distribution of the sum of squares of *d* independent standard Normal random variables.

B.2 PROPERTIES

Property B.1 (Lemma 5.3.2 (Casella and Berger, 2024)) If $Z \sim \mathcal{N}(0,1)$, then $Z^2 \sim \chi_1^2$; If $X_1, ..., X_d$ are independent and $X_i \sim \chi_1^2$, then $\sum_{i=1}^d X_i \sim \chi_d^2$.

Property B.2 The squared Mahalanobis distance $dist_M^2(\mathbf{x}) \sim \chi_d^2$, with $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Proof: If $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then we have $\mathbf{z} = \boldsymbol{\Sigma}^{-\frac{1}{2}}(\mathbf{x} - \boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ (Gut, 2009), such that:

$$ext{dist}_M^2(\mathbf{x}) = \mathbf{z}^T \mathbf{z} = \sum_{i=1}^d z_i^2$$

(9)

where z_i are independent standard Normal random variables. We have $\sum_{i=1}^{d} z_i^2 \sim \chi_d^2$ from Property B.1, which completes the proof.

818 B.3 LEMMAS

Lemma 1 Linear transform T with invertible W on \mathcal{G}_m^d preserves Mahalanobis distances.

Proof: We denote the transformed GMM as $T(\mathcal{G}_m^d) = \{(w_j, \mathbf{W}\mu_j + \mathbf{b}, \mathbf{W}\boldsymbol{\Sigma}_j\mathbf{W}^T)\}_{j=1}^m$, then with $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$, for the transformed point $T(\mathbf{x})$ we have:

$$\operatorname{dist}_{M}(T(\mathbf{x})) = \sqrt{(T(\mathbf{x}) - (\mathbf{W}\boldsymbol{\mu}_{j} + \mathbf{b}))^{T}(\mathbf{W}\boldsymbol{\Sigma}\mathbf{W}^{T})^{-1}(T(\mathbf{x}) - (\mathbf{W}\boldsymbol{\mu}_{j} + \mathbf{b}))}$$
(10)

$$= \sqrt{(\mathbf{W}(\mathbf{x} - \boldsymbol{\mu}_j))^T (\mathbf{W} \boldsymbol{\Sigma} \mathbf{W}^T)^{-1} (\mathbf{W}(\mathbf{x} - \boldsymbol{\mu}_j))}$$
(11)

$$= \sqrt{(\mathbf{x} - \boldsymbol{\mu}_j)^T \mathbf{W}^T (\mathbf{W}^T)^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{W}^{-1} \mathbf{W} (\mathbf{x} - \boldsymbol{\mu}_j)}$$
(12)

$$= \sqrt{(\mathbf{x} - \boldsymbol{\mu}_j)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_j)} = \operatorname{dist}_M(\mathbf{x}) .$$
(13)

830 831 832

833 834

835 836 837

838

839 840

841 842 843

844 845

846

847 848

849

860

812

813 814

817

819

820

821 822

823 824 825

827 828 829

Lemma 2 Linear transform T with invertible W on \mathcal{G}_m^d preserves the percentiles of the GMM.

Proof: Let $\chi^2_d(\alpha)$ denote the α -th percentile of χ^2_d , such that for $X \sim \chi^2_d$:

$$\operatorname{Prob}(X \le \chi_d^2(n)) = \frac{\alpha}{100} . \tag{14}$$

Based on Property B.2, we have $\operatorname{Prob}(\operatorname{dist}_M^2(\mathbf{x}) \leq \chi_d^2(\alpha)) = \frac{\alpha}{100}$.

Let $\mathbf{x} \sim \mathcal{G}_m^d$, such that $\operatorname{dist}_M^2(\mathbf{x}) > \chi_d^2(\alpha)$ for all $\mathcal{N}_j(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)$, which indicates that \mathbf{x} is outside the α -th percentile of \mathcal{G}_m^d . Since $\operatorname{dist}_M(\mathbf{x})$ is preserved under T (see Lemma 1), then we conclude that the linear transform T with invertible \mathbf{W} preserves the percentiles of the GMM.

C IMPLEMENTATION DETAILS

C.1 HARDWARE

We base our experiments on a NVIDIA RTX A6000 GPU with AMD EPYC 7742 64-Core Processors.

C.2 TRAINING AND INFERENCE

We train our models for 200 epochs with the Adam optimizer (Kingma and Ba, 2017) and a learning_rate = 0.001, and test with the model corresponding to the lowest training loss. The size of our $D = \{20, 100\}$ model is 4.87M and 4.89M parameters, respectively. We show the training process of PFNs and our model in Algorithm 1.

Dealing with varying dimensions and dataset size For an input with d features, we follow Müller et al. (2022) and deal with d < D by rescaling the input with $\frac{D}{d}$ and padding the features to size Dwith 0, and randomly sample D features out of d if d > D. In addition, FoMo-0D uses context size of 5K at inference, where we randomly sample (5K-1) points as $\mathcal{D}_{\text{train}}$ from datasets with n > 5K for each test sample $\mathbf{x} \in \mathcal{D}_{\text{test}}$.

861 Model architecture We use a 4-layer Transformer with hidden dimension h_dim = 256, a linear 862 layer ($\mathbb{R}^D \to \mathbb{R}^{h_{dim}}$) as the embedding layer and a 2-layer MLP ($\mathbb{R}^{h_{dim}} \to \mathbb{R}^2$) as the classification 863 layer for inlier vs. outlier. For each Transformer layer, we use num_head = 4 for each attention 864 module and R = 500 for the router-based attention (Figure 2).

Figure 5: (best in color) Training loss of FoMo-0D (D = 100) with 8K unique datasets/epoch (in blue) and using 0.5K unique + 7.5K transformed datasets/epoch (in orange), and FoMo-0D (D = 20) with P = 1 (in green) and P = 1 with transformation (in red) over 200 epochs.

Training loss In Figure 5, we plot the training loss of our D = 100 model trained with 8K unique datasets/epoch (denoted as "8K") versus 0.5K unique + 7.5K transformed datasets/epoch (denoted as "0.5K+T"), together with the D = 20 model trained with reuse periodicity P = 1 (denoted as "P=1", reusing the same 8K datasets across epochs) and P = 1 with transformation (denoted as

⁹¹⁸ "P=1+T", transforming the 8K datasets across epochs). Notice that the loss with transformation is ⁹¹⁹ slightly higher than no transformation (i.e., D = 100, "0.5K+T" vs. "8K", and D = 20, "P=1+T" vs. ⁹²⁰ "P=1") across all 200 epochs, which is reasonable since the transformed datasets have non-diagonal ⁹²¹ covariances that make the learning task harder and thus result in a higher training loss. The training ⁹²² losses of FoMo-0D with D = 100 are also higher than with D = 20 since the subspace OD tasks are ⁹²³ harder in higher dimensions.

924

941 942

943 944

945

925Inference timeFigure 8 (left) showed the inference926time of FoMo-0D on CPU, comparing typical atten-927tion versus the router-based attention (with R = 500928routers) under varying context sizes from 1K to 10K.929The time is measured on CPU to clearly showcase930the scalability trends; quadratic without routers and931linear with routers.

Figure 6 shows the inference time on GPU. Notice
that the time is much lower (in milliseconds), thanks
to the Transformer architecture taking advantage of
GPU parallelism, while the compute time for attention without routers continues to grow faster than that
with routers.

938 In implementation, FoMo-0D (with R = 500 routers) 939 uses inference context size of 5K by default, which 940 takes about 7.7 ms per test sample on average.

Figure 6: Inference time of FoMo-0D on *GPU* with vs. w/out router-based attention under varying context size.

D DETAILED EXPERIMENT SETUP

D.1 PRE-TRAINING DATASET SYNTHESIS

During pretraining, we generate unique GMM datasets by first drawing a configuration, including dimensionality $d \in [D]$, number of components $m \in [M]$, centers $\{\mu_j\}_{j=1}^m$ (each $\mu_j \in [-5,5]^d$) and covariances $\{\Sigma_j\}_{j=1}^m$ (diag $(\Sigma_j) \in [-5,5]^d$). We set M = 5 and vary $D \in \{20, 100\}$ to study pretraining with relatively small and high dimensional datasets, respectively. We synthesize inliers and outliers as described in Section 3.1.

We then sample S = 5,000 points that are within the 90th percentile of the GMM. To synthesize outliers, we "inflate" a *subset* of dimensions by randomly choosing $|\mathcal{K}| \in [D]$ dimensions and multiplying the corresponding variances by $\times 5$ (following (Han et al., 2022)), i.e. $5 \times \Sigma_{j,kk}$'s for $k \in \mathcal{K}$, and then draw S = 5,000 samples from the inflated GMM that are outside the 90th percentile of the original GMM.

To speed up data synthesis via linear transformations, we first draw 500 unique datasets using $m \in [5]$ and $d \in \{1, 2, ..., 100\}$ (i.e. 5×100) and transform each one $15 \times$ using varying parameters (**W**, **b**) as described in Section 3.3.⁶ This yields 8K unique datasets (500 original and 7,500 transformed) to use at one training epoch (over 1,000 steps with batch size B = 8). We repeat this process at each epoch, drawing 500 new datasets and transforming them to reach 8K datasets per epoch.

961 962 963

D.2 REAL-WORLD BENCHMARK DATASETS

While pretraining is purely on synthetic datasets, we evaluate FoMo-0D on 57 real-world datasets
from the ADBench benchmark (Han et al., 2022) (see Table 15). They consist of 47 popular tabular
outlier detection datasets, as well as 10 newly-constructed tabular datasets created from images and
natural language tasks by using pretrained models to extract embeddings. We defer to the original
paper for the details on these benchmark datasets.

⁶It is important to ensure that the eigenvalues of **W** (i.e. variances) are not too small such that the dataset does not flatten in any direction. To this end, we draw a random orthonormal basis $\mathbf{U} \in [-1, 1]^{d \times d}$ and a diagonal $\mathbf{\Lambda}$ with eigenvalues $\lambda_{kk} \in ([-1, -0.1] \cup [0.1, 1])^d$, and obtain $\mathbf{W} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T$. We also use $\mathbf{b} \in [-1, 1]^d$.

972 We compare to DTE (Livernoche et al., 2024) and baselines therein as described next, thus, following 973 their semi-supervised OD setup we split each dataset five times into train/test using five different 974 seeds and report the mean performance and its standard deviation. In particular, each random split 975 designates 50% of the inliers as \mathcal{D}_{train} , while \mathcal{D}_{test} contains the rest of the inliers and all the outlier 976 samples. Note that while the baseline methods require model re-training and inference for each 977 $\mathcal{D}_{train}/\mathcal{D}_{test}$ split, FoMo-0D uses the splits only for inference as \mathcal{D}_{train} is merely passed as context.

Before passing the datasets as input to FoMo-0D, we perform a quantile transform such that the features follow a Normal distribution, to better align with the pretraining data from GMMs.

981 D.3 BASELINES 982

983 We compare FoMo-0D against **26** baselines, from classical/shallow methods to modern/deep models. 984 Our baselines include all the baselines imported from one of the latest papers that proposed the SOTA diffusion-based model DTE (Livernoche et al., 2024), and its three variants; DTE-C, DTE-IG, and 985 DTE-NP. Their baselines comprise all those in ADBench (Han et al., 2022); both classical ones 986 (kNN (Ramaswamy et al., 2000), LOF (Breunig et al., 2000), iForest (Liu et al., 2008), HBOS 987 (Goldstein and Dengel, 2012), etc.) and deep models (DeepSVDD (Ruff et al., 2018), DAGMM 988 (Zong et al., 2018), DROCC (Goyal et al., 2020), etc.). They also include more recent approaches 989 based on self-supervised learning (GOAD (Bergman and Hoshen, 2020), ICL (Shenkar and Wolf, 990 2022), SLAD (Xu et al., 2023), etc.), besides the four additional generative baselines: normalizing 991 planar flows (Rezende and Mohamed, 2015), DDPM (Ho et al., 2020), VAE (Kingma, 2013) and 992 GANomaly (Akcay et al., 2019). We defer to the original paper for additional details. Overall, 993 our 26 baselines consist of the most recent, SOTA approaches for OD that span a diverse family 994 (nonparametric, self-supervised, generative, etc.).

996 D.4 Hyperparameters for Baselines

Table 4 gives the list of HP values we used to study the HP sensitivity/performance variability of the (from top to bottom) top-4 baselines.

Table 4: Top-4 baselines (from top to bottom) and hyperparameter (HP) configurations.

Baseline	Hyperparameters
DTE-NP	$k \in \{5, 10, 20, 40, 50\}$
kNN	$k \in \{5, 10, 20, 40, 50\}$
ICL	learning_rate $\in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$
DTE-C	$k \in \{5, 10, 20, 40, 50\}$

D.5 RANKING THE 26 BASELINES

Figure 16 presents the visualization of the *p*-values of the pairwise Wilcoxon signed rank test w.r.t. AUROC among the baseline methods used by Livernoche et al. (2024). We rank these 26 baselines based on their mean *p*-value (i.e., row-wise average) against the other baselines.

1013 1014

995

997

998

999 1000

1007 1008

1009

D.6 COMPARISON OF TOP-4 BASELINE VARIANTS WITH VARYING HP CONFIGURATIONS

Figure 17, 18, 19, 20 give the *p*-values, respectively comparing the variants of the top-4 baselines (DTE-NP, *k*NN, ICL, DTE-C) among themselves using different HP configurations, as well as the avg model with the average performance across HPs. (Specifically for ICL, learning_rate (lr) $\in \{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}\}$; and for others, #nearest-neighbors $k \in \{5, 10, 20, 40, 50\}$). We find that for ICL, $lr = 10^{-3}$ or 10^{-4} are preferable while those that are too small or too large perform poorly. For others, small $k \in \{5, 10\}$ tend to outperform larger $k \in \{40, 50\}$. Note that Livernoche et al. (2024) used k = 5 in their paper that proposed DTE (and variants) as well as the *k*NN baseline for fair comparison, while the DTE^{avg} and kNN^{avg} models across HP configurations perform subpar.

- 1024
- 1025

1026 D.7 SAMPLING TIME OF d-DIMENSIONAL GMM

1028Figure 7 shows the sampling time of drawing 10,0001029points from different GMMs with increasing dimen-1030sionality $d = \{10, 20, ..., 200\}$. We parallelize the1031sampling process over 10 CPUs, where each CPU1032draws 1000 samples.

1033We observe that the sampling time grows nonlinearly1034as the number of dimensions increases, which sug-1035gests that it may incur considerable computational1036overhead to directly draw from the data prior over1037hundreds of thousands of training steps, motivating1038the use of our proposed on-the-fly linear transforma-1039tion T for scalability.

Figure 7: Sampling time (in seconds) of 10,000 points from GMMs with varying number of dimensions.

1041 E ABLATION ANALYSES

1042 1043

1040

In this section, we perform various ablations to study the effect of different design choices in FoMo-0D; namely, **E.1** maximum pretraining data dimensionality D, the number of routers R on **E.2** cost and **E.3** performance, **E.4** context size (both for training and inference), **E.5** number of unique datasets used for pretraining (i.e., reuse periodicity P), data transformation T during synthesis on **E.6** performance and **E.7** speed up, **E.8** data diversity and prolonged training, and finally, **E.9** quantile transforming the benchmark datasets preceding inference.

Unless stated otherwise, most ablation results are performed using FoMo-0D with D = 20, as it is faster to pretrain under these many varying settings.

1052

1054

1053 E.1 EFFECT OF PRETRAINING DIMENSIONALITY D

1055 *How does* FoMo-0D's generalization performance change by increasing dimensionality of the 1056 pretraining data?

1057 We start by comparing FoMo-0D pretrained on datasets with up to D = 20 versus D = 1001058 dimensions. Note that learning on higher dimensional datasets is harder, as evident from the relatively 1059 larger pretraining loss as shown in Appendix Figure 5. While the statement is accurate in general, it 1060 is also partly because subspace outliers "hide" better in higher dimensions.

1066

1067 E.2 EFFECT OF ROUTERS ON COST

What is the running time and memory cost of FoMo-0D with & w/out router-based attention?

Figure 8(left) shows the average inference time per test sample, comparing FoMo-0D using a routerbased attention mechanism with R = 500 routers (in green) versus FoMo-0D using typical attention without any routers (in blue). As inference context size increases, running time for traditional attention grows quadratically while router mechanism scales linearly.⁷

1075 Similarly, memory cost with routers is considerably lower when using routers, especially for larger 1076 context sizes, as shown in Figure 8(middle).

 ⁷Note that the inference time is reported on CPUs to show scalability. On GPUs, w/ 5K context size, see
 Appendix Figure 6, where typical attention takes advantage of parallelism (6.5ms), while router-based attention is slightly slower (7.7 ms w/ 500 routers) due to its **two** sequential self-attentions; see Eq.s (4) and (5).

Figure 8: FoMo-0D w/ router mechanism saves time and memory while more #routers perform better, offering a cost-performance trade-off: (left) inference-time (ms) per sample and (middle) memory cost (MB) with & w/out routers by varying context size; (right) performance (based on p-value against top baselines, higher is better) vs. number of routers. (setting: D = 20, P = 1)

1095

E.3 EFFECT OF ROUTERS ON PERFORMANCE

96 What is the impact of the number R of routers (or representatives) on performance?

Router-based mechanism allows to trade-off running time with expressiveness of the attention and hence performance. Figure 8(right) shows the *p*-values of the Wilcoxon signed rank test as the number of routers R is increased from 100 to 200 and 500, comparing FoMo-0D to each of the top-6 baselines. We notice that FoMo-0D performance tends to increase monotonically with more routers.

1102 E.4 EFFECT OF CONTEXT SIZE 1103

1104 What is the impact of context size, both during model pretraining as well as during inference?

To study how performance changes by context size, we train FoMo-0D with varying context size in $\{1K,2K,5K\}$ and employ each pretrained model for inference with varying context size in $\{1K,2K,5K,10K\}$. Table 5 shows the results, where performance is depicted by the average rank of FoMo-0D (the lower, the better).

Table 5: Average rank (based on comparison to 30 baselines w.r.t. AUROC) of FoMo-0D across datasets under *different context sizes* for training and inference. Smaller ranks imply better performance. (setting: D = 20, R = 500, P = 1)

	Infer:1K	Infer:2K	Infer:5K	Infer:10K
Train:1K	13.816	14.623	15.193	15.439
Train:2K	13.079	13.219	13.439	13.561
Train:5K	13.088	13.211	13.307	13.430

1116 1117

1126

1113 1114 1115

1118We find that training with a larger context improves performance at any inference context size. On1119the other hand, perhaps counter-intuitively, FoMo-0D with smaller inference context size does better.1120We conjecture that is because the #routers-to-context size ratio increases with a larger context size1121at inference, limiting the expressive power of the "bottleneck" attention mechanism. The pairwise1122statistical tests among the $3 \times 4 = 12$ models support these observations, as shown in Figure 9.1123Interestingly, when training context size is large enough at 5K, inference with 10K samples generalizes1124beyond training with no significant difference (at 0.05) from other inference context sizes.

1125 E.5 EFFECT OF NUMBER OF UNIQUE DATASETS

How do FoMo-0D performances compare when pretrained on unique vs. reused datasets, via varying periodicity P?

1129 Next we study the effect of dataset *reuse at epoch level* (w/out transformation) on performance as 1130 presented in Section 3.3. We vary reuse periodicity P in $\{1, 50, 100\}$, and accordingly, increase the 1131 number of unique datasets used for pretraining across epochs. As shown in Table 6, FoMo-0D (w/ 1132 D = 20) performs similarly with varying dataset reuse. In fact, it is competitive even with P = 1, 1133 remaining no different from the 3rd best baseline (ICL) across All (57) datasets, while significantly 1134 outperforming the top 5th (LOF) across (24) datasets with $d \le 20$ as well as (38) with $d \le 50$.

Figure 9: *p*-values of the pairwise Wilcoxon signed rank test between models (larger *p* implies colmethod is better than row-method) w/ different context sizes for **training** (1K/2K/5K, 1*st*/2*nd*/3*rd* four grids, in **black**) and inference (1K/2K/5K/10K, every 1st/2nd/3rd/4th grid, in red): Larger training context improves overall performance, while smaller inference context is preferable.

1156Table 6: Ablation results on dataset reuse across epochs with varying $P \in \{1, 50, 100\}$ show stable1157*p*-values against the top-5 baselines, where FoMo-0D with D = 20 remains no different from the top11583rd baseline at 0.05 w.r.t. pairwise Wilcoxon signed rank test comparisons, while it continues to1159significantly outperform the top 5th baseline (LOF) when $d \leq 50$. (setting: D=20, R=500, context1160size=5K, w/out transformation T)

1161		P = 1	1 (#unio	que da	tasets: 8	K)	P = 50 (#unique	e datas	sets: 8×5	50 = 400K)	P = 100	(#uniqu	ie data	sets: 8×	100=800K)
1162	top-5	DTE-NP	kNN	ICL	DTE-C	LOF	DTE-NP	kNN	ICL	DTE-C	LOF	DTE-NP	kNN	ICL	DTE-C	LOF
1163	All	0.001	<u>0.019</u>	0.062	0.128	0.460	0.001	<u>0.019</u>	0.089	0.159	0.394	0.001	0.015	0.072	0.121	0.290
1164	$d \leq 20$	0.583	0.755	0.943	0.736	0.998	0.572	0.789	0.968	0.616	0.993	0.439	0.678	0.953	0.550	0.972
1165	$d \le 50$	0.415	0.750	0.869	0.962	0.999	0.347	0.794	0.893	0.946	0.997	0.293	0.697	0.890	0.924	0.994

1166 1167

1168 E.6 EFFECT OF TRANSFORMATION T FOR SYNTHESIS

1169 1170 *How do* FoMo-0D *performances compare when pretrained on datasets with vs. w/out linear* 1171 *transformation*?

1172 Setting P = 1, we next study the impact of linear transformation T. Table 7 presents the results, 1173 where we compare reuse of the *same* 8K unique datasets across epochs (w/out T), versus *transforming* 1174 these datasets with T at every epoch with different parameters (w/T). FoMo-OD performance remains 1175 stable; no different from the top 3rd model on All datasets, while significantly outperforming the top 1176 5th across those with $d \le 20$ and $d \le 50$. This suggests that T can be employed without sacrificing 1177 performance to save time during pretraining.

1178Table 7: Ablation results on performance w/ & w/out linear transformation T show stable p-values1179against the top-5 baselines, where FoMo-0D with D = 20 remains no different from the top 3rd1180baseline at 0.05 w.r.t. pairwise Wilcoxon signed rank test comparisons. (setting: D = 20, R = 500,1181context size=5K, P = 1)

1182 1183					nation T			.,	sforma		
1184	top-5	DTE-NP	kNN	ICL	DTE-C	LOF	DTE-NP	kNN	ICL	DTE-C	LOF
1185	All	0.001	0.019	0.062	0.128	0.460	0.002	0.015	0.226	0.210	0.280
1186	$d \leq 20$	0.583	0.755	0.943	0.736	0.998	0.648	0.708	0.988	0.718	0.955
1187	$d \leq 50$	0.415	0.750	0.869	0.962	0.999	0.264	0.382	0.971	0.900	0.963

1188 E.7 SPEED UP BY *T*

1190

What is the time saving on data synthesis with linear transformation?

Figure 10 shows the distribution of pretraining running-time per epoch with and w/out data transformation. Specifically, we compare (left) generating 8K unique datasets/epoch on-the-fly and (right) first generating 500 unique datasets on-the-fly and then transforming each one 15 times using T with different parameters to reach 8K datasets at each epoch.

Notice that pretraining with T takes about 450 sec./epoch on av-1199 erage, while without T it requires 1200 sec./epoch to generate 8K 1200 unique datasets and gradient descent across 1000 steps. Different 1201 from other ablation results, which are based on the D = 20 model, 1202 here we report the running times for our D = 100 model. Overall, 1203 our final FoMo-0D took \approx 25 hours for pre-training (450 sec. \times 200 1204 epochs). Importantly, this is a one-time cost that amortizes across 1205 many downstream tasks with as low as 7.7 ms inference time per 1206 test sample (see Table 3 and Appendix Figure 6).

Figure 10: Runtime/epoch dist.n over 100 epochs for FoMo-0D (D=100) with (left) P=100, i.e. 8K unique datasets/epoch vs. (right) 0.5K unique+7.5K transformed datasets/epoch.

1207

1208

1209 E.8 EFFECT OF DATA DIVERSITY AND PROLONGED TRAINING

1210

How does FoMo-0D's performance change by increasing pretraining data diversity and number of training epochs?

1213 Originally we have trained FoMo-0D w/ D = 100 using 0.5K 1214 unique + 7.5K transformed datasets over 200 epochs. As men-1215 tioned earlier, learning in higher dimensions tends to incur a 1216 larger loss in general but also specifically here, as subspace 1217 outliers are harder to detect in high dimensions.

1218 Toward reducing the loss further, we resume the pretraining for 1219 another 100 epochs. Further, to simplify the tasks and thereby 1220 increase data diversity, we also decrease the inlier/outlier la-1221 beling percentile threshold from 90% to 80% during on-the-fly 1222 data generation in the last 100 epochs. In Figure 12, we present the training loss of FoMo-0D (D = 100) trained with 0.5K 1223 unique + 7.5K transformed datasets/epoch over 200 epochs 1224 (90th percentile as labeling threshold) and then 100 additional 1225

Figure 11: p-values increase with additional 100 epochs of pretraining, i.e. FoMo-0D w/ D = 100 performs better against top-5 baselines on datasets w/ $d \leq 100$.

epochs (80*th* percentile as the threshold) to show how data diversity and amount affect model performance. Figure 11 compares FoMo-0D's performance (w/D = 100) to top-5 baselines w.r.t. *p*-values of the paired Wilcoxon signed rank test on datasets with $d \le 100$, after the first 200 epochs versus after 300 epochs. The increase in all the *p*-values showcases the benefit of additional training.

1230 1231

E.9 EFFECT OF APPLYING QUANTILE TRANSFORM ON BENCHMARK DATASETS

1232 1233

What is the impact of quantile data transform preceding inference on performance?

We pretrain FoMo-0D on synthetic datasets from a simple data prior based on GMMs. The realworld benchmark datasets, on the other hand, may exhibit features with distributions different from Gaussians. To close the gap, we apply a quantile transform (denoted QT) on the benchmark datasets prior to feeding them to FoMo-0D for inference, which transforms the features to exhibit a more Gaussian-like probability distribution.

Figure 13 compares the performance of three FoMo-0D w/ D = 100 variants with and w/out QT against the top-5 baselines w.r.t. the *p*-values of the paired Wilcoxon signed rank test. FoMo-0D tends to perform better as suggested by larger *p*-values when QT is applied.

1262

1263

1264

1265

1266 1267

1268

1270

1272

1273

1277

1278

1279

1280 1281

1282 1283

Figure 12: (best in color) Training loss of FoMo-0D (D = 100) with 0.5K unique + 7.5K transformed datasets/epoch for 200 epochs (in orange), followed with additional 100 epochs of training (in green). For the first 200 epochs we train with 90th percentile as the inlier/outlier threshold, which we reduce to 80th in the subsequent 100 epochs.

Figure 13: *p*-values increase, i.e. FoMo-0D performance improves, against top-5 baselines with quantile transform (QT) preceding inference, for 3 different settings of FoMo-0D w/ D = 100.

Besides the ablation studies, we provide a qualitative case study of sample-to-sample attention in Appendix F, showing that an outlier attends to the points in context that are within a short distance significantly more than random points, suggesting that PFNs tend to mimic non-parametrics.

F QUALITATIVE ANALYSIS ON SAMPLE-TO-SAMPLE ATTENTION

We sample 50 inliers as context and 100 outliers from a 2-d1284 GMM using the 80th percentile as the labeling threshold, 1285 and visualize the top 5 inliers most attended by the 100 1286 outliers based on the average (cross) attention weights over 1287 4 heads from the last layer of FoMo-0D (D = 100), which 1288 accurately labeled all the 100 outliers. In Figure 14, the most frequently attended inliers are close to either the center of 1290 a Gaussian (e.g., 1st, 5th) or the criterion (e.g., 3rd, 4th), 1291 suggesting FoMo-0D tends to learn decision boundaries that reflect the prior data generation process. For each outlier, we compute the sum of L2 distances to its top-5 attended inliers 1293 (att), the sum of L2 distances to 5 randomly chosen inliers 1294 (rdm), and the sum of L2 distances to top-5 inliers with 1295 highest likelihood under the GMM (prob). We perform

Figure 14: Top-5 attended inliers (all 50 inliers and only part of the outliers are shown for better visualization).

Wilcoxon signed rank test between att and rdm (alternative "less"), att and prob (alternative "greater") over all the outliers, with a *p*-value of 4.4×10^{-4} and 0.99, respectively, suggesting the distances based on attention weights are significantly less than the random distances, and **not** significantly greater than the distances to inliers in high probability region.

We visualize the top-5 attended inliers for 3 outliers at different position of the 2-*d* GMM in Figure 15. For a specific outlier, there is a similar trend of attending to the center of a Gaussian (as shown in Figure 14), besides, inliers that reflect the criterion boundary or are close to the outlier are actively attended (e.g., 3rd, 4th in the left, 1st in the middle, 2nd, 5th in the right), suggesting FoMo-0D is incorporating both boundary and nearest neighbor information dynamically for each outlier.

1319

1321

1320 G FULL RESULTS

1322Tables 9.1 & 9.2, 10.1 & 10.2, and 11.1 & 11.2 respectively show the AUROC, AUPR and F1 scores1323of the top-4 baselines, DTE-NP, kNN, ICL, and DTE-C as well as their corresponding ^{avg} model1324with the average performance across HPs, as listed in Table 4.

1325Tables 12.1&12.2, 13.1&13.2, and 14.1&14.2 respectively show the AUROC, AUPR and F1 scores of1326all methods across all benchmark datasets. In all these tables, the last four rows show the avg_rank1327of methods across datasets, and p-values of the Wilcoxon signed rank test comparing FoMo-0D w/1328D = 100 with other baselines. The preceding four rows are the same for FoMo-0D w/ D = 20, when1329ranking 31 models (26 baselines + 4 avg variants of top-4 baselines + FoMo-0D w/ D = 20).

1330 Table 8: Comparison of methods across datasets. (top row) Rank w.r.t. AUROC performance avg.'ed 1331 over 57 datasets is presented for FoMo-0D (with D = 100), top-10 baselines with default HPs, and 1332 top- 4^5 baselines with performance avg.'ed over varying HPs (denoted w/ a^{vg}); followed by p-values 1333 of the pairwise Wilcoxon signed rank test, comparing FoMo-0D to each baseline (from top to bottom) 1334 over All (57) datasets, those (24) w/ d < 20, (38) w/ d < 50, (42) w/ d < 100 and (46) datasets w/ 1335 $d \leq 500$ dimensions. FoMo-0D performs as well as (i.e., statistically no different from) the 2nd best model (kNN, w/ p = 0.106) across All datasets, while it is comparable to (p > 0.05) or better 1336 than (p > 0.95) all baselines over datasets w/ $d \le 100$ (aligned w/ pretraining where D = 100) and 1337 $d \leq 500$ (generalizing beyond pretraining). 1338

	DIE-NP	kNN	ICL	DTE-C	LOF	CBLOF	Feat.Bag.	SLAD	DDPM	OCSVM	DTE-NP ^{avg}	kNN^{avg}	ICL ^{avg}	DTE-Cavg
11.886	7.553	9.018	10.851	11.36	12.316	13.342	13.386	12.982	14.061	13.851	9.079	11.105	12.991	22.263
-	<u>0.016</u>	0.106	0.462	0.454	0.585	0.750	0.823	0.759	0.901	0.895	0.112	0.315	0.670	1.000
-	0.428	0.665	0.987	0.727	0.911	0.940	0.987	0.868	0.758	0.968	0.781	0.868	0.990	1.000
-	0.734	0.923	0.992	0.973	0.989	0.987	0.999	0.948	0.985	0.986	0.948	0.967	0.989	1.000
-	0.415	0.700	0.949	0.953	0.970	0.971	0.996	0.876	0.980	0.978	0.752	0.860	0.958	1.000
-	0.315	0.605	0.923	0.919	0.944	0.977	0.990	0.904	0.970	0.983	0.663	0.789	0.937	1.000
-	0.220	0.569	0.827	0.894	0.960	0.968	0.994	0.910	0.960	0.979	0.607	0.756	0.846	1.000
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 0.016 0.106 - 0.428 0.665 - 0.734 0.923 - 0.415 0.700 - 0.315 0.605	0.016 0.106 0.462 - 0.428 0.665 0.987 - 0.734 0.923 0.992 - 0.415 0.700 0.949 - 0.315 0.605 0.923	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 0.016 0.106 0.462 0.454 0.585 - 0.428 0.665 0.987 0.727 0.911 - 0.734 0.923 0.992 0.973 0.989 - 0.415 0.700 0.949 0.953 0.970 - 0.315 0.605 0.923 0.919 0.944	- 0.016 0.106 0.462 0.454 0.585 0.750 - 0.428 0.665 0.987 0.727 0.911 0.940 - 0.734 0.923 0.992 0.973 0.989 0.987 - 0.415 0.700 0.949 0.953 0.970 0.971 - 0.315 0.605 0.923 0.919 0.944 0.977	0.016 0.106 0.462 0.454 0.585 0.750 0.823 - 0.428 0.665 0.987 0.727 0.911 0.940 0.987 - 0.734 0.923 0.992 0.973 0.989 0.987 0.999 - 0.415 0.700 0.949 0.953 0.970 0.971 0.996 - 0.315 0.605 0.923 0.919 0.944 0.977 0.990	- 0.016 0.106 0.462 0.454 0.585 0.750 0.823 0.759 - 0.428 0.665 0.987 0.727 0.911 0.940 0.987 0.868 - 0.734 0.923 0.992 0.973 0.989 0.987 0.999 0.948 - 0.415 0.700 0.949 0.953 0.970 0.971 0.996 0.876 - 0.315 0.605 0.923 0.919 0.944 0.977 0.990 0.904	- 0.016 0.106 0.462 0.454 0.585 0.750 0.823 0.759 0.901 - 0.428 0.665 0.987 0.727 0.911 0.940 0.987 0.868 0.758 - 0.734 0.923 0.992 0.973 0.989 0.987 0.999 0.948 0.985 - 0.415 0.700 0.949 0.953 0.970 0.971 0.996 0.876 0.980 - 0.315 0.605 0.923 0.919 0.944 0.977 0.990 0.904 0.970	- 0.428 0.665 0.987 0.727 0.911 0.940 0.987 0.868 0.758 0.968 - 0.734 0.923 0.992 0.973 0.989 0.987 0.999 0.948 0.985 0.986 - 0.415 0.700 0.949 0.953 0.970 0.971 0.996 0.876 0.980 0.978 - 0.315 0.605 0.923 0.919 0.944 0.977 0.990 0.904 0.970 0.983	0.016 0.106 0.462 0.454 0.585 0.750 0.823 0.759 0.901 0.895 0.112 - 0.428 0.665 0.987 0.727 0.911 0.940 0.987 0.868 0.758 0.968 0.781 - 0.428 0.665 0.992 0.973 0.989 0.987 0.999 0.948 0.985 0.968 0.781 - 0.734 0.923 0.992 0.973 0.989 0.987 0.999 0.948 0.985 0.986 0.948 - 0.415 0.700 0.949 0.953 0.970 0.971 0.996 0.876 0.980 0.978 0.752 - 0.315 0.605 0.923 0.919 0.944 0.977 0.990 0.904 0.970 0.983 0.663	0.016 0.106 0.462 0.454 0.585 0.750 0.823 0.759 0.901 0.895 0.112 0.315 - 0.428 0.665 0.987 0.911 0.940 0.987 0.868 0.758 0.968 0.781 0.868 - 0.734 0.923 0.992 0.973 0.989 0.987 0.999 0.948 0.985 0.986 0.781 0.868 - 0.415 0.700 0.949 0.953 0.970 0.971 0.996 0.876 0.980 0.978 0.752 0.860 - 0.315 0.605 0.923 0.919 0.944 0.977 0.990 0.904 0.970 0.983 0.663 0.789	- 0.016 0.106 0.462 0.454 0.585 0.750 0.823 0.759 0.901 0.895 0.112 0.315 0.670 - 0.428 0.665 0.987 0.911 0.940 0.987 0.868 0.758 0.968 0.781 0.868 0.990 - 0.734 0.923 0.992 0.973 0.989 0.987 0.999 0.948 0.985 0.968 0.781 0.868 0.990 - 0.415 0.700 0.949 0.953 0.971 0.996 0.876 0.980 0.978 0.752 0.860 0.958 - 0.315 0.605 0.923 0.919 0.944 0.977 0.990 0.904 0.970 0.983 0.663 0.789 0.937

1340

1348

Under review as a conference paper at ICLR 2025

Figure 17: *p*-values w.r.t. AUROC/AUPR/F1 among different HP configurations of **DTE-NP** (i.e., $k \in \{5, 10, 20, 40, 50\}$), along with the ^{avg} model with the average performance across HPs.

Figure 20: p-values w.r.t. AUROC/AUPR/F1 among different HP configurations of DTE-C (i.e., $k \in \{5, 10, 20, 40, 50\}$), along with the ^{avg} model with the average performance across HPs.

1	430
1	459
1	460
1	461
1	462
1	463
1	464
1	465
1	466
1	467
1	468
1	469
1	470
1	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	403
1	
1	
1	
1	
1	
	409
	490
	491
	492
	493
	494
	495
	490
	498
	490
	499 500
	500
1	502
1	503
1	504 505
1	505
1	506
	507
	508
	509
1	510
1	511

Table 9.1: Average AUROC \pm standard dev. over five seeds for the semi-supervised setting of DTE-NP, *k*NN with varying hyperparameter (HP) values; $k \in \{5, 10, 20, 40, 50\}$. Also reported is the ^{avg} model. We use **bold** and <u>underline</u> respectively to mark the **best** and the <u>worst</u> performance of each model to showcase the variability of performance across different HP settings.

dataset	DTE-NP-5	DTE-NP-10	DTE-NP-20	DTE-NP-40	DTE-NP-50	DTE-NP-avr	KNN-5	KNN-10	KNN-20	KNN-40	KNN-50	KNN-avr
aloi	50.69 ± 0.00	51.02 ± 0.00	51.26 ± 0.00	51.58±0.00	51.69 ±0.00	51.25±0.00	<u>51.04</u> ±0.00	51.33 ± 0.00	51.63 ± 0.00	51.97 ± 0.00	52.08 ±0.00	51.61±0.00
amazon	60.76±0.00	60.69 ± 0.00	60.53 ± 0.00	$\frac{60.17}{50.00}$ ± 0.00	60.22 ± 0.00	60.47 ± 0.00	60.58±0.00	60.52 ± 0.00	60.23 ± 0.00	60.02 ± 0.00	59.91 ± 0.00	60.25±0.00
annthyroid	93.01±0.00	92.89±0.00	92.66±0.00	92.38±0.00	92.20 00.02 0.02	92.64±0.00	92.81±0.00	92.60±0.00	92.34±0.00	91.98 ± 0.00	00.0 ± 0.00	92.30±0.00
Dackdoor	24.40±047	04.011.0.40	05 20 1 0 2 4	25 0 T 07 80	00 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90.01.02.00	07.01±0.40	04.0±05.26	91.14±0.40	00.10±0.10	10.0±60.00	100 10 10 10 10
Dreastw	78 34±0.00	0000T16.06	78 01 ±0.00	78 03 ±0 00	00 00 TO 00	07.0±/0.06	78 18 ±0.00	17.0±11.66	76 64 ±0.00	00.0±12.02	11.0±17.66	17.0±01.66
campaign cardio	01 53+0.00	00.03+0.00	00.46±0.00	03 0640 000	03 38+0.00	00.17±0.00	00 00 +00 00	00.74±0.00	00 00 00 000	03.85+0.00	04.08±0.00	03.07+0.00
cardiotocography	60.40+0.00	61.63 ± 0.00	63.14+0.00	65.05 ± 0.00	65.81+0.00	63.21+0.00	62.11+0.00	63.39+0.00	65.12+0.00	67.85+0.00	68.91+0.00	65.48+0.00
celeba	70.39 ± 0.33	72.58 ± 0.26	74.81 ± 0.34	76.87 ± 0.38	77.47 ± 0.37	74.42 ± 0.28	72.91 ± 0.29	75.24 ± 0.40	77.50 ± 0.47	79.14 ± 0.38	79.68 ±0.37	76.90 ± 0.35
Sensus	72.18 ± 0.34	72.34 ± 0.17	72.28 ± 0.10	71.93 ± 0.17	71.80 ± 0.17	72.11+0.16	72.23 ± 0.29	72.36+0.12	71.94 ± 0.19	71.37 ± 0.21	71.28 ± 0.16	71.84+0.15
cover	97.90±0.17	97.72 ± 0.14	97.40 ± 0.18	96.99 ± 0.23	96.84 ± 0.24	97.37±0.19	97.51±0.15	97.19 ± 0.15	96.75 ± 0.22	96.21 ± 0.28	96.00 ± 0.31	96.73±0.22
onors	99.72 ±0.03		99.43 ± 0.06	99.14 ± 0.09	99.02 ± 0.10	99.38±0.06	99.51 ±0.06	99.24 ± 0.08	98.85 ± 0.10	98.20 ± 0.13	97.90 ± 0.14	98.74±0.09
fault	58.34 ± 0.00		58.70 ± 0.00	60.00 ± 0.00	60.43 ± 0.00	59.17±0.00	58.73±0.00	58.76±0.00	60.12 ± 0.00	61.71 ± 0.00	61.79 ± 0.00	60.22±0.00
fraud	95.70 ± 0.90		95.64 ± 0.93	95.60 ± 0.92	95.60 ± 0.92	95.64±0.92	95.59 ± 0.97	95.55 ± 0.99	95.55 ± 0.89	95.54 ± 0.92	95.62 ±0.88	95.57±0.93
lass	96.08±0.39		89.82 ± 1.12	87.89 ± 1.10	87.31 ± 1.40	90.83±0.91	92.13 ±0.94	88.67 ± 0.98	87.24 ± 1.18	84.93 ± 2.92	83.55 ± 2.61	87.30±1.59
hepatitis	99.84 ±0.20		96.89 ± 0.96	93.15 ± 1.69	$\overline{91.97}\pm1.76$	96.22±0.88	96.77 ±1.47	86.88 ± 2.21	85.50±2.34	85.46 ± 1.92	84.88 ± 2.09	87.90±1.75
tto .	99.99 ±0.00	-	99.95 ± 0.00	99.93 ± 0.01	99.91 ± 0.02	99.95 ± 0.01	100.00 ±0.00	99.99 ± 0.02	99.95 ± 0.01	99.95 ± 0.01	99.95 ± 0.01	99.96 ± 0.01
imdb	50.48 ± 0.00		50.32 ± 0.00	50.28 ± 0.00	50.27 ± 0.00	50.35±0.00	50.08 ± 0.00	50.04 ± 0.00	50.29 ± 0.00	50.23 ± 0.00	50.23 ± 0.00	50.18 ± 0.00
nternetads	70.96 ±0.00	-	66.86 ± 0.00	65.97 ± 0.00	65.82 ± 0.00	67.65±0.00	68.08 ±0.00	65.48 ± 0.00	65.02 ± 0.00	65.04 ± 0.00	65.04 ± 0.00	65.73±0.00
ionosphere	98.48 ± 0.60		97.84 ± 0.64	96.83 ± 0.71	96.21 ± 0.79	97.50±0.63	97.32±0.85	97.62 ±0.81	96.33 ± 0.76	92.80 ± 1.64	91.53 ± 1.65	95.12±0.92
andsat	68.99 ±0.00		66.46 ± 0.00	64.73 ± 0.00	64.16 ± 0.00		68.25±0.00	66.48 ± 0.00	64.36 ± 0.00	62.49 ± 0.00	61.93 ± 0.00	
letter	36.12 ± 0.00		34.78 ± 0.00	33.72 ± 0.00	33.40 ± 0.00		35.43 ± 0.00	34.54 ± 0.00		32.11 ± 0.00	31.69 ± 0.00	
ymphography	99.88 ±0.25		99.79 ± 0.32	99.76 ± 0.31	99.76 ± 0.31		99.87 ± 0.10	99.85 ± 0.05		99.88 ± 0.08	99.88 ± 0.08	
magic.gamma	83.91 ±0.00	83.49 ± 0.00	82.87 ± 0.00	82.05 ± 0.00	81.73 ± 0.00	82.81±0.00	83.27±0.00	82.64 ± 0.00	81.85 ± 0.00	80.76 ± 0.00	80.30 ± 0.00	81.76±0.00
nammography	87.65 ± 0.00		87.68 ± 0.00	87.42 ± 0.00	87.29 ± 0.00		87.58±0.00	87.75 ±0.00		86.97 ± 0.00	86.78 ± 0.00	
mnist	94.22±0.00		93.57 ± 0.00	93.20 ± 0.00	$\frac{93.08}{100}\pm0.00$		93.85±0.00	93.45 ± 0.00	<u> </u>	92.55 ± 0.00	$\frac{92.36\pm0.00}{200}$	
musk	100.00±0.00		100.00±0.00	100.00±0.00	100.00±0.00		100.00±0.00			100:00±0:00	100:00±0:00	
optuigus	00.0440.09	00.0±04.08	00.0±25.29	90.01/±0.00	90.28±0.00	00.0±05.09	00.0±21.6%	00.0440.26	00.0±02.09	00.0±00.18	$\frac{80.01}{10}\pm0.00$	00.0±/0.06
agentoeks	00.00+0000	00.88+0.00	00 83+0.00	00.51±0.00	00 38+0.00	00.070+0.00	00 87+0.00		00 01+0 00	08 58+0.00	08 30+0.00	00 17+0.00
ima	82.21+1.82	79.74+1.61	77.98+1.38	77.28+1.35	77.14+1.33	78.87+1.43	77.44+2.07	76.14+1.36	76.39+1.21	76.55+1.25	76.38+1.29	76.58+1.39
atellite	82.40 ± 0.00	82.09 ± 0.00	81.55 ± 0.00	80.71 ± 0.00	80.38 ± 0.00	81.43 ± 0.00	82.24 ± 0.00	81.56 ± 0.00	80.56 ± 0.00	79.22 ± 0.00	78.76 ± 0.00	80.47±0.00
atima ge-2	99.68 ± 0.00	99.73 ± 0.00	99.79 ± 0.00	99.82 ± 0.00	99.82 ± 0.00	99.77±0.00	99.71 ± 0.00	99.80 ±0.00	99.79 ± 0.00	99.78 ± 0.00	99.77 ± 0.00	99.77 ± 0.00
shuttle	99.94 ± 0.00	99.92 ± 0.00	99.91 ± 0.00	99.91 ± 0.00	99.91 ± 0.00	99.92 ± 0.00	99.91 ± 0.00	99.90 ± 0.00	99.89 ± 0.00	99.89 ± 0.00	99.89 ± 0.00	99.89 ± 0.00
kin	99.66 ±0.05	99.52 ± 0.04	$\overline{99.28}\pm0.02$	98.77 ± 0.09	98.54 ± 0.09	99.15±0.05	99.51 ±0.06	99.17 ± 0.05	98.70 ± 0.12	97.43 ± 0.05	96.90 ± 0.09	98.34±0.04
smtp	92.94 ± 2.55	92.84 ± 2.56	93.14 ±2.20	93.14±2.15	93.14 ± 2.20	93.04±2.32	<u>92.90</u> ±2.48	92.97±2.52	93.25 ±2.06	93.11±2.28	93.24 ± 2.25	93.10±2.30
pambase	84.06 ± 0.00	83.49 ± 0.00	82.97 ± 0.00	82.50 ± 0.00	82.36 ± 0.00	83.07±0.00	83.36 ±0.00	82.68 ± 0.00	82.22 ± 0.00	81.83 ± 0.00	81.72 ± 0.00	82.36±0.00
speech	41.12 ± 0.00	39.00 ± 0.00	37.59 ± 0.00	37.37 ± 0.00	37.01 ± 0.00	38.42±0.00	36.36 ± 0.00	36.15 ± 0.00	36.37 ± 0.00	36.40 ± 0.00	36.25 ± 0.00	36.31±0.00
tamps	97.88 ±0.33	97.04 ± 0.33	95.60 ± 0.78	94.59 ± 1.07	94.29 ± 1.08	95.88±0.66	96.19 ±1.24	94.35 ± 1.35	93.67 ± 1.09	93.44±1.21	93.33 ± 1.25	94.20±1.17
thyroid	98.58 ± 0.00	98.63 ± 0.00	98.64 ±0.00	98.63 ± 0.00	98.59 ± 0.00	98.61 ± 0.00	98.68 ± 0.00	98.67 ± 0.00	98.69 ± 0.00	98.70 ± 0.00	98.69 ± 0.00	98.68±0.00
ertebral	79.59 ±2.23	67.05 ± 2.09	56.99±2.07	49.07 ± 1.60	47.08 ± 1.43	59.96±1.83	57.33 ±3.80	49.40 ± 1.87	45.06 ± 1.20	41.08 ± 1.52	40.08 ± 1.23	46.59±1.67
vowels	82.11 ±0.00	81.62 ± 0.00	80.46 ± 0.00	78.11 ± 0.00	76.87 ± 0.00	79.83±0.00	82.21±0.00	80.20 ± 0.00	77.82 ± 0.00	72.26 ± 0.00	69.03 ± 0.00	76.30±0.00
waveform	74.42 ± 0.00	75.40 ± 0.00	76.12 ± 0.00	76.79 ± 0.00	76.90 ± 0.00	75.93±0.00	75.21 ± 0.00	76.04 ± 0.00	76.78 ± 0.00	77.47 ± 0.00	77.60 ± 0.00	76.62±0.00
wbc	99.62 ±0.27	99.36 ± 0.33	99.17 ± 0.41	99.12 ± 0.37	99.09 ± 0.38	99.27±0.34	98.88 ± 0.50	98.82 ± 0.25	98.86 ± 0.38	99.08 ± 0.34	99.10 ±0.34	98.95±0.35
/dbc	99.62 ±0.26	99.47±0.29	99.26 ± 0.25	99.18 ± 0.22	99.15 ± 0.20	99.34±0.23	99.23±0.27	99.09 ± 0.29	99.08 ± 0.21	99.08 ± 0.22	99.08 ± 0.17	99.11±0.22
wilt	66.98 ±0.00	63.87 ± 0.00	60.18 ± 0.00	56.26 ± 0.00	55.02 ± 0.00	60.46 ± 0.00	63.66 ±0.00	59.33 ± 0.00	55.21 ± 0.00	51.13 ± 0.00	49.77 ± 0.00	55.82±0.00
vine	99.90 ±0.14	99.73 ± 0.09	99.33 ± 0.18	98.88 ± 0.19	98.57 ± 0.30	99.28±0.12	99.17±0.18	97.96±0.77	98.15 ± 0.47	97.65 ± 0.43	97.68 ± 0.41	98.12±0.40
wpbc	89.29 ±1.07	79.39 ± 1.04	69.61 ± 1.14	63.21 ± 1.50	61.86 ± 1.64	72.67 ± 0.81	64.27 ±2.37	58.20±1.67	57.03 ± 2.09	55.89 ± 1.96	55.32 ± 1.96	58.14±1.82
east	44.73±0.00	44.61 ± 0.00	44.33 ± 0.00	43.88 ± 0.00	$\frac{43.68\pm0.00}{66\pm0.00}$	44.25±0.00	44.74 ±0.00	44.64 ± 0.00	44.23 ± 0.00	43.31 ± 0.00	$\frac{42.85}{600}$	43.95±0.00
yeip	00.0±10.00	00.0±22.80	00.0±01.00	00.0±22.10	00.98±0.00	01.1/±0.00	00.0111000	0/./4±0.00	00.0±21.70	00.0±65.00	00.30±0.00	00.0±01./0
VINIS I-C	84./3±0.00	84.21±0.00	00.0±35.58	82.87±0.00	80.07 + 0.00	83.60±0.00	84.11±0.00	85.59±0.00	82.64±0.00	81.81±0.00	00.0 ± 52.18	80.2010.00
TEAD 10	00.0±61.02	00.0±12.25	00.0 ± 25.65	00.0 ± 22.28	00.0 ± 72.68	00.0±/0.68	00.0 ± 2.2 50.00	00.01.02.23	00.0±12.68	00.0±0.00	<u>88.80</u> ±0.00	00.0±06.68
VHN	67 12+0.00	07.05±0.00	61.48±0.00	0/-22±0.00	$\frac{0.20\pm0.00}{11\pm0.00}$	0/.20±0.00	0/-22±0.00	61 37±0.00	0/.71±0.00	60.09±0.00	$\frac{67.00\pm0.00}{60.74\pm0.00}$	07.20±0.00
MVTec-AD	89.65+0.57	85.94+0.49	82.74+0.49	80.49+0.49	79.94 ± 0.46	83.75+0.49	81.33+0.47	79.41+0.45	78.35+0.51	77.55+0.42	77.39+0.43	78.81+0.45
Onewe	C2 0 + 00 02				01-0+1							
			57 13 ±0 23	26 00-00 25	26 07 10 92	20 00 10 00	57 53 ±0 64	26 0TFL 95	26.78±0.00	26 07 ±0 02	25 67 10 22	26 45 40 80

													settings.
dataset	ICL-0.1	ICL-0.01	ICL-0.001	ICL-0.0001	ICL-1e-05	ICL-avr	DTE-C-5	DTE-C-10	DTE-C-20	DTE-C-40	DTE-C-50	DTE-C-avr	
aloi	47.74±0.28	47.12±0.51	1	48.42 ±0.24	48.06±0.23	47.63±0.15	50.20±0.21	50.84 ±0.10	50.16±0.34	50.26 ± 0.33	50.00 ± 0.00	50.29 ± 0.09	
amazon	53.07±0.19	53.44 ±0.19	52.75±0.68	53.31 ± 0.21	53.18 ± 0.15	53.15±0.19	56.20±1.62	55.07±4.20	56.12 ±2.73	50.00 ± 0.00	50.00±0.00	53.48 ± 1.33	
annthyroid	84.02±9.46	$\frac{72.68 \pm 3.79}{02.01 \pm 0.70}$		88.84±2.35	88.52±1.40	84.27±2.31	97.47±0.10	97.65 ± 0.11	97.73±0.15	97.40±0.22	50.00±0.00	88.05±0.05	
backdoor	93.03±0.66 98.96±0.47	07.91 ± 0.70	93.30±0.44 00 10±0 34	90.0±68.68	93.32±0.71 97.61±0.65	93.30±0.48 08 75±0.18	88.05±1.08	92.06±1.04 04.34±1.25	92.04±0.84	$\frac{50.00\pm0.00}{00\pm0.00}$	50.00±0.00	/4.6/±0.30 06.52±0.53	
campaion	76.07+0.87	74 61+1 97		79 79+0 91	82.30+0.38	78 33 +0 52	79.18+1.09	78 24+2 09	78 49 +1 13	20.00+0.00	50.00+0.00	67 18+0 74	
cardio	73.99±7.79	84.98+4.75		78.68±2.18	68.59 ± 0.64	77.71±1.76	88.07±0.51	87.54±0.69	87.66 ± 0.63	50.00 ± 0.54	50.00±0.00	72.66 ± 0.21	
cardiotoco graphy	48.99±2.02	54.18 ±2.77		50.67±2.55	47.20 ± 1.33	50.85±1.24	60.09 ± 2.19	60.36 ± 1.54	59.05 ± 1.34	50.00 ± 0.00	50.00 ± 0.00	55.90±0.23	
celeba	79.38±2.17	79.15±2.47		78.39±1.78	79.43 ± 1.44	78.49 ± 0.93	82.95±1.26	81.59 ± 0.79	80.16 ± 1.26	50.00 ± 0.00	50.00 ± 0.00	68.94±0.44	
census	70.41 ± 2.07	<u>67.52</u> ±8.79		75.03 ±0.46	74.37 ± 0.53	72.25 ± 1.63	70.95 ±0.91	68.04 ± 0.85	68.05 ± 2.58	50.00 ± 0.00	50.00 ± 0.00	61.41 ± 0.71	
cover	93.59±3.09	82.32 ± 9.14		94.97 ±2.91	94.27±3.40	91.42±1.74	97.57±0.86	97.81 ±0.75	96.61 ± 0.63	50.00 ± 0.00	50.00 ± 0.00	78.40±0.14	
donors	86.20 ± 10.29	97.76±1.57	98.64 ± 0.55	99.37 ± 0.30	99.51 ±0.14	96.30±1.95	98.68 ±0.15	97.56±0.53	95.64 ± 0.27	58.94±17.89	50.00 ± 0.00	80.17 ± 3.55	
ult.	63.37 ±3.29	63.04 ± 1.93		61.44 ± 0.87	62.83 ± 1.01	62.47 ± 1.14	59.16 ±1.69	58.41±1.41	59.04 ± 1.53	50.21 ± 0.25	50.21 ± 0.42	55.41 ± 0.63	
fraud	93.24 ± 1.45	$\frac{93.21 \pm 1.25}{2}$		95.84±0.87	93.90 ± 1.05	94.23±0.87	94.49±1.56	93.08 ± 2.20	93.50 ± 2.01	<u>50.00</u> ±0.00	50.00 ± 0.00	76.21 ± 1.08	
glass	84.02 ± 8.38	94.66 ± 3.83		99.30±0.35	99.12±0.55	95.27±1.45	93.46±0.91	89.96±2.70	84.89 ± 2.89	66.42 ± 8.60	<u>50.00</u> ±0.00	76.95 ± 2.58	
hepatitis	11.0±26.66	<u>98.76</u> ±1.84		99.86 ± 0.29	90.07±0.06	99.69±0.48	90.54±0.58	10.1 ± 00.89	80.1 ± 00.86	74.74±7.86	20.00±0.00	84.42 ± 1.20	
http	10.070700	20.0±/.6.6			100.00±0.00	20.08 ±0.02	99.54±0.08	20.04 ±0.28	90.0±95.99	70.02±0.00	20.00±0.00	90.0±62.68	
dpm	52.16±0.31	<u>51.88</u> ±0.40			53.06±0.15	52.35±0.12	47.68 ± 3.79	50.89±1.90	47.81 ± 2.08	20.00±0.00	50.00±0.00	49.2/±1.12	
internetads	72.61±1.19	73.97±0.44	74.09±1.75	73.47 ± 0.45	68.51 ± 0.74	72.53 ± 0.65	79.02±1.49	77.71±0.82	77.23 ±2.48	<u>50.00</u> ±0.00	50.00±0.00	66.79 ± 0.73	
ionosphere	96.81±2.22	96.13 ± 3.45			98.14 ± 0.79	97.78±1.23	94.67±1.52	94.49±2.41	95.23±1.37	85.77±2.62	<u>44.90</u> ±23.57	83.01 ± 5.81	
landsat	65.71±2.05	60.63 ± 1.79		67.85±0.68	61.82 ± 1.06	64.39 ± 0.59	51.80±0.94	50.31 ± 2.61	$\frac{48.67}{50}$ ±2.62	50.22 ± 0.45	50.00±0.00	50.20 ± 0.98	
letter	48.14 ± 3.53	42.74 ± 3.41		41.	47.20±2.50	43.82±1.97	91.1 <u>-26.05</u>	37.72±1.31	37.40 ± 0.89	50.00±0.00	50.00±0.00	42.38 ± 0.25	
lymphography	100.00±0.00	100.00 ± 0.00			100.00 ± 0.00	100.00±0.00	98.97±0.31	99.40±0.22	98.78±0.66	93.82 ± 8.49	<u>50.00</u> ±0.00	88.19±1.78	
magic.gamma	$\frac{69.73}{200} \pm 3.02$	76.94 ± 3.25			78.36±1.34	76.09 ± 1.17	86.42±0.59	87.42 ±0.35		64.88 ± 18.23	50.00 ± 0.00	75.19 ± 3.50	
ammography	79.90 ± 5.19	85.08±3.05				80.47 ± 0.62	83.00±3.62	86.02±1.23		85.40 ± 1.03	<u>50.00</u> ±0.00	77.85 ± 0.91	
mnist	200 00 000	18.6±00.01		8/.05±1.12		81.3/±0.93	0/.0±12.02		21.2±85.68		20.00±0.00	/2.55±0.64	
musk	01.02±1.00	100.00±0.00	00.00±0.00		02 00 1 1 00	16.0±81.19	00.0±00.001				00.0±00.00	80.00±0.00	
opuiguis	00.1 ± 77.16	00-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			00.1±00.09	94.07770	00.47 ±1.29	0.0110.04	90 07 TT / C / /	00.00±0.00	00.0100.00	1/1±0//0	
pagentoess	87.01.10.79	01 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1			05 10 10 80	01 60 ± 7 36	0.0 JAL0 17	01 10 10 10 02	07 07 07 08 90	CT.0T0002	000000000000000000000000000000000000000	79 51 ±0 15	
pumgua	74 66+3 27	73 04+1 77			75 09+2 65	76.12+1.04	70 12+1 80	67 22+3 15	66.78+7.78	71 26+2 38	60.30+5.15	68 95+0 96	
satellite	74.62+9.67		85 43+0.52		85.35+0.48	83 57 + 2 48		79.01+0.76	78.54+0.62	56.11+12.22	50.00+0.00	68.77+2.26	
satimage-2	94.41 + 2.46				98.15+0.57	96.99+2.56	99.61 +0.13	99.17+0.15	98.38 ± 0.56	69.34 + 23.69	50.00+0.00	83.30+4.71	
shuttle	99.43 ± 0.50			00.0 ± 00.09	99.97 ± 0.01	99.85 ± 0.11		99.74 ± 0.01	99.70 ± 0.01	99.28 ± 0.22	50.00 ± 0.00	89.70 ± 0.05	
skin	53.71 ± 32.40				70.72±13.69	73.81 ± 10.45	_	92.12 ±0.27	91.95 ± 0.22	91.63 ± 0.28	50.00 ± 0.00	83.48 ± 0.19	
smtp	81.23 ± 10.57				92.63 ±4.06	88.37±5.41	_	95.61 ± 1.24	95.84 ±1.23	95.84±1.22	50.00 ± 0.00	86.47±0.96	
spambase	79.20 ± 2.89				78.42±0.49	80.71 ± 0.86	82.98±0.37	83.29±0.49	83.74 ± 0.38	50.00 ± 0.00	50.00 ± 0.00	70.00±0.04	
speech	50.06 ± 3.03				46.64 ± 1.97	50.53±1.10	38.02±1.49	38.55±1.07	38.72 ± 1.79	50.00 ± 0.00	50.00 ± 0.00	43.06 ± 0.55	
stamps	77.62±9.15	84.33 ± 6.20		96.70 ± 0.85	94.64 ± 3.19	90.11 ± 2.02	93.01 ±1.38	91.27±2.53	86.48 ± 2.57	90.17 ± 4.76	<u>50.10</u> ±26.50	82.21±5.22	
vroid	94.79 ± 1.60	95.24±1.04			93.73 ± 0.80	95.35±0.60	98.75±0.07	98.92 ± 0.02	98.92 ± 0.04	98.94 ±0.05	50.00 ± 0.00	89.11 ± 0.02	
vertebral	53.80±4.97	58.76±7.63	75.60 ± 6.18	82.96±2.86	81.92 ± 1.33	70.61±1.11	67.07±2.73	65.09 ± 3.50	62.93 ± 4.76	56.35±4.78	48.40 ± 5.99	59.97 ± 2.61	
vowels	73.59 ± 6.94	79.11 ± 2.66		84.81 ± 3.61	83.99 ± 1.93	81.22±1.57	87.25±1.51	86.66±0.72	87.49 ± 0.93	50.00 ± 0.00	50.00 ± 0.00	72.28 ± 0.42	
waveform	70.94 ± 1.78	73.85 ± 6.07		61.96 ± 1.35	64.69 ± 1.66	68.33 ±2.15	65.16 ± 1.34	63.97±2.75	66.24 ± 1.45	50.00 ± 0.00	50.00 ± 0.00	59.07 ± 0.68	
wbc	98.13 ± 1.33	99.08 ± 0.62		99.90 ± 0.16	99.69 ± 0.22	99.34 ± 0.42	86.07±4.41	85.96 ± 4.40	86.45 ± 7.40	97.03 ± 1.02	50.00 ± 0.00	81.10 ± 1.77	
wdbc	96.66 ± 2.87	99.05 ± 0.72	99.51 ± 0.25	99.67 ± 0.15	99.29 ± 0.25	98.84 ± 0.43	98.96 ± 0.46	98.76 ± 0.26	99.01 ± 0.41	50.22 ± 16.16	45.17 ± 9.66	78.42±3.73	
H	52.75 ± 14.46	61.09 ± 5.94		84.63±1.21	79.81 ± 0.93	72.42±2.57	84.17±0.27	87.06 ± 0.69	81.09 ± 1.72	84.90 ± 1.24	50.00 ± 0.00	77.44 ± 0.57	
wine	99.64 ± 0.73	99.73±0.29		99.81 ± 0.39	99.84 ± 0.26	99.79±0.33	99.91±0.11	99.70 ± 0.33	99.81 ± 0.29	66.04 ± 29.91	49.98 ± 0.04	83.09 ± 5.95	
wpbc	91.76±2.53	<u>76.46</u> ±9.54			92.46±1.77	90.32 ± 2.50	68.39±4.15	70.67±1 .94	68.60 ± 3.44	51.85±2.56	49.96 ± 5.03	61.89±2.06	
yeast	45.12 ± 3.69	47.02 ± 1.77			46.32 ± 0.91	46.62 ± 1.16	46.82 ± 1.26	48.44 ± 1.44	49.01 ± 2.16	<u>44.44</u> ±2.06	50.00 ± 0.00	47.74±0.50	
yelp	53.40±0.49	54.26 ±0.22			52.73 ± 0.21	53.71 ± 0.22	62.00 ±1.65	59.36 ± 3.66	60.99 ± 2.26	50.00 ± 0.00	50.00 ± 0.00	56.47±0.84	
MNIST-C	80.78 ± 0.30	83.24 ± 0.51	85.02±0.14		83.37 ± 0.12	83.46 ± 0.11	85.01±0.43	86.12±0.43	85.25±0.30	<u>50.00</u> ±0.00	50.00±0.00	71.28 ± 0.16	
shionMNIST	87.80±0.21	90.44 ± 0.09			88.57 ± 0.10	89.74 ± 0.07	90.13±0.19	90.30±0.13	90.27 ± 0.15	50.00±0.00	50.00 ± 0.00	74.14 ± 0.06	
CIFAR 10	15.0±55.95	64.12±0.37		65.89±0.27	29.25±0.13	62.90±0.15	68.78±0.24	68.59±0.36	68.8 7±0.31	20.00±0.00	50.00±0.00	61.25 ± 0.12	
SVHN MATEL AD	17.07+0.20	11.0±02.10		00.0±45.10	20.0±10.00	CU.U±12.00	00.0±20.00	00.0±20.00		+			
V lec-AD	001+006				00 00 10 44		01 01 01 01	00 21 10 20		1111202	20.01200.00	CN:0100.10	
0.000	27.05 1.0 57	0000000000	24.20±0.33	94.27±0.32	89.82±0.44	93.08±0.33	86.78±0.49	89.56±0.58	89.38±0.93	50.75±1.11	50.13±0.45	73.32±0.42	

Table 9.2: Average Al For ICL, the learning respectively to mark t

ine;

ŝ	500
1	567
1	568
1	569
1	570
1	571
1	572
1	573
1	574
1	575
1	576
1	577
1	578
1	579
1	580
1	581
1	582
1	583
1	584
1	585
1	586
1	587
1	588
1	589
1	590
1	591
1	592
1	593
1	594
1	595
1	596
1	597
1	598
1	599
	600
	601
	602
	603
	604
	605
	606
	607
	608
	609
	610
	611
	612
	613
	614
	615
	616
	617
	618
1	619

Table 10.1: Average AUPR \pm standard dev. over five seeds for the semi-supervised setting of DTE-NP, *k*NN baselines with varying hyperparameter (HP) values; $k \in \{5, 10, 20, 40, 50\}$. Also reported is the ^{avg} model. We use **bold** and <u>underline</u> respectively to mark the **best** and the <u>worst</u> performance of each model to showcase the variability of performance across different HP settings.

dataset	DTE-NP-5	DTE-NP-10	DTE-NP-20	DTE-NP-40	DTE-NP-50	DTE-NP-avr	KNN-5	KNN-10	KNN-20	KNN-40	KNN-50	KNN-avr
aloi	5.95 ± 0.00		6.02 ± 0.00	6.06 ± 0.00	6.07 ±0.00	6.02±0.00	<u>6.02</u> ±0.00	6.07±0.00	6.09 ± 0.00	6.13 ± 0.00	6.15 ±0.00	00.0±0.00
amazon	11.68±0.00	11.68±0.00	11.68±0.00	00.0 ± 19.11	11.62±0.00	00.0±65.11	11.69±0.00	00.0±0/.11	00.0±65.11	00.0±00.11	00.0±05.11	00.0±20.01
backdoor	00-0-1-0-00 55 00+0 00		38 31+1 00	31 44+0.47	20 58+0 37	40.48 ± 0.00	46 70+1 22	37 36+1 35	20.58±0.58	00.2/±0.00	22 34+0.53	32 06+0 7
breastw	98.51 ±0.56	98.19 ± 0.58	97.56±0.51	97.13 ± 0.62	$\frac{97.05\pm0.45}{97.05}$	97.69±0.40	98.97±0.28	99.01±0.31	99.08 ± 0.23	99.15 ± 0.17	99.16±0.16	99.08±0.2
paign	48.48 ± 0.00		49.77 ± 0.00	49.77 ± 0.00	49.51 ± 0.00	49.31 ± 0.00	49.04 ± 0.00	49.89 ± 0.00	50.45 ± 0.00	49.47 ± 0.00	49.33 ± 0.00	49.64±0.0
cardio	76.90 ± 0.00		78.30 ± 0.00	79.19 ± 0.00	79.53 ± 0.00	78.33±0.00	77.22 ± 0.00	78.33 ± 0.00	79.14 ± 0.00	80.67 ± 0.00	81.15 ± 0.00	79.30±0.00
cardiotocography	56.55 ± 0.00		58.19 ± 0.00	59.42 ± 0.00	59.95 ±0.00	58.26 ± 0.00	57.43 ± 0.00	58.37 ± 0.00	59.44 ± 0.00	61.41 ± 0.00	62.19 ± 0.00	59.77±0.0
celeba	$\frac{10.56\pm0.44}{0.11\pm0.00}$		12.74 ± 0.52	13.92 ± 0.58	14.30 ± 0.59	12.63±0.51	$\frac{11.99}{21.90}$ ± 0.57	13.26 ± 0.61	14.50 ± 0.58	15.70 ± 0.65	16.10 ±0.68	14.31 ± 0.60
census	21.14±0.39		21.10±0.45	14:07/107	74.0±75.07	20.9/±0.45	21.30±0.12	46.0±22.12	55.0±65.02	20.00±0.42	21 60±1 25	70.0±20.02
cover	03 32 ±0 %0		01.6±00.10	92 07 1 70	47.11 47.11 47.13 47.13 47.13 47.13 47.13 47.13 47.13 47.13 47.11 47	06776716	00 44±0.06	40.0/±2.04		10.1 ± 7/.00	05.1 ± 00.17	70 02 1 1
fault	62 03+0 00	61 58+0.00	61 29+0.00	67.98 ± 0.00	62.31 ± 0.00	61.84+0.00	61 98+0.00	00.0±01.15	00 0+26 19	63.67±0.00	64.06+0.00	67 56+0 00
rand	40.60 ± 6.67		43.03 + 4.92	39.91+4.75	38.80+4.94	41.22+5.02	42.35+5.61	44.96+3 90		37.33+4.15	36 42+4 12	40.45+4.07
	60.15 ±6.89	47.75±5.62	37.27±4.92	31.23 ± 3.12	30.48 ± 2.85	41.38±4.46	44.05 ±6.38	32.96 ± 3.74		26.62 ± 2.65	26.04 ± 3.61	31.91±3.7
hepatitis	99.47 ±0.73	-	91.71±2.26	81.65 ± 3.68	78.95 ± 3.45	89.95±1.80	91.10 ±4.41		64.12 ± 5.59	64.29 ± 5.08	$\overline{64.33}\pm6.16$	70.62±4.48
	98.52±0.37		88.66 ± 1.01	84.43±2.65	80.40 ± 4.55	89.48 ± 1.90	100.00 ±0.00	-	91.24 ± 1.42	91.44 ± 1.25	91.28 ± 1.36	94.39±1.31
p.	9.11 ±0.00		9.06 ± 0.00	9.07 ± 0.00	9.06 ± 0.00	9.08 ± 0.00	8.92 ± 0.00		8.99 ± 0.00	8.98 ± 0.00	8.99 ± 0.00	8.96 ± 0.00
internetads	52.20 ±0.00		48.19 ± 0.00	47.56 ± 0.00	47.45 ± 0.00	49.03 ± 0.00	49.22 ±0.00		46.93 ± 0.00	46.95 ± 0.00	46.94 ± 0.00	47.47±0.00
sphere	98.72 ±0.48	98.46±0.54	98.27 ± 0.42	97.44 ± 0.50	96.93 ± 0.61	97.96±0.46	97.86±0.60	98.11 ±0.52	97.04 ± 0.60	94.12±1.45	92.90 ± 1.65	96.01±0.78
lsat	56.14 ± 0.00		50.75 ± 0.00	46.43 ± 0.00	45.17 ± 0.00		54.85 ± 0.00	50.62 ± 0.00		41.32 ± 0.00	40.50 ± 0.00	_
letter	8.86 ± 0.00		8.67 ± 0.00	8.54 ± 0.00	8.50 ± 0.00	8.67 ± 0.00	8.70 ± 0.00	8.58 ± 0.00	8.41 ± 0.00	8.27 ± 0.00	8.22 ± 0.00	
phography	97.27±5.45	96.07 ± 6.79	96.07 ± 6.79	$\frac{95.68}{51.60}$ ± 6.60	95.68±6.60		98.61±1.02	$\frac{98.43}{55.52}$		98.70 ±0.83	98.70 ± 0.83	98.57 ± 0.65
magic.gamma	86.30±0.00		85.28 ± 0.00				_				$\frac{83.25 \pm 0.00}{22 \times 10^{-10}}$	
nmography	42.14 ±0.00 74.42 ±0.00	41.51 ± 0.00	71 84±0.00				_			58.9/±0.00	<u>58.10</u> ±0.00	
must	100.00+0.00		100.00+0.00	100.00 ± 0.00	100 00+0 00	100.00+0.00	100.00+0.00	100 00+0 00	100.0 ± 0.00		100.00 ± 0.00	100.00+0.00
optdigits	34.44 ± 0.00	30.53 ± 0.00					_				16.62 ± 0.00	
eblocks	62.78 ±0.00			61.02 ± 0.00	60.30 ± 0.00	61.76 ± 0.00	67.60±0.00	67.74 ± 0.00		66.41 ± 0.00	66.13 ± 0.00	67.15±0.00
ligits	97.68 ±0.00	97.31 ± 0.00	96.28 ± 0.00	90.01 ± 0.00	86.69 ± 0.00		96.99 ±0.00	95.65 ± 0.00	81.40 ± 0.00	70.28 ± 0.00	$\overline{67.39}\pm0.00$	82.34±0.00
-	80.27±1.65		75.87 ± 2.40	74.73 ± 2.71	$\frac{74.49}{26.55}$ ± 2.71		75.66±2.91	73.62±2.59		73.71 ± 2.79	73.63 ± 2.86	74.01±2.7
lite .	85.98±0.00		85.17 ± 0.00	84.15 ± 0.00	83.72±0.00		86.01±0.00	85.31 ± 0.00			81.56±0.00	83.82±0.0
nage-2	<u>96.10</u> ±0.00	96.64±0.00	97.02 ± 0.00	97.39 ± 0.00	97.42±0.00		<u>96.69</u> ±0.00	97.21 ± 0.00	97.39 ± 0.00	97.42±0.00	97.42 ± 0.00	97.22±0.0
IC	00.01±01.00		00.12±0.00	90./0±01/00	96.//±0.00		91.00±0.00	00.0±45.19			00'0 ± 07 10 46	1.0±12.00
skin	56.70+7.16		90.61±0.51 54.75±7.81	94.32±0.43 54 76±7 81	1000000000000000000000000000000000000	53 04+7 83	50 2645 73	90.50±0.50			$\frac{80.43 \pm 0.40}{50.41 \pm 5.72}$	20.27+5.7
nhase	83.93+0.00		83 03+0.00	82 73+0.00	82 63+0.00		83.32+0.00	82 70+0.00			82 11+0.00	82 54+0.0
ch	3.02+0.00		2 70+0 00	2 76+0.00	2 70+0.00		2.80+0.00	2 73+0 00			2 74+0.00	275+0.00
TD SU	82.50+3.71	77 11+4 30	60 00+2 20	65 85+6 16	64 64+6 16		73.26+7.70	65 58+7 71		62 09+7 20	61 57+7 18	65 12+7 10
- pic	77 22+0.00	77 53+0.00	000+96 22	76.43+0.00	74 75+0.00		80 94+0.00	81 09+0 00		81 90+0 00	81 93+0.00	81 47+0.00
vertehral	43.77+5.50	31.72+3.49	24.99+2.97	21.10+2.37	20.29 + 2.40	28.38+3.31	25.07+3.19	21.55+2.53	19.65+2.31	18.09+1.91	17.76+2.02	
vowels	31.68 ± 0.00	30.30 ± 0.00	29.54 ± 0.00	27.85 ± 0.00	27.32 ± 0.00	29.34 ± 0.00	30.21 ± 0.00	28.75 ± 0.00		24.27 ± 0.00	22.44 ± 0.00	_
vaveform	26.96 ± 0.00		25.68 ± 0.00	24.67 ± 0.00	24.49 ± 0.00	25.70 ± 0.00	27.00 ± 0.00	25.82 ± 0.00		24.13 ± 0.00	23.87 ± 0.00	
	96.59 ±2.18		90.32 ± 6.04	90.14 ± 5.60	88.96 ± 6.03	91.84±4.57	89.48±5.58	89.07 ± 3.41		91.70 ± 3.59	91.82 ±3.52	_
wdbc	92.08±6.52	~	86.03 ± 5.81	83.79±5.59	83.41 ± 5.19	86.87±5.84	85.35±5.46	83.72±5.56	82.05 ± 5.59	82.37±4.91	82.33±4.34	
wilt	13.43 ± 0.00		11.30 ± 0.00	10.40 ± 0.00	10.12 ± 0.00	11.52 ± 0.00	12.25 ± 0.00	11.04 ± 0.00	10.11 ± 0.00	9.33 ± 0.00	9.09 ± 0.00	10.36 ± 0.00
wine	99.42 ±0.77		96.09 ± 1.31	93.12 ± 1.51	91.59 ± 2.00	95.71±0.92	95.18 ±1.66	88.85 ± 3.38	88.36±2.97	85.43 ± 3.02	85.79±1.56	88.72±2.32
vpbc	75.30±1.88	61.19 ± 1.49	51.53 ± 2.17	46.62 ± 2.23	$\frac{45.63}{10}$ ±2.17	56.05±1.44	47.07±2.57	43.16 ± 2.41	42.43 ± 2.53	42.28 ± 2.60	$\frac{42.11}{10}\pm 2.47$	43.41±2.44
_	48.37 ± 0.00		47.52 ± 0.00	47.26 ± 0.00	$\frac{47.20\pm0.00}{100}$	47.65±0.00	48.26 ±0.00	47.48 ± 0.00	47.24 ± 0.00	46.74 ± 0.00	$\frac{46.48\pm0.00}{100}$	47.24±0.0
0 80	10.05±0.00		15.40±0.00	11 20 10:01	14.89±0.00	15.43±0.00	10.03±0.00	15.63±0.00	00.0±/1.61	$14.//\pm0.00$		00.0±52.51
MNIST-C	47.21±0.00		45.35 ± 0.00	44.50±0.00	<u>44.24</u> ±0.00	45.51±0.00	46.20±0.00	45.18 ± 0.00	44.32 ± 0.00	43.50 ± 0.00		44.49±0.00
I SIVIMUOII	00.0475.65	00.0±0.00	00.0±21.01	00.0 ± 0.00	00.0 ± 00.10	00.04±0.00	00.0±c1.6c	00.04±0.00	00.0±21.80	00.04±0.00	00.0 ± 00.16	00.0±02.80
SVHN	15.44+0.00		15.18 ± 0.00	15.08 ± 0.00	15.05 ± 0.00	15 21+0.00	15.34+0.00	15 22+0.00	15 11+0.00	15.07 ± 0.00		1513+0.00
VIVTec-AD	82.66+1.11		76.24 ± 0.90	74.41 ± 0.89	73.96 ± 0.86	77.26+0.94	75.38+0.86	73 88+0.83	73.13 ± 0.87	72.56+0.79		73 48+0.82
20news	15.45+1.12		13 25+0.77	27011201				0010000000	1010 101 01101			
			10.404.01	12.71 ± 0.65	12.59 ± 0.66	13.66 ± 0.85	13.76±0.93	12.83 ± 0.58	12.50 ± 0.63	12.15 ± 0.62	11.95 ± 0.62	12.64±0.66

01 ICL-0.001 ICL-0.0001 ICL-1e-45 ICL-avv DTE-C-5 DTE-C-10 DTE-C-30 DTE-C-300		
DTF-C-avr	2.7.3.1.0.01 2.7.3.2.01 2.7.3.2.01 2.8.8.4.0.20 5.8.8.4.0.20 5.8.8.4.0.20 5.8.8.4.0.20 5.8.8.4.0.20 5.8.8.4.0.20 5.8.8.4.0.20 5.8.8.4.0.20 5.8.8.4.0.20 5.8.9.4.0.21 1.5.29.4.0.31 5.30.4.0.31 5.30.4.0.31 5.30.4.0.31 5.30.4.0.31 5.30.4.0.31 5.30.4.0.31 5.30.4.0.31 5.30.4.0.43 5.30.4.0.44 5.30.4.	31.85 ± 0.20 37.25 ± 0.17 15.68 ± 0.07
DTE-C-50	5.574000 5.574000 5.574000 433400 433400 433400 5.54000 11.581400 433400 5.124000 11.5554000 11.5554000 11.5554000 11.5554000 11.5554000 11.5554000 51.724000 51.724000 51.734000 51.734000 51.534000 55.541103 55.541103 55.541103 55.541103 55.541000 </td <td>9.52 ± 0.00 9.52 ± 0.00 9.52 ± 0.00</td>	9.52 ± 0.00 9.52 ± 0.00 9.52 ± 0.00
DTE-C-40		$\frac{9.52\pm0.00}{9.52\pm0.00}$
DTE-C-20	11.1.62-10.03 11.1.62-10.03 11.1.62-10.03 11.1.62-10.03 11.1.62-10.05 11.1.62-10.05 11.2.012-11.0 12.1.2.1.2.1.1.0 12.1.2.1.2.1.1.0 12.2.2.1.2.1.1.0 12.2.2.1.1.0 12.2.2.1.1.0 12.2.2.1.1.0 12.2.2.1.1.0 12.2.2.1.1.0 12.2.2.1.0 12.2.2.1.0 12.2.2.1.0 12.2.2.1.0 12.2.2.1.0 12.2.2.1.0 12.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.1.0 11.2.2.2.0 11.2.2.2.1.0 11.2.2.2.0 11.2.2.2.1.0 11.2.2.2.0 12.2.2.2.0 12.2.2.2.0 12.2.2.2.0 12.2.2.2.0 12.2.2.2.0 12.2.2.2.0 12.2.2.2.0 12.2.2.2.0 12.2.2.2.0 12.2.2.2.2.2.2.0 12.2.2.2.2.2.2.2.2.2.2.0 12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	56.31 ±0.95 19.79 ±0.18
DTE-C-10	2.85-2000 2.95-2000 2.92-11.11 2.92-2003 2.92-11.12 2.92-2003 2.92-12.00 2.92	47.39 ±0.52 56.00±0.23 19.61±0.15
I DTE-C-5	 7.05-000.00 7.05-000.00 7.05-000.00 7.05-000.00 7.05-00.01 7.05-01.01 7.05-01.02 7.05-01.02<td>46.68±0.62 54.92±0.36 19.95±0.09</td>	46.68±0.62 54.92±0.36 19.95±0.09
I ICL avr	2.343-2012 10.0114005 5.2344577 5.339045012 5.539045012 5.539045012 5.53904502 5.53904502 5.53904502 5.53904502 5.574047 5.574047 5.574047 5.574047 5.5584606 10.174003 5.5584606 10.174003 5.5584606 10.174003 5.5584104 5.5584104 5.5584104 5.5584104 5.5584104 5.5584104 5.5584104 5.5584104 5.5584105 5.5584125 5.55841205 5.5584205 5.5	47.83±0.12 61.72±0.18 16.71±0.19
ICI -le-05	9.9446-001 9.9546-002 55.944-075 55.944-075 55.944-075 55.944-075 55.944-075 55.944-075 59.534+076 12.974-055 12.974-055 72.244-055 12.974-055 99.954-059 99.554-059 77.544+120 99.554-054 77.544+120 99.554-054 77.544+120 77.545+120 77.545+120 77.545+120 77.545+120 77.545+120 77.545+120 77.545+120 77.555+120 77.555+120 77.555+120 77.555+120 77.555+120 77.555+120 77.555+120 77.555+120 77.555+120 77.555+1200+12000+12000+12000+12000+12000+12000+12000+12000+12000+12000+12000+12000+12000+12000+12000+12000+12000+12000+1200+1200+1200+1200+1200+1200+1200+1200+1200+1200+1200+1200+1200+1200+1200+120	$\frac{55.84\pm0.37}{13.77\pm0.14}$
ICI -0.0001	2.2.9.2.04 10.0146.05 853.85.45.44 853.85.44 982.504.042 492.2.2.0014.005 61.75.2.2.55 492.2.2.0014.005 61.75.2.2.55 492.2.4.15 91.5.2.0.114.003 61.75.2.4.15 91.15.2.0.23 92.77.2.0.25 92.71.2.0.25 92.71.2.0.25 92.71.2.0.25 92.71.2.0.25 92.71.2.0.25 92.71.2.0.25 92.71.2.0.25 99.91.4.0.15 99.91.4.0.12 99.4.0.00 93.4.0.00 94.4.0.	50.34 ±0.31 65.22 ±0.32 18.89±0.21
ICI0.001	2.20-20-2003 2.20-20-2003 2.20-20-20 2.20-20-27 2.20-26-27 2.	50.18±0.26 64.96±0.32 19.10 ±0.21
ICL-0.01	2015.2017 2017.2017	48.19±0.57 64.11±0.18 17.49±0.41
ICL-0.1	2005-0010 2005-	44.47±0.54 58.47±0.45 14.30±0.27
dataset	anaizon anaizon backdoor cearapaign caratioicoography ceebas cover fauld fauld fauld glass hepatids internetads in	MNIST-C FashionMNIST CIFAR10

Table 10.2: Average A For ICL, the learning respectively to mark th

ine;

ł	0	1	4	
1	6	7	5	
	6			
	6			
	6			
	6			
	6			
1	6	8	1	
1	6	8	2	
	6			
	6			
	6			
	6			
	6			
	6			
	6			
	6			
	6			
	6			
	6			
	6			
	6			
	6			
	6			
	6			
	6			
1			0	
1		0		
1		0		
1		0		
1		0		
1		0		
1			6	
1	7	0	7	
1	7	0	8	
1			9	
1			0	
1		1		
1		1		
1		1		
1		1		
1		1		
1		1		
1			7	
1			8	
1			9	
1			0	
1	7	2	1	
1	7	2	2	
1	7	2	3	
1	7	2	4	
1	7	2	5	
1	7	2	6	
1	7	2	7	

Table 11.1: Average F1 score \pm standard dev. over five seeds for the semi-supervised setting of DTE-NP, *k*NN baselines with varying hyperparameter (HP) values; $k \in \{5, 10, 20, 40, 50\}$. Also reported is the ^{avg} model. We use **bold** and <u>underline</u> respectively to mark the **best** and the <u>worst</u> performance of each model to showcase the variability of performance across different HP settings.

0000-000 0000-000	dataset	DIE-NP-2	DTE-NP-10	DTE-NP-20	DTE-NP-40	DTE-NP-50	DTE-NP-avr	KNN-5	KNN-10	KNN-20	KNN-40	KNN-50	KNN-avr
$ \begin{array}{c} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$	i	5.90 ± 0.00		5.70±0.00	5.90±0.00	5.97±0.00	5.86 ± 0.00	5.90±0.00	5.64 ± 0.00	5.97 ± 0.00	6.17 ± 0.00	6.37±0.00	6.01±0.00
	nthyroid	62 55+0.00		$\frac{10.20}{60.67+0.00}$	10.20±0.00	58 80+0.00	00.000000	61 99+0.00	00-0 <u>+0</u> +0.00	10.00±0.00 58.43+0.00	58 24±0.00	56 74+0.00	50 18+0.00
	ckdoor	64.15±1.04		40.62 ± 1.46	30.25 ± 1.34	26.96±1.20	42.86±1.32	52.53±1.63	40.37 ± 2.04	28.71 ± 1.50	20.21 ± 0.78	17.52 ± 0.83	31.87±1.22
BORHLID ORCALLOND STARLOND	eastw	96.72 ±0.64		96.17 ± 0.47	95.99 ± 0.39	95.99 ± 0.39	96.22±0.43	96.00 ± 0.44	96.05±0.33	95.87 ± 0.28	95.99 ± 0.39	95.93 ± 0.32	95.97±0.31
$ \begin{array}{c} 5 5 5 5 5 5 5 5$	mpaign	49.94 ± 0.00		51.14 ± 0.00	51.38 ± 0.00	51.57 ±0.00	50.93±0.00	50.37 ± 0.00	50.86 ± 0.00	51.27 ± 0.00	51.70 ±0.00	51.29 ± 0.00	51.10 ± 0.00
$ \begin{array}{c} 1.2222 \pm 0.00 \\ 1.2222$	Irdio	63.64 ± 0.00		61.93 ± 0.00	63.64 ± 0.00	64.20±0.00	62.95±0.00	$\frac{61.93\pm0.00}{16.25\pm0.00}$	61.93 ± 0.00	64.20±0.00	67.61 ± 0.00	69.32±0.00	65.00±0.00
$ \begin{array}{c} 122223233333 \\ 12222323333 \\ 122323333 \\ 1223233433 \\ 123323433 \\ 12332433 \\ 12332433 \\ 12332433 \\ 12332433 \\ 12332433 \\ 1233244 \\ 123324 \\ 123324 \\ 123324 \\ 123324 \\ 123324 \\ 123324 \\ 123324 \\ 123324 \\ 123324 \\ 123324 \\ 123324 \\ 123324 \\ 123324 \\ 12342 \\ 12344 \\ 12342 \\ 12344 \\ 12$	trutotocography Jaka	15 02 +0.00		10.0±00.14	00707001	10.20+0.501	000000014	17 00 ± 0 50	10.10±0.00	10.010001	00.0±06.00	00.0±04.10	10.11±0.61
Contactor State 10	cicua mene	0.01 0.02 0.02 0.02		10.17440.25	21 38±0.48	00.000000000000000000000000000000000000	10707/01/1	22 23 ±0.10	21 48±0.40	19:0±02:61	21 33±0.65	20.46±0.00	19.0±11.61
$ \begin{array}{c} 57 772 (5) 5 \ 572 $	DVer	69.15+2.12		63.15+2.07	55.99+2.08	53.06+2.23	61.65+2.14	65.04+1.92	60.56+2.04	52.76+1.83	42.69+1.94	39.92+1.99	52.19+1.92
Strend	nors	97.27+0.36		94 49+0 55	91 70+0.90	90.57+0.86	94.05+0.60	94.98+0.62	92 36+0 59	88.71+0.99	80.36+1.90	76.62+1.50	86.60+0.98
\mathbf{T}	ult	56.02 ± 0.00		55.57±0.00	56.91 ± 0.00	57.36 ± 0.00	56.32±0.00	55.57±0.00	55.87 ± 0.00	57.06 ± 0.00	57.50 ± 0.00	58.25 ± 0.00	56.85 ± 0.00
7.8.1 7.8.1 8.7.3 7.9.4.1 9.9.6.1 7.9.6.1 7.9.6.1 9.9	pnu	48.18 ± 4.56	49.60 ± 3.28	49.00 ± 3.95	46.66 ± 3.52	45.46 ± 3.60	47.78±3.53	47.78 ± 3.09	49.39 ±5.24	46.64 ± 4.18	42.58 ± 3.16	41.64 ± 3.36	45.61±3.48
SSM6-103 SSM6-103 SSM6-103 SSM6-103 SSM6-103 SSM6-103 SSM6-100	ass	47.81 ±5.78	35.14±2.75	27.98±4.21	18.37 ± 2.40	17.81 ± 2.98	29.42±2.61	29.87 ±9.62	22.55 ± 6.87	18.58 ± 4.19	17.23 ± 3.73	17.23 ± 3.73	21.09 ± 5.16
SX39-100 SX374-26	epatitis	98.94 ±1.41	94.16±2.13	81.68 ± 4.18	75.95±4.78	71.99 ± 4.14	84.54±2.23	81.98 ±4.50	66.04±4.53	62.31 ± 6.09	60.39 ± 6.21	60.04 ± 7.30	66.15±4.71
S2D=000 SAD=000 <	tp	98.50 ±0.38		88.26±1.38	82.85±3.80	<u>78.96±6.40</u>	88.73±2.54	100.00 ±0.00	98.57±2.86	$\frac{92.67 \pm 0.91}{2}$	92.67 ± 0.91	92.67 ± 0.91	95.32±0.75
55.56.4000 15.56.4000 15.57.4000 65.77.4000 51.79.4000 51.79.4000 51.79.4000 51.74.4000 51.74.4000 51.74.4000 51.74.4000 51.74.4000 57.57.4100 57.57.4100 57.57.4100 57.57.4100 57.57.4100 57.57.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.75.00 57.75.4100 57.75.75.00 57.75.75.00 57.75.4100 57.75.75.00 57.75.4100 57.75.4100 57.75.4100 57.75.4100 57.75.75.00 57	db	5.20 ± 0.00		5.40 ± 0.00	5.20 ± 0.00	5.20 ± 0.00	5.28±0.00	5.40 ±0.00	5.40 ± 0.00	5.40 ± 0.00	5.00 ± 0.00	5.00 ± 0.00	5.24 ± 0.00
92239:10 92234:17 92234:17 92234:10 9234:17 9234:17 9234:17 9234:17 9234:17 9234:17 9234:17 9234:17 9234:17 9234:17 9234:17 9234:17 9234:17 9234:17 9234:17 9234:14 9234:16 9234:10 9234:16 9234:10 934:14 9234:10 934:10 934:1	ternetads	55.16 ±0.00		48.37 ± 0.00	46.47 ± 0.00	46.20 ± 0.00	49.57±0.00	51.90 ±0.00	46.20 ± 0.00	45.11 ± 0.00	45.11 ± 0.00	45.11 ± 0.00	46.68 ± 0.00
$ \begin{array}{c} 5.2.2.2.100 \\ 7.2.2.1.000 $	nosphere	92.33±1.17		91.63 ± 1.09	90.41 ± 1.35	89.19±1.72	91.12±1.24	90.23±1.86	91.81±1.87	89.45 ± 1.91	85.06±3.37	82.75±3.12	87.86±1.86
UNMELOD <	ndsat	52.29±0.00	51.24 ± 0.00	49.06 ± 0.00	45.99 ± 0.00	$\frac{45.39}{100}$ ± 0.00	48.79±0.00	51.46 ± 0.00	49.29 ± 0.00	45.76 ± 0.00	42.69 ± 0.00	$\frac{41.34}{1000}$	46.11 ± 0.00
7.7.7=71:00 7.7.7=7:00 7.7.7	tter	1.00±0.00	1.00±0.00	1.00±0.00	1.00 ± 0.00	1.00±0.00	1.00±0.00	0.0±0000	1.00±0.00		1.00±0.00	1.00±0.00	1.00±0.00
1132 ± 000 1132 ± 000 123 ± 000	mpnography	72 70 10 000	75.0010.000	25.01±0.55	74 84 1 0 00	91.00±7.34	75 61 0000	06.01/11/21	C0.5± <u>60.06</u>		72 40 - 0 00	72 00 0 000	91.//±5.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lagic.gamma	/0./9±0.00	/0.20±0.00	00.0±64.0/	/4.84±0.00	<u>14.73±0.00</u>	12 15 +0.00	/0.1/±0.00	/3.15±0.00		/3.49±0.00	<u>13.46±0.00</u>	/4.48±0.00
$ \begin{array}{c} \textbf{i0000-100} & \textbf{i000-100} & i000-$	aumograpuy nist	72.71+0.00	00.0+0.07	71 57+0.00	1.6	60.86+0.00	71 37+0.00	71 86+0.00	71 29+0.00		69 71+0.00		20.040+00.00
$ \begin{array}{c} 30 30 31 = 10 \ 30 \ 30 32 = 31 = 10 \ 30 \ 30 \ 31 31 = 10 \ 31 $	usk	100.00±0.00		100.00±0.00			100.00±0.00	100.00±0.00			100.00±0.00		100.00±0.00
$ \begin{array}{c} 377 371 \mathbf$	otdigits	30.00 ± 0.00		12.00 ± 0.00			16.00 ± 0.00	21.33 ± 0.00		C	2.67 ± 0.00		8.93 ± 0.00
$ \begin{array}{c} \mathbf{4.73\pm} 0.0 \\ \mathbf{7.72\pm} 0.0 \\ \mathbf{7.73\pm} 0.0 $	igeblocks	59.41 ± 0.00	59.22 ± 0.00	59.61 ± 0.00	58.43 ± 0.00		59.02 ± 0.00	59.02 ± 0.00			56.08 ± 0.00	56.27 ± 0.00	58.16 ± 0.00
$ \begin{array}{c} 7.2.20 \pm 100 & 01.75\pm 100 & 0.73\pm 100 & 1.73\pm 100 & 1.73\pm 100 & 0.29\pm 100 & 0.73\pm 100 & 0.29\pm 100 & 0.2$	endigits	94.23±0.00		91.03 ± 0.00	80.13 ± 0.00	$\frac{78.21}{2100}$ ± 0.00	87.18±0.00	90.38±0.00	90.38 ± 0.00		64.74 ± 0.00	62.82±0.00	76.41 ± 0.00
$ \begin{array}{c} \mathbf{V}_{22} \mathbf{V}_{2} \mathbf$	ma	74.73±2.13		71.48 ± 1.96	$\frac{71.44}{20.26}$ + 2.36	71.93±1.99	72.50±1.97	71.03±2.53	$\frac{70.18 \pm 2.12}{20.70}$		71.67 ± 2.10	72.03±2.02	71.30±2.00
William William <t< td=""><td>tellite</td><td>00.0±02.27</td><td></td><td>/0.68±0.00</td><td>69. /9±0.00</td><td><u>69.20</u>±0.00</td><td>01.07 0.00</td><td>71.81±0.00</td><td>/0./3±0.00</td><td></td><td>67.93±0.00</td><td><u>67.29</u>±0.00</td><td>69.52±0.00</td></t<>	tellite	00.0±02.27		/0.68±0.00	69. /9±0.00	<u>69.20</u> ±0.00	01.07 0.00	71.81±0.00	/0./3±0.00		67.93±0.00	<u>67.29</u> ±0.00	69.52±0.00
97.12-0.00 55.32-1.00 55.32-1.00 55.32-1.00 55.32-1.01 55.22-1.01 55.22-1	timage-2	90.14±0.00		90.14±0.00	92.96±0.00	92.96±0.00	00.077716	90.14±0.00	00.0±05.19		92.96±0.00	92.96±0.00	92.11±0.00
Signation Signation <t< td=""><td>inue</td><td>00.0±cc.04</td><td></td><td>00:0 T 0 T 0 1 2</td><td>00.12±0.00</td><td>0010271.06</td><td>00.0±01.02</td><td>00.0±02.0%</td><td>00.00±0.00</td><td></td><td>96.09±0.00</td><td>00.01±01.00</td><td>96.11±0.00</td></t<>	inue	00.0±cc.04		00:0 T 0 T 0 1 2	00.12±0.00	0010271.06	00.0±01.02	00.0±02.0%	00.00±0.00		96.09±0.00	00.01±01.00	96.11±0.00
$ \begin{array}{c} \textbf{8.33} \textbf{4.10} \\ \textbf{8.33} \textbf{4.10} \\ \textbf{8.33} \textbf{8.12} \textbf{4.10} \\ \textbf{8.12} \textbf{8.12} \textbf{4.10} \\ \textbf{8.12} \textbf{8.10} \\ \textbf{8.12} \textbf{8.12} \textbf{4.10} \\ \textbf{8.12} $		68 05+5 12	68.05+5.12	60.50+3.05	60 50+3 05	63 34+8 31	67 73+4 99	60 50+3 05	60 50+3 05		60 50+3 05	60 50+3 05	60 50+3 05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	amhase	80.88+0.00	80.29+0.00	80.23+0.00	79.81+0.00	79.45+0.00	80.13+0.00	80.52+0.00	79.93+0.00		78.98+0.00	78.80+0.00	79.48+0.00
SE93:156 R016:1-30 R12:7:11 G683:4:50 7:7:12:4:00 7:7	eech	3.28 ± 0.00	3.28 ± 0.00	1.64 ± 0.00	1.64 ± 0.00	3.28 ± 0.00	2.62 ± 0.00	3.28 ± 0.00	3.28 ± 0.00		3.28 ± 0.00	3.28 ± 0.00	3.28 ± 0.00
$ \begin{array}{c} \textbf{7.5.7+0.00} \\ \textbf{7.5.7+0.01} \\ 7.5.$	South	85.93±2.66		74.04±4.45	68.12 ±7.14	66.98 ± 6.79	75.14±4.45	78.57±8.41	68.89 ± 8.23	62.67 ± 6.19	60.52±7.08	61.78 ± 6.58	
400314-03 3773-15:11 3704-15:11 3712-15:11 3100-10:00 3600-10:00 3700-10:00 3700-10:00 3700-10:00 3700-10:00 3700-10:00 3700-10:00 3700-10:00 3700-10:00 3700-10:00 3700-10:	yroid	75.27±0.00		74.19 ± 0.00	74.19 ± 0.00	74.19 ± 0.00	74.62±0.00	75.27 ± 0.00	73.12 ± 0.00	72.04 ± 0.00	73.12 ± 0.00	74.19 ± 0.00	-
$ \begin{array}{c} 2500 \pm 00 & 3500\pm 000 & 3500\pm 000 \pm 000 & 3500\pm 000 & 2500\pm 000 & 3000\pm 000 & 2600\pm 000 & 2700\pm 000 & 2700$	rtebral	49.03 ±4.93		24.06 ± 3.90	15.07 ± 1.64	12.51±2.44	26.68±3.24	23.02±5.17	17.18 ± 2.01	12.19 ± 3.52	9.07 ± 3.30	8.51 ± 2.65	
$ \begin{array}{c} 25.66 \pm 0.0 & 5.0.0 \pm 0.0 & 27.00 \pm $	wels	28.00 ± 0.00	28.00 ± 0.00	28.00 ± 0.00	30.00 ± 0.00	30.00 ± 0.00	28.80±0.00	26.00 ± 0.00	26.00 ± 0.00	30.00 ± 0.00	26.00 ± 0.00	26.00 ± 0.00	
8.5.55±10 8325±10 8325±10 8325±11 8312±11 85.55±13 85.55±13 85.55±13 85.55±13 85.55±13 85.55±13 85.55±13 87.5±56 79.9±502 77.5±65 79.9±502 77.5±65 79.9±502 77.5±66 79.9±502 77.5±66 79.9±502 77.5±66 79.9±502 77.5±66 79.9±502 77.5±66 79.9±502 77.5±66 79.9±502 77.5±66 79.9±562 77.5±66 79.9±562 77.5±66 79.9±562 77.5±66 79.9±562 77.5±66 77.8±000 77.8±000 77.8±000 77.8±000 77.8±000 77.8±000 77.8±1000 77.8±1000 77.8±1000 77.8±1000 77.8±1000 77.9±000 77.9±000 77.9±000 77.9±000 77.9±000 77.9±000 77.9±000 77.9±000 77.9±000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000 77.9±1000	aveform	26.00 ± 0.00	26.00 ± 0.00	27.00 ± 0.00	28.00 ± 0.00	28.00 ± 0.00	27.00±0.00	27.00 ±0.00	27.00 ± 0.00	27.00 ± 0.00	27.00 ± 0.00	27.00 ± 0.00	_
S656±6.11 33:34±0.00 13:34±0.00 15:34±9.01 35:72±5.61 33:34±0.00 15:46±0.00 15:34±0.00 15:46±0.00 15:34±0.00 15:46±0.00 15:34±0.00 15:46±0.00 15:34±0.00 15:46±0.00 15:34±0.00 15:46±0.00 15:34±0.10 15:34±0.	90	89.35±3.08	88.05±3.35	88.05 ± 3.35	89.16 ± 2.38	89.16±2.38	88.75±2.48	83.65±4.53	84.82 ± 3.86	83.72±5.17	89.16 ±2.38	89.16±2.38	86.10±2.43
3.5 40.00 3.3 40.00 0.3 54.00 0.3 54.000 0.7 84.000 1.7 04.000 1.7 04.0	lbc	85.05±6.11	83.36±7.16	81.00 ± 4.08	81.00 ± 4.08	81.00±4.08	82.28±4.91	80.92±4.47	78.72±5.61	79.49±5.02	77.95±6.52	76.84±4.81	78.79±5.12
$ \begin{array}{c} \textbf{7.7.112-08} \textbf{63.7.01-19} \textbf{53.0.01-19} \textbf{53.0.01-10} 53.0$	Ħ	3.50±0.00	2.33 ± 0.00	1.56 ± 0.00	0.78 ± 0.00	0.78±0.00	1.79 ± 0.00	2.33 ± 0.00	1.56 ± 0.00	0.78 ± 0.00	0.78 ± 0.00	0.78 ± 0.00	1.25 ± 0.00
$\begin{array}{c} 7.57 (5.11\pm 2.68 \ 5.0.5\pm 0.00 \ 4.5.3\pm 0.00 \ 4.5.5\pm 0.00 \ 4$		97.73±3.52	93.65±2.20	86.39±3.51	83.56±1.93	80.50 ± 3.68	88.3/±1.61	85.91±3.49	80.47 ±6.23	80.89±5.12	<u>78.83</u> ±4.40	78.83±4.40	80.99±2.84
D-MILTON D-SOFEWON D-SOFEWON <thd-sofewon< th=""> D-SOFEWON <thd-sofewon< th=""> <thd-sofewon< th=""> <thd-s< td=""><td>obc</td><td>75.11±2.68</td><td>65.70±1.39</td><td>53.31±2.33</td><td>45.02±2.91</td><td>43.40±2.66</td><td>50.11±1.23</td><td>50.17±2.76</td><td>42.79±2.99</td><td>40.15±1.26</td><td><u>5/.8/</u>±5.42</td><td>39.00±3.24</td><td>41.99±2.22</td></thd-s<></thd-sofewon<></thd-sofewon<></thd-sofewon<>	obc	75.11±2.68	65.70±1.39	53.31±2.33	45.02±2.91	43.40±2.66	50.11±1.23	50.1 7±2.76	42.79±2.99	40.15±1.26	<u>5/.8/</u> ±5.42	39.00±3.24	41.99±2.22
7.51 1.000 6.53 1.0000 1.000 1.000	dSt In	10 10 10 10 000	10.01000000	17 40-0000	16 40±0.00	16 60±0.00	10.077±0.00	10 00 TO TO TO	17.60±0.00	00.0±+1.1+	16 20±0.00	16 80±0.00	17 36 ±0.00
9775+100 59.75+100 58.76+100 58.76+100 58.76+100 58.76+100 57.72+100 <th< td=""><td>UIST.C</td><td>47 51+0.00</td><td>46 59+0.00</td><td>45 57+0.00</td><td><u>44 74+0.00</u></td><td>44.61+0.00</td><td>45 80+0.00</td><td>46 30+0.00</td><td>45 24+0.00</td><td>44.46+0.00</td><td>$\frac{10.20}{43.87+0.00}$</td><td>43 70+0.00</td><td>44 72+0.00</td></th<>	UIST.C	47 51+0.00	46 59+0.00	45 57+0.00	<u>44 74+0.00</u>	44.61+0.00	45 80+0.00	46 30+0.00	45 24+0.00	44.46+0.00	$\frac{10.20}{43.87+0.00}$	43 70+0.00	44 72+0.00
23.23.2 1000 23.004-000 22.094-000 22.704-000 22.704-000 22.584-000 22.584-000 22.694-000 22.704-0	chionMNIST	50.75±0.00		58 76+0.00	58 16±0.00	57 04+0.00	58 76+0.00	0000+20.04	58 48+0.00	57.87±0.00	57.27±0.00	57 21 ±0.00	57 07±0.00
19.19±0.00 18.99±0.00 18.99±0.00 18.89±0.00 18.89±0.00 18.39±0.00 18.79±1.00 18.79±1	FAR10	23.23+0.00		22.89+0.00	22.70+0.00	22 59+0.00	22.88+0.00	22.85+0.00	22.89+0.00	22.78+0.00	27.47+0.00	22 47+0.00	22.69+0.00
AD 75.68±0.99 71.31±0.96 68.50±0.99 66.57±0.72 66.05±0.61 69.62±0.83 67.06±1.03 65.80±0.80 65.00±0.73 64.20±0.60 18.08±1.41 16.56±1.63 14.56±1.60 12.95±1.47 12.86±1.43 15.00±1.49 15.11±1.90 13.63±1.52 12.70±1.43 11.85±1.43	VHN	19.19 ±0.00		18.90 ± 0.00	18.80 ± 0.00	18.58 ± 0.00	18.89±0.00	18.95 ±0.00	18.79 ± 0.00	18.70 ± 0.00	18.42 ± 0.00	18.38 ± 0.00	18.65 ± 0.00
18.08 ±1.41 16.56±1.63 14.56±1.60 12.95±1.47 <u>12.86</u> ±1.43 15.00±1.49 15.11 ±1.90 13.63±1.52 12.70±1.43 11.85±1.43	IVTec-AD	75.68 ±0.99	71.31 ± 0.96	68.50 ± 0.99	66.57±0.72	66.05 ± 0.61	69.62±0.83	67.06 ±1.03	65.80 ± 0.80	65.00 ± 0.73	64.20 ± 0.60	64.09 ± 0.54	65.23±0.73
	hews	18.08 ±1.41	16.56 ± 1.63	14.56 ± 1.60	12.95±1.47	12.86±1.43	15.00±1.49	15.11 ± 1.90	13.63+1.52	12.70 ± 1.43	11 85+1 43	10 81 ±1 54	12 02 1 1 40

dataset	ICL-0.1	ICL-0.01	ICL-0.001	ICL-0.0001	ICL-1e-05	ICL-avr	DTE-C-5	DTE-C-10	DTE-C-20	DTE-C-40	DTE-C-50	DTE-C-avr	
aloi	4.51±0.69	4.34 ± 0.42	5.28 ±0.47	4.68 ± 0.30	4.16±0.38	4.59±0.07	4.75 ±0.27	4.27±0.19	4.28 ± 0.10	4.51 ± 0.17	00.0±0.00	3.56±0.03	
amazon annthyroid	10.44±0.46 54.87±13.24	9.76±0.34 42.25±3.55	9.92±0.84 53.45±4.13	54.72±5.45	<u>9.52</u> ±0.43 57.53 ±2.97	9.94 ± 0.32 52.56 ±3.29	11.48±0.97 77.23±0.25	11.96 ±1.68 77.94±0.28	11.60±2.07 77.53±0.85	$\frac{0.00\pm0.00}{75.43\pm0.93}$	0.00±0.00 0.00±0.00	61.63 ± 0.20	
backdoor	87.17±0.98	87.32 ± 0.99	87.11±1.09	86.85±0.95	85.37±1.01	86.76±1.00	46.19 ± 8.39	83.03±2.14	84.50±0.60	0.00±0.00	0.00±0.00	42.75±1.54	
breastw campaign	$\frac{95.98\pm0.34}{48.12\pm0.36}$	96.07 ± 0.94 46.81 ± 1.72	96.80 ± 0.40 50.68 ± 0.66	97.44 ± 0.55 51.37 ±0.85	96.11±0.75 53.40+0.51	96.48 ± 0.28 50.07 ± 0.49	$\frac{88.50\pm1.59}{51.98\pm0.70}$	90.10±1.35 52.45+1.07	92.46 ± 1.78 52.33+1.00	95.31 ± 0.70 0.00+0.00	96.11 ±0.44 0.00+0.00	92.50 ± 0.79 31.35 ±0.44	
cardio	49.09 ± 11.28	61.93±5.57	58.86±1.59	57.95±2.30	40.57 ± 4.28	53.68±2.83	58.30 ±0.58	57.84±0.43	58.07±0.23	0.34 ± 0.68	0.00 <u>+</u> 0.00	34.91 ± 0.09	
cardiotocography	36.14 ± 1.28		39.18 ± 4.49	35.36±2.14	<u>32.66</u> ±1.59	36.88±1.27	39.91±1.05	39.48±1.54	$\frac{37.73}{100} \pm 1.73$	62.02±0.00	62.02 ± 0.00	48.23±0.39	
celeba	$\frac{15.42 \pm 2.29}{22.72 \pm 1.73}$	17.97±2.55 24.06+2.05	7580 ± 1.34	17.46±1.17 27 15+1 12	16.17 ± 0.65 74.06 ± 1.31	16.84 ± 0.88 74.76 ± 0.50	19.18±2.74	17.12±1.45	14.31±2.28 16.44+1.41	0.00±0.00	0.00±0.00	10.12 ± 1.04 10.31±0.52	
cover	26.77±15.24		42.68±17.00	53.70 ±16.88	44.34±20.24	36.61±2.59	76.51 ±2.37	68.92±4.22	46.54 ± 3.93	0.00±0.00	0.00±0.00	38.39±0.62	
donors	$\frac{43.71}{52}$ ± 11.52		83.59±4.47	89.28±2.66	92.77 ±1.39	78.24±2.61	87.99±1.87	75.05±7.18	63.08±1.70	11.80 ± 23.60	0.00±0.00	47.58±4.61	
fault fraud	60.33±3.36 57 54±10 13	59.52±2.09 48.07±8.02	58.57±1.11 58.00±6.77	$\frac{58.37\pm0.79}{66.88\pm4.08}$	58.87±1.51 70 18+3 21	59.13±1.36 62 30±4 01	55.57±1.57 75.61±7.76	$\frac{55.16\pm0.81}{54.75\pm5.00}$	55.33 ± 1.66 77.55 ± 74.73	97.03±0.00	96.91±0.24	72.00±0.47 30.48±4.66	
glass	43.53±20.21		84.05±6.11	87.24±5.04	82.50±5.41	70.87±3.12	35.43±5.07	34.48 ± 4.93	31.36 ± 0.69	19.45 ± 5.66	0.00±0.00	24.15±2.73	
hepatitis	99.64 ±0.71		99.64 ± 0.71	99.64 ± 0.71	99.64 ± 0.71	98.65±2.11	96.40 ± 3.01	94.63 ± 4.90	92.51 ± 3.12	51.68 ± 9.78	18.97 ± 10.60	70.84 ± 3.40	
http	$\frac{93.91}{2}\pm10.35$	96.07±3.07	97.69±1.51	99.36 ±0.19	99.14±0.43	97.23±2.45	38.08±11.97	50.80 ±38.02	18.33 ± 10.68	16.75±12.06	0.00±0.00	24.79±12.88	
internatede	10.52±0.65	10.44±0.54 57.45±0.61	9.84 ± 0.37	<u>9.76</u> ±0.15	10.40±0.33	10.19±0.23	6.64±0.89	8.40±1.23 65 %7±0 05	7.32±1.04	0.00±0.00	0.00±0.00	4.47±0.43	
ionosphere	92.64+4.66	91.41+4.67	93.86±1.63	94.48+0.71	94.49+1.56	93.38+2.21	89.67+1.44	89.41+1.53	89.52+1.13	$\frac{+1.83}{78.12}\pm2.07$	49.44+16.82	79.23+4.14	
landsat	49.50 ± 1.24	47.94 ± 1.88	54.51 ±0.52	54.25±0.74	47.97±1.09	50.83 ± 0.68	35.45 ± 0.79	35.47±3.76	<u>31.67</u> ±3.98	50.29 ± 8.34	54.46 ± 0.00	41.47±2.39	
letter	6.80 ± 4.21	4.00 ± 1.55		0.4	11.60 ±2.06	5.84±1.11	2.40 ± 1.50	3.00 ± 1.55	3.20±1.17	0.00 ± 0.00	0.00 ± 0.00	1.72 ± 0.37	
lymphography	100.00±0.00	100.00±0.00	100.00 ± 0.00	100.00 ± 0.00	100.00±0.00	100.00±0.00	77.11±6.79	79.84±1.53	74.75±5.79	60.02±26.09	0.00±0.00	58.34±6.75	
magic.gamma mammography	36.62+8.76	38.15+8.41			18.15+1.23	29.94+2.59	32.69+5.73	34.62+2.19	35.08+2.68	39.69+2.19	0.00+0.00	28.42+1.40	
mnist	45.37 ± 1.84	46.20 ± 3.18		59.20±1.30	62.66 ±2.09	52.79±0.77	63.86 ±1.77	56.74±2.71	53.74±3.75	00.00	0.00±0.00	34.87±1.48	
musk	100.00±0.00	100.00 ± 0.00		100.00±0.00	46.80 ± 8.26	89.36±1.65	100.00±0.00	100.00±0.00	100.00±0.00	0.00±0.00	0.00 ± 0.00	60.00±0.00	
optdigits nageblocks	80.C <u>+9163</u>	41.20±5.49 64.08+7.96	44.0/±2.50 62.31+2.65	/1./3±0.55 63 88+1 08	40.00±0.11 62 20±1.05	40.69±2.00	14.80±1.81 62 24±0.98	6.40±3.88 62 71+1 24	9.33±3.72 61.75±0.37	$\frac{0.00\pm0.00}{60.47\pm0.69}$	0.00±0.00	0.11±1.52 40 33+0 37	
pendigits	46.03 ± 17.81			66.03±5.18	51.03±3.57	56.56±5.52	63.97 ±6.36	54.36±7.40	43.46±7.50	0.00±0.00	0.00±0.00	32.36±1.43	
pima	68.77±4.96			71.40 ± 1.67	68.83±2.08	70.45±1.78	66.14±2.35	63.89 ± 4.28	64.71±3.39	67.99 ±2.34	65.96±4.44	65.74±2.10	
satellite satima na-7	$\frac{65.94 \pm 10.44}{38.03 \pm 8.50}$	72.95±2.96		78.70±0.90 80 58±1 13	74.22±0.57 56 34±12 38	73.62±2.69 60.60±7.51	$\frac{72.06\pm0.60}{78}$	72.97±0.77 60.85±5.87	72.63±0.32 46.20±5.07	91.51 ± 9.02 76.20 ± 32.11	96.02±0.00	81.04 ± 1.96	
shuttle	97.17±1.11		98.83±0.14	98.91±0.12	98.38±0.21	98.31±0.24	98.00±0.01	97.98±0.00	97.73±0.10	92.83±2.84	0.00±0.00	77.31±0.58	
skin	<u>38.03</u> ±28.70	72.09±8.03		54.29 ± 12.30		56.43±9.55	82.15±0.39	82.23±0.37	81.66±0.57	80.48±0.35	$\frac{54.74}{0.00}\pm0.80$	76.25±0.32	
smtp enamhace	76.07+2 13.81		04.95±15.00 80 35±0.48	45.81 ± 9.00 80.73 ± 0.67	74 03±0.44	4C.6±1C.0C	09.5±95.90 80.10+01.08	66.6±66.60 11.0±75.08	80.56±0.29	27.52±14.01	87.61+0.00	43.11±3.0/ 83.25±0.07	
speech	2.95 ± 1.23		3.28 ± 1.04	2.95±2.41	4.59±1.61	3.48±0.92	3.93±0.80	2.95±1.61	3.28±1.80	0.00±0.00	0.00±0.00	2.03±0.25	
stamps	34.84 ± 12.18		83.03±3.34	76.24±6.92	73.47±7.50	62.00±6.23	63.62 ±10.79	58.37±9.83	57.63±9.24	56.93±11.83	14.60 ± 29.20	50.23 ± 10.89	
thyroid	68.39±4.17	61.29 ± 1.80	61.08 ± 4.63	63.87±3.57	<u>33.76</u> ±5.95	57.68±1.74	73.76±2.21	76.13±1.72	75.27 ± 0.00	78.28±0.80	0.00±0.00	60.69±0.57	
vertebrat	22 40+17 59			30 80+12 43	24.69±0./0	25 36+2 94	40.00+5.51	20.20±11.75	45.20+0.98	0.00+0.00	0.00+000	25.20+1.36	
waveform	47.80 ±3.06	38.20±17.57		11.60±1.62	28.40±4.22	32.28±5.79	11.20 ± 1.72	11.80±2.14	12.20 ±1.60	0.00±0.00	0.00±0.00	7.04±0.23	
wbc	78.86±7.89			95.71 ± 4.90	90.32±5.34	89.16±3.80	40.59±7.11	34.81 ± 6.65	40.96 ± 12.93	67.85 ±5.79	0.00 ± 0.00	36.84 ± 4.92	
wdbc	$\frac{64.32 \pm 18.21}{64.5 \pm 7.00}$	80.42 ± 5.68	84.10 ± 6.72	87.13±4.26	78.33±5.25	78.86±2.34	78.62±5.69	70.31±4.12	77.59±7.50	10.43 ± 20.87	0.00±0.00	47.39±3.91	
wine	97.95±4.09	96.72 ± 3.06		98.18±3.64	97.67±3.23	97.76±2.03	98.86±1.44	95.05±5.74	97.27±3.64	41.73 ± 22.73	0.00±0.00		
wpbc	81.91 ± 5.11	63.78 ± 10.33		88.64±3.69	83.46±2.71	81.35±3.33	58.05±5.72	59.07 ±3.42	56.98±5.14	36.48 ± 3.67	58.96 ± 14.97		
yeast	$\frac{46.31\pm2.91}{7.64\pm0.70}$	48.95±1.78	49.35±0.54	49.31 ± 0.62	48.13±0.93	48.41±0.87	49.23±1.21	49.55 ± 1.27	50.81 ± 1.76	$\frac{46.82 \pm 1.91}{0.001000}$	98.22 ± 0.00	58.93±0.44	
yeip MNIST-C	45.87±0.49	50.05±0.46	51.49±0.27	51.46±0.39	47.26±0.49	49.22±0.12	50.07±0.51	14.78±0.62	47.93±0.48	00.0±00.0	0.00±0.00	29.35 ± 0.11	
FashionMNIST	56.83 ± 0.32	63.23 ± 0.30	64.48 ±0.20	64.41 ± 0.16	58.13±0.29	61.42±0.13	59.78 ±0.30	59.24 ± 0.30	58.65±0.27	0.00 ± 0.00	0.00 ± 0.00	35.54±0.10	
CIFAR10 SVHN	16.33 ± 0.58	20.51 ± 0.66	22.84±0.26	22.87±0.57	$\frac{15.56\pm0.45}{12.26\pm0.77}$	19.62 ± 0.19	24.23±0.19	23.86±0.44	23.92 ± 0.30	0.00±0.00	0.00±0.00	14.40 ± 0.12	
MVTec-AD	$\frac{10.444}{79.81}\pm0.59$	81.35 ± 0.82	82.39±0.82	82.20±0.46	77.51±0.66	80.65 ± 0.56	76.79±0.49	78.35 ± 0.88	78.60±1.12	$\frac{0.00\pm0.00}{63.03\pm1.80}$	63.09±1.51	71.97±0.92	
20news	12.82 ± 0.91	14.12 ± 1.10	15.05 ± 1.36	16.54 ±1.42	12.79 ± 0.95	14.26 ± 0.73	19.22 ±2.15	16.99 ± 0.93	15.62 ± 1.07	0.18 ± 0.35	0.18 ± 0.35	10.44 ± 0.45	
agnews	14.17±0.19	14.40 ± 0.24	14.47±0.12	14.53 ±0.20	<u>13.69</u> ±0.12	14.25 ± 0.08	22.14 ±0.86	20.77 ± 1.57	19.76 ± 2.41	00.00 	0.00 ± 0.00	12.53 ± 0.63	

-. 17:1 ÷ ζ Ē Ĺ LC L J . -• • -C -+ Table 11.2: Average F1 For ICL, the learning rs respectively to mark the

MCD	MCD 48 544.0.357.303	48.54±0.35(28) 60.36±0.09(4)	90.19±0.02(9)	85.13±8.87(14) 98.66±0.65(19)	78.51±0.81(5)	82.82±0.85(23) 57.11±1.41(23)	84.37 ±2.34(1)	74.14 ±1.94(1)	81.93±10.78(23)	59.44±3.79(10)	91.1±1.79(23)	(17) (21) (17) (17) (17) (17) (17) (17) (17) (1	(07) 07 5 T T T T T T T T T T T T T T T T T T				56.78±6.08(16) 31.47+4.16(28)		73.67+0.12(21)	72.87±0.64(28)	88.3±1.03(15)	93.91±2.55(28)	$64.86\pm0.92(22)$	(11) TOTOTION (11)	73.64±1.37(11)	72.76±3.68(24)	99.92 ±0.0(1)	98.98±0.0(23)	94.87+0.84(4)	80.69±3.02(17)	38.81±0.36(14)	06 40 T U U U U U U U U U U U U U U U U U U	47.1±1.82(20)	27.66±0.28(32)	58.39±0.03(29)	98.88±1.02(19) 07.03±0.422(35)		97.28±1.8(17)	63.36±0.93(14)			84.37±1.11(19)		58.87±0.65(21.5)		62.85 ±1.63(2) 67 08±0.754.45)		0.959	1.000
IForest	IForest	50.74±0.68(19) 56.4±0.95(12)	90.28±1.52(8)	74.89±2.67(19) 99.5±0.08(2)		93.32±1.43(8) 74.24±2.88(6)		62.55±2.38(15) 84.31±2.02023	89.44±2.22(17)	55.86±2.03(22)	94.73±1.23(13)	(61)957#6018 (80:52:50:12			47.87±2.11(31)	9121±137(23)	58.8±2.21(14) 32.04+1.6427)	00 45+0 32(23)		88.02±0.3(7)	86.6±1.99(18)	$90.58\pm6.2(29)$	81.07±3.28(17)	(17)G00T+070	74.26±1.63(10)	77.46±1.48(16)	99.12±0.21(16)	99.65±0.07(17)	90.36+2.13(13)	85.18 ±1.69(1)	37.7±1.72(19)	0.00 10 20 10 2017	45.64±3.83(23)	61.83±0.62(21)		99.41±0.37(6) 08.73±0.6421.55	47.97±3.12(21)	93.92±1.79(22)	56.33±2.72(23)	41.8±0.75(30) 61.02±0.62(11.62)	76.75±1.45(20)	84.15±1.07(21)	64.04±0.93(18)	58.99±0.88(20)	77.38±1.95(19)	54.91±1.17(21) 58.43±1.00(17.5)	16.2460.1120.000	0.971	1.000
DTE-IG	DTB-IG 50 8741 120160				74.81±1.69(17)	73.79±14.09(28) 52.44±3.67(27)	$74.51\pm 2.39(14)$	61.79±4.94(17) 06.82±1.66(17)	99.25±0.6(6)	59.42±1.46(11)	90.79±3.24(24)	98.33 ±0.86(2) go g3 ±0.15(2 5)	80.72 ±43.08(28)	50.97±3.41(9)	71.52±3.89(7)	95.15±3.6(15)	44.72±5.52(28) 39.86+2.29(10)	01877700-86 66	86.46 +1.12(2)	84.64±3.47(18)		-	$79.81 \pm 9.35(18)$	(77)///TE00/C0	68.59±3.93(22)	76.52±2.68(17)	95.34±1.84(28)	99.86±0.12(10)	8164+9.87(27)			(CI)ICCT0CC6	74.63±7.58(4)	85.68±3.16(5)	73.68±2.68(9)	90.98±11.64(26) 00.6±0.21(6)					79.92±3.93(14)	84.32±2.44(20)	62.4±3.33(22)	59.19±2.5(19)	85.88±3.63(8)	58.28±6.15(11) 56.55±4.15/24)	(#7)CT#TOCOC 14.675	0.761 0.849	0.986
OCSVM					к Р-	95.61±0.0(4) 75.22±0.0(5)	14	70.02±0.21(12)	92.09±0.22(14)		8,8	(12)68-C±2-89(21) 00.58±1-70(15)	100.0 ±0.0(2)	$48.72 \pm 0.0(24)$		8	47.98±0.0(27) 32.17+0.0(26)	100			0			(TT)0/0792/00 V		2	$99.61\pm0.0(8)$				36.57±0.0(26)			$75.91\pm0.0(17)$		99.63±0.19(3) 00.34±0.73(0.5)					79.55±0.0(15)	88				56.25±0.62(18) 60.64±0.00130		0.679 0.992	0.986
	VE C/ SE UT 10 07	49.91±0.35(23) 55.09±0.1(15)	88.82±1.34(13)					70.15±0.23(11) 00 26±0.66(A)	82.5±1.83(22)			00.0/±15.05(2) 0 07.74±1.18/0)		$47.91 \pm 0.1(30)$	$65.76\pm0.06(17)$	94.6±0.85(17)	51.37±1.0(23) 38.05+1.12(14)	99 94+0 09(7)		$81.01\pm 2.04(21)$	80		90.76±2.12(9)	00.92/14/0.72/95 5)	70.27±2.28(19)	77.7±0.53(15)	$99.62\pm0.16(7)$	99.91±0.01(6.5)	05.43 +1.26(1)	G		9 L 04 T 4, L0 (10) 0 7 05 L 0 20 (14)		$86.38\pm1.94(3)$	62.17±2.64(24)	99.2±0.39(14) 00.2±0.12(12)	71.66±0.81(11)	~	66.49±3.17(12)		80.12±0.14(12)	88.52±0.07(13)		$61.37\pm0.08(8)$		54.88±0.52(22) 54.88±0.52(22)		0.752 0.906	0.994
				-		83.05±1.1(22) 47.32±0.31(30)		57.91±10.84(23) 72.07±12.8/760	- w			80.04 ±5.09(15) 00 03 ±0.15/25	99.91±0.08(15)		$75.94 \pm 0.11(2)$	$98.21 \pm 0.6(2)$	$65.03\pm0.18(9)$ $36.8\pm0.41(15)$			$74.51\pm0.67(26)$	~		9528±0.17(4)	01010/0710/0710	~			99.9±0.01(8)	92.15+1.87(1))				44.96±0.25(24)		4) 99.78 ±0.18(1) 00.40±0.2578)	61.76±0.11(15)					w.		$60.87 \pm 0.07(14)$		59.47±0.8(9) 58.43±0.07.0755		0.516 0.978	0.963
FeatureBagging	FeatureBagging	$49.07\pm0.53(26)$ 57.94±0.04(7)	- 00			92.12±0.56(13) 63.64±2.4(16)		55.92±1.0(24)	95.21±1.72(12)	$48.32\pm0.95(31)$	94.83±1.56(12)	88.49±1./1(13) 67.76±6.5730)			$71.38\pm2.32(8)$	-	66.38±0.17(7) 44.84+1.040			86.31±0.35(13)	0		$96.27\pm0.49(3)$	00 540 11/4	71.93±2.22(16)	$80.11\pm0.11(12)$	$99.47\pm0.03(10)$	86.89±8.22(27)	84.81+3.66(20)	č		0.2 15.41 SOUTH	64.13±2.15(9)	85.32±1.16(6)	76.95 ±1.07(1)	58.05±18.08(31) 00.63±0.1924)					8733 ±0.15(1)	$91.67 \pm 0.11(1)$				60.25±0.7(4) 74.64±0.09/1)		0.703	1.000
CBLOF	CBLOF 53.69±0.15.65	53.69±0.15(6) 58.17±0.12(6)						70.84±0.28(7)	93.47±0.23(13)				99.93±0.01(13)				57.21±0.26(15) 33.24+0.66(25)			84.74±0.02(17)	S.		83.52±1.69(15)	00 00 TO			$99.42\pm0.01(12)$	99.72±0.02(16)		81.52±0.55(13)	35.88±0.15(32)	05 54±0.06(11)	54.43±1.97(14)	78.72±4.01(15)		98.31±1.31(20) 08.73±0.42(215)								$60.97 \pm 0.17(12)$		57.1±1.23(15) 62 \$2±0.08(10)	07.87±0.06(10)	0.434 0.989	0.988
		48.76±0.0(27) 57.88±0.0(8)				~~		58.46±1.06(22)	96.97±0.24(9)		-	88.82±1.98(12) 66.92±7.01(31)	(55)(0)(177600) (55)(0)(177600)				66.58±0.0(5) 44.83+0.0(5)			85.52±0.0(15)	6			(7)0(01 010)	< 14	~	0	99.98 ±0.0(1)					64.3±1.31(8)			80.52±4.47(30) 00.62±0.21/5			57.36±2.01(21)				70.3 ±0.0(2)	63.82 ±0.0(2)		60.19±0.62(5)		0.394 0.993	1997
		_		0.0				69.62±0.91(13)) 92.42±2.5(1)) 98.78±0.88/8)				_	52.79±1.63(22) 36.72+0.95(16)		_	86.42±1.72(12)				01/29/0T02/20 (-			 99.75±0.0(15) 01.71±0.20(3) 		~		07 HOT TO 1400	Č	86.5) 80.53±7.15(29) 9 48±0.772.040) 68.88±2.7(11)			-		$62.91 \pm 1.1(3)$		64.3 ±3.17(1) 64.3 ±3.17(1) 68.16±3.77(3)		0.159 0.616	0.946
1		9 47.5±0.98(32) 54.21±0.22(19)				80.01±2.12(25) 54.2±1.8(26)		2) 70.56±0.35(8)			0.0	0 99.44 ±0.58(1) 0 99.44 ±0.13(1)	9	N.	r-		65.13±0.44(8) 42.68+1.17(7)					0	97.18 ±0.8(1)	00.79TU 82/13)		~) 99.92±0.04(4.5)		×.		(+)KOYTEROOK (9	b) 99.66 ±0.36(2)			3) 96.61 ±1.17(1)						1) 94.75 ±0.84(1)		CFC 70	0.089 0.968	0.893
kNN													5) 100.0 ±0.0(2)	N.	-		68.25±0.0(3) 35.43±0.0(20)				 93.85 ±0.0(2) 			00 00 00 00 00 00	-		$99.71 \pm 0.0(5)$					(c) 93.69/IL/99/CV (c) 99.68/IL/99/CV (c) 99.68/IL/99/CV (c) 99.68/IL/99/CV (c) 99.68/IL/99/CV (c) 99.69/IL/99/CV (c) 99.69/IL/90/CV (c) 99.69/				99.12±0.19(16) 00.05±0.72(17)								$61.69\pm0.0(6)$		5) 57.36±0.66(14) 57.36±0.66(14) 57.05±0.060		0.019	0.794
I DTE-NP	= =	51.19±0.46(12) 60.82 ±0.0(1)	92.9±0.25(4)) 91.8±0.59(16)) 63.76±1.88(15)) 72.1±0.4(5) 07.73±0.66(7)			_	89.64±3.54(10) 03 77±3 0/14)	_	_	-	_) 68.2±1.75(4) 34.38±0.98(22)			_) 94.02 ±0.42(1)	_	_	(C-0)07/07/77/07/00		_) 99.67±0.0(6)		_	â	_	(7)(COT 1916 ()	_	-	_	99.54±0.28(5) ao 52±0.2823	_	_	_			_	=) 62.13±0.0(4)	_	5) 59.97±0.74(6.5) 67 08±0.04.5)	= =	0.001 0.572	0.347
FoMo(D=20)		 51.48±1.5(10) 54.76±1.23(17) 		 55.76±14.86(26) 98.88±0.21(14) 		$91.86\pm0.43(15)$ $62.51\pm1.33(19)$	~	 54.24±7.82(26) 67.67±0.1845 	-	56.72±3.95(19)		97.09±0.86(4)			_		64.76±1.71(10) 30.53+3.44(11)							(C7)0/0/0/0/00 (~		99.46±0.38(11)					(T)(0')T 00'14				0. 99.38±0.54(9) 0. 00.71±0.7(3)					 72.68±4.63(22) 			3) 56.82±1.64(24)		 59.97±1.87(6.5) 64.31±1.47(0) 			
FoMo(D=100	FoMo(D=100)	54.05 ±0.3(2) 54.74±4.18(18)	85.17±0.0(22)	78.59±17.11(17 99.15±023(10)	65.3±0.7(25)	94.27±0.0(6) 72.15±0.0(8)	_	60.54±4.96(20) 00.12±0.20(2)	99.91 ±0.02(1)	$61.82 \pm 0.0(4)$	93.91±2.81(18)	98.5±0.55(5) 00.88±0.74(4)	99.92±0.05(14)	$50.84 \pm 6.24(10)$	55.64±7.12(25	96.59±1.25(11)	69.53 ±0.0(2) 20 9+0 0(9)			y 69.11±1.21(32)		99.62±0.43(21)	85.28±0.0(12)	0611000 T0C 00	80.46 ±1.48(2)	84.98±0.0(4)	98.4±0.0(20)	99.82±0.09(12)	83.04+469(23)	78.21±0.0(18)	40.1±1.75(11	00 84100016)	872 ±258(1)	81.29±0.0(12)	71.02±0.0(13)	99.61±0.31(4)	97.13 ±0.0(1)	99.94±0.12(4)	76.1±2.11(8)		77.28±1.69(19)		-	59.93±0.64(18)	75.31±1.26(25)	56.93±1.46(16) 60.06±3.60(12)	T)607 ±06/00		
			annthy rold	backdoor breastw		cardio cardiotocogr anh v		census	donors		raud	g lass homeritie	c nn	dbmi	internetads	ionosphere	andsat	lumhoranhu	magic camma	mammography	mnist	musk	optdigits	page010065	pima	satellite	satimage-2	shuttle	smith	spambase	sch	statups	vertebral	vowels	vaveform	wbc	wilt	wine	wpbc	N I	IIST-C	FashionMNIST	FAR10	SVHN	Tec-AD	20news	agnews Rank(ave)	$d \le 20$	V 20

	DELCO* 2015.CV* 2015.CV* 2015.2012.CV* 2015.
	ICL."8 ICL."8 1CL."8 15.340,15(1) 35.3140,16(1) 35.3140,18(1) 35.3140,18(1) 35.3340,18(1) 35.3340,18(1) 35.3340,18(1) 35.3340,12(1) 37.23541,16(2) 37.23542,16(2) 37.23542,16(2) 37.24242,16(2)
	KINNes KINNes 51 61:400(9) 95:07-600(1) 95:07-600(1) 95:07-600(1) 95:07-600(1) 95:07-600(1) 76:64:2600(1) 76:64:2600(1) 95:75-600(1) 95
	1125.NPPS 1125.NPPS 1125.NPPS 1125.NPPS 1225.NPD 12
	DBROCC DB
DAGMM 50.84±2.97(17) 50.47±2.01(29) 72.23±15.13(29) 54.36±19.91(27)	
	DIDIA DIDIA 2012 - 2012
	80.894-205(1) 80.894-205(1) 80.844-205(1) 80.844-205(1) 80.844-205(1) 80.844-205(1) 80.844-205(1) 80.844-205(1) 80.844-205(1) 80.844-205(1) 80.844-205(1) 80.944-107(1) 80.844-107(1) 80.844
	ECOD S13724400(8) S13724400(8) S13724400(8) S13744400(8) S1474400(8) S1474400(8) S1474400(8) S1474400(8) S1474400(8) S1474400(8) S1474400(8) S1474400(8) S1744410(2) S1744410(2) S174440(2) S17440(2
	COPOD #951:60030 994:60030 994:60030 994:60030 994:60030 994:60030 994:60030 994:60030 994:60030 994:60030 994:9114(16) 7552:600123 994:914(16) 7552:60031 994:914(16) 7552:60031 994:914(16) 7552:60031 994:94:00321 994:94:00321 994:94:00321 995:94:100321 995:95:100321
	11.11.11.11.11.11.11.11.11.11.11.11.11.
GOAD	99230 99230 99231 99231 1444 90271 1444 90271 1114001 1114001 1111401 1114011110110101100000000
	Cabbanny Cabbanny Si System (45) Si
	HIBOS HIBOS RATELION(1) SCATELION(1) SCATELION(1) SCATELION(1) SCATELION(1) SCATELION(1) SCATELION(2) SCATELION(2) SCATELION(2) TAMERION(2) SCATELION(2) SCAT
	Phanefkow (Construction) (Constructi
	ICCA ICCA S1594400(1) 5 S1114113(12) 5 S1114113(12) 5 S1114113(12) 5 S1114113(12) 5 S1114113(12) 5 S1114113(12) 5 S111413(12)
	Atok Atok Atok 5:344±00(23) 5:34±±00(23) 5:34±±00(23) 5:354±±00(23) 5:34±±00(23) 5:34±±00(23) 9:4535±±01(15) 7:3<±10(12)
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

MatherMathe	the better). We use blue				Terperation I	י הי ניייו	green respectively to mark use wp-1 and use wp-2 memory	1-doi		1 2-yuu	nemoa.					
	Dataset	EoMo(D=100)	EoMo(D=20)	I DTF-NP	NN1						CL AD	Mana	MUSOD	DIF-IIG	Homet	MCD
	Dataset	10001-0100001	6 23 ± 0 22(10 5)	C DETECTION	6 00±0 0016 50	5 5 ± 0 12/200		10.0(6)			200-000100	507±0.06000	6 5740 0/Th	508±014/100	E 8740 1/22	100000 COM
	amazon	11.1±1.46(9.5)	10.68±0.14(19)	$11.73 \pm 0.0(1)$	$11.69\pm0.0(3)$			Ŧ		~	9.74±0.02(29)	10.76±0.02(16)	11.06±0.0(12.5)	10.16±1.08(25)	11.07±0.19(11)	$11.7 \pm 0.03(2)$
Cher Cher Cher Cher Cher Cher Cher Cher	annthyroid	$48.81\pm0.0(24)$		$68.15\pm0.38(4)$	$68.07\pm0.0(5)$					48.49±8.07(25)	$70.58 \pm 0.92(2)$	62.88±2.59(11)	$60.11\pm0.0(13)$	$49.87\pm9.05(21)$	59.02±5.39(15)	59.7±0.05(14)
	backdoor heaster	43.86±14.97(11) 00.02±0.34/12)		45.7±12.5(10) 09.19±0.14/5.5)	46.54±1.41(9) os or+0.32(13)					49.52±8.43(8) \$2 30±10.0(31)	4.83±0.1(32) 00.47 ±0.21/2)	14.2±0.63(20) 98.6±0.51(15)	7.66±0.06(26) 00.35±0.21.00	81.99±4.24(5) 81.41±7.86(28)	$9.37\pm1.48(21)$	22.16±13.73(17) 98.77±1.73(16)
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	campaion	34 24+047(26)		49 95 +0.67(2)	(c1)7C0 ±26.96 (8)00+00.67	48.9+0.98(9)	(77)00.1±C2.00 46.9+0.71(17)	_			48.11+0.12(14)	48.87+0.29(10)	49.43+0.0160	61.41±7.80(26) 46.17+2.19(18)	45 73+1 85(19)	90.2/111.23(10) 47.91+1.49(16)
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	cardio			$77.41\pm0.85(11)$	77.22±0.0(12)	47.91±11.47(29)	69.29±1.27(19)				$69.94\pm0.98(18)$	$69.28\pm0.91(20)$	$83.59 \pm 0.0(4)$	41.07±13.18(30)	78.63±2.69(8)	67.07±0.62(23)
10 10<	cardiotocograph celeba			58.68±1.14(13) 10.65+0.49(18)	57.43±0.0(15) 11.92±0.5(16)	48.66±3.84(26) 9.74+0.68/20)	$53.34\pm1.26(21)$ 14 19+7 31(11)				49.37±0.19(25) 2 9±0 92(32)	51.31±1.98(23) 18.03±2.646)	66.19±0.0(5) 20.27±0.9(3)	$39.59\pm 5.95(31)$ $13.4\pm 7.37(12)$	62.85±3.42(7) 11 7+1 35/17)	52.83±0.7(22) 19 07+3 4(4)
	census	16.01±2.97(16)	14.2±1.57(23)	21.05±0.67(5)	$21.68\pm0.63(3)$		17.94±1.09(13)			12.02±0.38(29)	14.96±4.41(19)	$19.67\pm0.6(12)$	$20.32\pm0.66(9)$	16.3±1.77(15)	14.19±0.73(24)	28.98 ±1.47(1)
Matrix Constrain C	cover	72.57±8.38(5)		59.97±10.57(8)	55.79±3.74(9)			82.92 ±2.19(1)		78.1±13.95(3)	$6.96\pm 5.18(26)$	73.27±3.36(4)	$22.28\pm1.01(18)$	$80.43 \pm 4.6(2)$	8.66±1.53(25)	$3.14\pm0.18(28)$
	donors	98.43 ±0.48(1)		85.55±4.56(6)	$89.09\pm0.94(4)$	$98.35 \pm 0.87(2)$	_	53.39±1.89(12)		65.25±10.25(11)	46.18±9.8(15)	26.66±2.91(28)	$42.71\pm0.86(18)$	95.77±2.6(3)	40.51±3.59(20)	31.24±13.62(26)
Nietkicky Niezkicky Niezkicky <t< td=""><td>fault</td><td>$63.08\pm0.0(8)$</td><td>60.86±3.58(17)</td><td>62.17±0.14(11)</td><td>61.98±0.0(13)</td><td>$63.18\pm0.7(7)$</td><td></td><td>$50.44\pm0.0(32)$</td><td></td><td>$50.84\pm0.82(31)$</td><td>66.69 ±0.19(1)</td><td>64.75 ±0.69(2)</td><td>61.12±0.0(16)</td><td>63.83±1.23(5)</td><td>59.19±2.02(22)</td><td>$63.37\pm 5.99(6)$</td></t<>	fault	$63.08\pm0.0(8)$	60.86±3.58(17)	62.17±0.14(11)	61.98±0.0(13)	$63.18\pm0.7(7)$		$50.44\pm0.0(32)$		$50.84\pm0.82(31)$	66.69 ±0.19(1)	64.75 ±0.69(2)	61.12±0.0(16)	63.83±1.23(5)	59.19±2.02(22)	$63.37\pm 5.99(6)$
Question	alac	02.13±13.17(8) 03.6±7.6203)	012/H8-12-21-24 20.36±0.67(5)	42.1±1.03(14) 27.38±15.51(13)							44.9/±0.45(15) 41.15±3.08(11)	$\frac{09.21}{31} \pm 3.40(1)$	(1078) 101 (101 (101 (101 (101 (101 (101 (101	01.14±8.04(11) 90.57±12.82/2)	18.22±3.00(29)	00.00±3.89(0)
Max Max <thmax< th=""> <thmax< th=""> <thmax< th=""></thmax<></thmax<></thmax<>	guess hematitis	(7)C0+±000	(C)/0/6±0/0/	82 32+10 26(14)		$90.83 \pm 0.38(1)$					41.12±2.56(11) 99 79+0.47(3)	95 14+1 34(9)	77 63+3 49(15)	(C)COTITION	55 36+6 09(26)	56.8+8.0(24)
Name Name <th< td=""><td>httn</td><td>90.58+5.01(11)</td><td>06 30 +2 57(T)</td><td>97 1+4 04(6)</td><td></td><td>70.82+42.06(17)</td><td></td><td>2</td><td></td><td>8.21+1.15(30)</td><td>88 09+7 46(15)</td><td>00 00 + 00 00</td><td>00 88+0 26(3)</td><td>78 8+42 53(16)</td><td>53 43+12 08/21)</td><td>92 16+1 88/91</td></th<>	httn	90.58+5.01(11)	06 30 +2 57(T)	97 1+4 04(6)		70.82+42.06(17)		2		8.21+1.15(30)	88 09+7 46(15)	00 00 + 00 00	00 88+0 26(3)	78 8+42 53(16)	53 43+12 08/21)	92 16+1 88/91
Witchick Statistic Statistic <th< td=""><td>imdb</td><td>10.53 ±2.36(2)</td><td></td><td>_</td><td>8.92±0.0(24)</td><td></td><td></td><td>03±0.0(17.5)</td><td></td><td></td><td>9.79±0.03(8)</td><td>8.7±0.02(31)</td><td>8.85±0.0(26)</td><td>10.06±1.49(6)</td><td>8.97±0.17(20.5)</td><td>9.45±0.04(11)</td></th<>	imdb	10.53 ±2.36(2)		_	8.92±0.0(24)			03±0.0(17.5)			9.79±0.03(8)	8.7±0.02(31)	8.85±0.0(26)	10.06±1.49(6)	8.97±0.17(20.5)	9.45±0.04(11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	internetads	38.29±5.22(27)		_	$49.22\pm0.0(13)$	e		$50.43\pm0.0(11)$			60.52±1.05(3)	47.7±0.16(16)	$48.15\pm0.0(15)$	58.68±6.22(5)	29.2±1.74(32)	$34.36\pm0.0(28)$
Machine Machine <t< td=""><td>ionosphere</td><td>97.75±0.76(8)</td><td>97.77±0.44(7)</td><td>98.22 ±1.02(2)</td><td>97.95±0.69(5)</td><td></td><td></td><td>94.58±1.57(20)</td><td></td><td></td><td>95.38±0.51(17.5)</td><td>96.43±0.5(15)</td><td>$97.45\pm0.53(10)$</td><td>96.91±2.1(12)</td><td>91.7±1.89(23)</td><td>$96.66\pm0.39(14)$</td></t<>	ionosphere	97.75±0.76(8)	97.77±0.44(7)	98.22 ±1.02(2)	97.95±0.69(5)			94.58±1.57(20)			95.38±0.51(17.5)	96.43±0.5(15)	$97.45\pm0.53(10)$	96.91±2.1(12)	91.7±1.89(23)	$96.66\pm0.39(14)$
	landsat	58.24±0.0(4)	54.75±2.34(7) 0.13±0.30(14)	54.52±4.05(8)	54.85±0.0(6) ° 7±0.0000			$61.37 \pm 0.0(2)$			45.1±0.17(14)	34.83±0.91(26)	37.01±0.0(21)	$32.65\pm2.84(30)$	47.31±3.5(12)	39.68±4.51(17) e 1±0.41/00
Statistici Statist	ly mpho graphy	99.15±1.26(10)	$100.0 \pm 0.0(2.5)$	99.34±0.93(6.5)	99.17±0.94(9)	-		34.16±4.27(27)			99.34±0.12(6.5)	99.3±1.02(8)	$0.20\pm0.0(20)$ 100.0 ±0.0(2.5)	99.76±0.55(5)	94.38±3.28(21.5)	86.76±6.31(26)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	magic.gamma		$87.97 \pm 0.12(3.5)$	86.15±0.74(8)	$85.86 \pm 0.0(9)$			36.36±0.0(7)			77.34±0.01(19)	87.97±0.84(3.5)	79.16±0.0(17)	88.73 ±0.78(2)	80.27±1.07(15)	$77.21\pm0.09(21)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mammography		$45.99 \pm 0.99(3)$	42.09±0.86(5)	$41.27\pm0.0(8)$	$17.11\pm 3.75(30)$		$34.07\pm0.0(17)$			18.98±1.05(28)	19.93±3.92(27)	$40.52\pm0.0(11)$	33.36±9.9(18)	37.94±3.21(14)	7.96±0.2(32)
	mnist	57.97±0.0(16)	32.15±3.35(28)	$73.68 \pm 1.31(1)$	72.72 ±0.0(2)			$70.97\pm0.0(4)$	6	6	68.39±0.46(8)	62.42±4.39(14)	66.2±0.0(10)	56.1±8.07(19)	54.15±6.53(22) 40.20±26.1/20)	55.75±6.4(20)
3. 673:100 0.543:00 <th0.543:00< th=""> <th0.543:00< th=""> <th0.54:< td=""><td>ontdivits</td><td>31 88+0.070</td><td>20 6+5 31/14)</td><td>31 75+4 86(8)</td><td>29 11+0.0(9)</td><td></td><td>_</td><td>(C'9)(C'0 ± 0.001 43 63 +0.002</td><td></td><td>41 23 + 2 99(4)</td><td>36 3+0 9406</td><td>25 56+4 25(11)</td><td>6.97+0.003)</td><td>22 06+15 09(12)</td><td>(0C) I:07 = 20:04 15 41+3 21(16)</td><td>7 1+0 17(22)</td></th0.54:<></th0.543:00<></th0.543:00<>	ontdivits	31 88+0.070	20 6+5 31/14)	31 75+4 86(8)	29 11+0.0(9)		_	(C'9)(C'0 ± 0.001 43 63 +0.002		41 23 + 2 99(4)	36 3+0 9406	25 56+4 25(11)	6.97+0.003)	22 06+15 09(12)	(0C) I:07 = 20:04 15 41+3 21(16)	7 1+0 17(22)
6 6	pareblocks	62.67±0.0(15)	60.24±0.0(19)	67.45±0.1(7)	67.6±0.0(6)			$71.07 \pm 0.0(2)$	5	70.16±1.16(4)	64.7±0.79(11)	62.1±0.95(16)	64.25±0.0(12)	57.46±2.99(25)	43.42±2.0(30)	63.17±0.04(14)
Nov Brith Nov Brith <t< td=""><td>pendigits</td><td>$66.33 \pm 0.0(9)$</td><td></td><td>91.89±3.3(3)</td><td>96.99 ±0.0(1)</td><td>66.41±7.58(8)</td><td></td><td>78.55±0.0(7)</td><td></td><td></td><td>35.35±0.15(22)</td><td>$61.14 \pm 4.73(10)$</td><td>$51.78\pm0.0(14)$</td><td>59.2±10.53(11)</td><td>58.79±5.21(12)</td><td>$13.2\pm0.07(30)$</td></t<>	pendigits	$66.33 \pm 0.0(9)$		91.89±3.3(3)	96.99 ±0.0(1)	66.41±7.58(8)		78.55±0.0(7)			35.35±0.15(22)	$61.14 \pm 4.73(10)$	$51.78\pm0.0(14)$	59.2±10.53(11)	58.79±5.21(12)	$13.2\pm0.07(30)$
31 975-6010 9	pima conflice	79.27 ±1.74(2)		79.7 ±2.44(1) %5 %2±0.77(0)	75.37±2.99(7)	78.63±1.94(3) 97.62±0.24(3)					63.03±4.45(26)	71.18±2.06(15.5) es co±0.1e(11)	71.98±3.41(12) %0.0±0.0000	69.64±4.28(17) e1 71±1.01017)	73.65±2.07(10) e2.25±0.00(15)	68.64±3.1(20) 70.02±7.05.01)
w xxxx101 xxxx101 xxxxx101	satimare-2	$92.78\pm0.0(14)$		96.16±0.0(7)	$96.69 \pm 0.0(6)$	01.7±1.19(10)		_		00.65±0.96(17)	95.44±0.23(9)	88.05±5.1(19)	96.92±0.0(3.5)	83.3±4.52(22)	04.53±0.55(11)	$98.31 \pm 0.0(1)$
Statistical	shuttle	99.36±0.17(4)	99.59±0.15(3)	$98.14\pm0.48(9)$	$97.86 \pm 0.0(14)$					46.35±25.97(31)	98.04±0.01(11)	97.91±0.26(13)	97.67±0.0(15)	99.35±0.09(5)	$98.61\pm0.34(8)$	90.9±0.0(25)
a Number of the standard Standard S	skin	51.04±1.72(22)	67.06±3.85(11)	94.78±2.33(4)	$98.24 \pm 0.41(1)$			51.68±1.85(18)		49.21±1.1(24)	78.73±7.88(6)	76.37±5.79(7)	66.31±0.51(12)	96.85 ±2.54(2)	64.58±1.09(14)	62.39±0.42(17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	smtp	38.18±9.9(17)		50.2±6.39(9)	50.53±5.92(6)	3.81±3.83(25)					50.6±6.3(5)	40.81±13.36(15)	64.51 ±11.88(2)	33.6±23.33(18)		$1.18\pm0.08(26)$
	spambase snooch	80.99±0.0(18.5) 2 94±0 31.07)		83.65±0.58(6) 3.17+0.0/10)	83.32±0.0(8) 2 8+0.0(25)						85.64±0.14(3) 3.1+0.06(12)	$72.89\pm0.42(28)$ $3.0\pm0.29(14)$	82.19±0.0(12) 2.78+0.0(77)	80.99±2.36(18.5) 2.88+0.48(18)		81.78±2.94(17) 2.83+0.07(21)
(7.16) (7.16)<	stamps	89.37 ±3.5(1)		82.47±4.08(3)	71.68±8.35(7)						50.61±13.26(24)	64.74±12.87(13)	64.91±7.95(11)	72.8±10.03(5)		$41.7\pm6.16(30)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	thyroid	$67.0\pm0.0(19)$		81.03±0.31(7)	$80.94 \pm 0.0(8)$	51.51±12.75(29)	81.67 ±0.97(2)			$36.49\pm17.33(31)$	$74.07\pm0.84(17)$	$82.22 \pm 0.87(1)$	$78.92\pm0.0(12)$	$45.67\pm16.28(30)$	79.66±5.62(11)	$80.08\pm0.13(10)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	vertebral	69.39 ±3.97(1)		25.21±8.9(15)	26.11±2.49(13)	58.75 ±7.3(2)	$35.14\pm5.39(7)$			$32.89\pm4.98(9)$	19.87±4.37(27)	35.84±9.27(6)	22.23±2.01(21)	51.5±10.55(4)	20.75±1.98(24)	$20.96\pm2.2(23)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	vowels	24.1±0.0(16) 0.05±0.0(10)		(8)6C.1±6C.15	30.21±0.0(9)		.,				5.21±0.01(37)	9.21±1.05(2)	27.43±0.0(12) 10.01±0.0(16)	53.03±0.23(3)	11.9/±1.05(24)	4.56±0.01(32) 7.83±0.02073
375 364 <td>wbc</td> <td>96,46±2,49(3)</td> <td>94.29 ±4.42(7)</td> <td>96.1±2.17(4)</td> <td>92.01±3.96(14)</td> <td>95.12±5.14(5)</td> <td></td> <td>24.89±3.49(30)</td> <td></td> <td>_</td> <td>$98.14 \pm 1.35(1)$</td> <td>93.84±2.45(10)</td> <td>97.15 ±0.77(2)</td> <td>72.37±12.61(24)</td> <td>94.24±3.95(8)</td> <td>90.16±7.96(17)</td>	wbc	96,46±2,49(3)	94.29 ±4.42(7)	96.1±2.17(4)	92.01±3.96(14)	95.12±5.14(5)		24.89±3.49(30)		_	$98.14 \pm 1.35(1)$	93.84±2.45(10)	97.15 ±0.77(2)	72.37±12.61(24)	94.24±3.95(8)	90.16±7.96(17)
TAGE 60101 ST3-54.00(1) ST3-54.00(1) <td>wdbc</td> <td>93.82 ±8.3(2)</td> <td>92.75±5.82(5)</td> <td>90.47±7.91(7)</td> <td>82.03±3.28(18)</td> <td></td> <td></td> <td>93.64±3.06(4)</td> <td>-</td> <td></td> <td>89.08±6.97(8)</td> <td>84.3±4.44(13)</td> <td>87.44±5.59(9)</td> <td>92.07±6.84(6)</td> <td>71.98±8.57(23)</td> <td>55.26±4.5(27)</td>	wdbc	93.82 ±8.3(2)	92.75±5.82(5)	90.47±7.91(7)	82.03±3.28(18)			93.64±3.06(4)	-		89.08±6.97(8)	84.3±4.44(13)	87.44±5.59(9)	92.07±6.84(6)	71.98±8.57(23)	55.26±4.5(27)
Moleculary (1) Statisticy (1) Statist	wilt	$77.46 \pm 0.0(1)$	$27.35\pm0.0(4)$	12.2±1.6(14)	12.25±0.0(13)			$15.74\pm0.0(12)$		19.21±7.52(9)	$12.17\pm0.04(15)$	$17.24\pm0.46(10)$	7.12±0.0(29)	52.1 ±7.69(2)	8.81±0.51(22)	$21.49\pm0.01(8)$
Constration Distration Distration <thdistration< th=""> Distration Distrat</thdistration<>	wine	99.62±0.77(4)	98.48±3.04(5)	96.8±5.58(9)	95.11±1.81(11)			89.95±2.64(12)		88.68±3.76(14.5)	100.0 ±0.0(1)	97.65±0.72(8)	88.68±2.29(14.5)	99.71±0.65(3)	67.12±7.62(25)	83.13±9.43(17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	wpbc	67.36±4.34(8)	75.17±5.73(4)	69.02±13.91(7)	46.11±2.74(15) 48.001 000015			$41.2\pm 2.62(21)$		$40.97\pm2.44(22)$	$87.45 \pm 6.21(2)$	54.61±3.75(12)	$40.88\pm3.04(23)$	65.78±8.55(9)	40.73±3.15(24)	45.16±1.42(17)
C 3x4434(0) 3x3454(2) 5x420(0) 5x421(1) 7x421(1) 5x420(1) 5x421(1)	yeast veln	51.0±0.0(4) 13.0+3.0(8)	50.24±0.0(8) 14.35±0.60(7)	48.12±0.49(22)	$48.26\pm0.0(21)$ 16.03±0.0(4)	49.55±1.36(14) 10.4±0.09(26)	ব	$48.94\pm0.0(19)$	-	49.89±0.68(9) 16.08±0.07(3)	0.56±0.05(/) 0.05±0.05(/)	51.05±1.65(3) 12 8+0.02(17)	$41.95\pm0.0(23)$ 13.42+0.0(11)	$\frac{51.11}{12.25\pm1.58(20)}$	46./8±0.3/(28.2) 13.15±0.20/13)	45.6/±0.08(51) 13.81+0.07(9)
NNIST 12:12:13(9) 93:42:43(9) 93:42:43(9) 93:42:43(9) 93:74:43:11(3) 93:74:14:1(3) <	MNIST-C	38.4±3.34(19)	33.32±6.13(21)	47.42±0.0(5)	46.2±0.0(8)	51.47±1.1(3)		51.89 ±0.0(2)		52.15 ±0.36(1)	46.89±0.14(7)	41.78±0.12(14)	$41.57\pm0.0(15)$	44.08±4.87(11)	32.8±2.43(22)	25.81±4.48(27)
0 [17454-03109] 1534-06420] 1554-06420] 1554-06420] 1554-04709 [5973-0479] 1577-1641010 [569-16420] 1669-16420] 154-0540] 154-0540] 154-0540] 154-0540] 154-0540] 154-0540] 154-0540] 154-0540] 154-0540] 154-0540] 154-0540] 154-0540] 154-0540] 154-0540] 155-04-070] 155-04	FashionMNIST		$40.62 \pm 3.93(24)$	59.79±0.0(5)	59.15±0.0(8)	$63.08\pm0.96(3)$		63.61 ±0.0(2)		$63.94 \pm 0.43(1)$	59.6±0.17(7)	57.14±0.12(12)	56.53±0.0(14)	53.73±2.28(18)	44.73±1.88(23)	37.41±6.46(25)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CIFAR10	17.45±0.52(16)		19.91±0.0(5)	$19.62\pm0.0(8)$	17.39±0.59(17)		22.17 ±0.0(2)			19.98±0.07(4)	19.55±0.08(9)	$19.42\pm0.0(11)$	16.69±1.63(20)	16.46±0.64(21)	15.92±1.04(22)
III 154:0400 ISSE11901 ISSE11301 IISSE11301 IISSE0130	SVHN MVTec-AD	14.6/±0.33(18) 73.25+179(17)		15.53±0.0(4) 87 94+7 68(6)	15.34±0.0(7) 75.76+3.71(12)	15.6±0.51(3) 80 46 ±2 72(1)					15.4±0.26(6) 87 91 +2 31(7)	15.08±0.04(12) 73.66+2.72(15)	15.0±0.0(14) 73.03+7.82(18)	14.21±0.95(20) 82 85+3 49(7)	15.85±0.49(21) 70.0+3.07(23)	12.82±0.93(24) 80 51+2 92(8)
IS164:17(10) 7734:00(5) 16.54:16(36) 17.34:00(5) 16.56:16(37) 17.36:16(37) 17.36:16(37) 17.36:16(37) 17.36:16(37) 17.36:16(37) 17.36:16(37) 17.36:17(37) <td>20news</td> <td>13.51±0.84(12)</td> <td></td> <td>15.61 ±1.35(2)</td> <td>13.47±0.52(13)</td> <td>14.62±0.88(7)</td> <td></td> <td></td> <td></td> <td></td> <td>13.59±0.34(11)</td> <td>$11.48\pm0.44(24)$</td> <td>$11.83\pm0.52(20)$</td> <td>14.07±2.82(8)</td> <td>11.56±0.43(21)</td> <td>15.45±1.06(4)</td>	20news	13.51±0.84(12)		15.61 ±1.35(2)	13.47±0.52(13)	14.62±0.88(7)					13.59±0.34(11)	$11.48\pm0.44(24)$	$11.83\pm0.52(20)$	14.07±2.82(8)	11.56±0.43(21)	15.45±1.06(4)
p - - 12.13 756 9.36 0.87 12.08 13.77 12.78 13.77 12.76 13.77 12.76 13.77 12.76 13.77 12.76 13.77 12.76 13.77 12.76 13.77 12.76 10.76 10.00 - - - 0.017 0.037 0.937 0.937 0.937 0.937 0.947 10.00 - - 0.017 0.037 0.937 <	agnews	15.16±3.17(10)		17.35±0.0(5)	$16.68 \pm 0.0(6)$	15.42±0.38(9)	2.97(3)			0.13(1)	$12.3\pm0.06(19)$	11.85±0.03(22)	$12.82\pm0.0(14)$	12.81±2.31(15)	$11.94\pm0.32(21)$	$14.62\pm0.14(11)$
· · 0.616 0.031 0.931 0.981 0.991 1000 0.942 0.936 0.901 1000 P · · 0.617 0.731 0.741 0.731 0.701 0.701 i i i i i i i i	Rank(avg)		12.132	7.561	9.263 0.050						12.439	12.763	13.377	12.754	1000	18.193
$ \begin{bmatrix} y \\ - & - & - & - & - & - & - & - & - & -$	$d \leq 20$,	,	0.605	0.708						0.963	0.924	0.983	0.755	0001	1.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$a \ge 30$ Booleform	- 10 020	2 00 01	1/00	1000						13.047	13 235	12 601	13 377	16 706	1000
0.448 0.728 0.949 0.947 0.847 0.849 0.949 0.941 0.949 1.000 0.440 0.627 0.816 0.989 0.946 0.889 0.999 0.894 0.957 0.941 0.939 1.000	Kank(avg) All		\$78771	0.082	0.347						0.753	0.926	0.873	0.984	1.000	18.95
	$d \le 100$ d < 500			0.485	0.728						0.871	0960	0.944	0.997	1000	1.000

Table 13.1: *A* (the lower, the lower, the lower, the lower, the lower is the lower

<u>è</u>	_{କେ} ଜ _ନ କ୍ରୁର୍ଚ୍ଚର	-ଗ୍ରକ୍ତ୍ର କ୍ତୁର		ରିକିକି କାହିକ କାହି କାହି	ନିକିରିଜିନିନ୍ଦ୍ରିନିକରି କିଛିକ କିନିକ	
the lower, the better). We use blue and green respectively to mark the top-1 and the top-2 method.	$\begin{array}{c} 5.79\pm0.01(25)\\ 5.79\pm0.01(25)\\ 68.86\pm0.2(3)\\ 68.86\pm0.2(3)\\ 94.0\pm0.69(24)\\ 37.11\pm0.64(24)\\ 45.75\pm0.91(29)\\ 10.05\pm0.20(28)\\ 10.05\pm0.20(28)\\ 10.05\pm0.20(28)\\ 10.05\pm0.20(28)\\ 35.03\pm0.82(12)\\ 35.03\pm0.82(12)$	8.73±2.87(0) 8.73±4.84(2) 30.33±4.57(2) 27.78±2.62(19) 74.38±1.79(16) 45.08±7.07(25) 45.08±7.07(25) 47.51±1.92(18) 86.53±4.28(26) 34.98±0.81(25)	10.09±0.04(10) 68.82±5.96(30) 77.29±3.52(20) 28.91±1.92(20) 41.15±1.11(26) 6.74±0.0(29) 10.77±1.02(20) 54.53±1.01(26) 29.75±0.06(25)	67.6122.28(23) 71.7522.86(30) 43.946.54(31) 76.7320.36(26) 62.5420.45(16) 73.7542.13(20) 73.0526.13(21) 3.0920.15(13) 9.847.62(23) 9.847.62(23)	66 61 ±0.06 (20) 27 34±1 66 (1) 27 34±1 66 (1) 27 34±1 66 (1) 27 32±1 40 (2) 27 32±1 40 (2) 27 32±1 40 (2) 27 32±1 40 (2) 27 37±2 40 (2) 21 35±10 (20) 21 35	v v
DTE-Car	5.794 68.86 94.014 37.11 49.02 49.02 49.02 49.02 15.29 10.05 15.29 15.29	27.78 27.78 27.78 27.78 45.08 45.08 45.08 47.51 86.53 34.98	10.09 68.82 68.82 77.29 41.15 62.46 62.46 62.45 10.77 10.77 28.91 10.77 28.91 10.77 28.91 10.77 28.91 10.09	67.17 67.61 67.61 71.75	66.61 28.18 27.84 29.34 29.34 29.34 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.95 21.85 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.94 21.85 21.85 21.85 21.94	000.1 000.1 000.1 000.1
	(31) 5(26) 5(26) 03(2) 1(18) 1(18) 7(15) 7(15) 7(15) 7(13) 7(13)	S [6 8 6 9 8 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 11.41\pm0.43(5)\\ 100.0\pm0.0(2.5)\\ 80.74\pm1.03(14)\\ 28.51\pm2.57(21)\\ 56.56\pm0.65(17)\\ 89.48\pm1.94(24)\\ 41.08\pm1.34(5)\\ 64.91\pm1.13(10)\\ 64.91\pm1.1$		55,294-13 (27) 44,444-66(5) 2391-45.68(15) 2391-45.68(15) 3391-45.68(15) 3384-45.76(15) 33.84.63-76(15) 33.84.63-75(15) 33.84.63-75(15) 39.83.84.637(15) 39.83.84.637(15) 39.83.84.637(15) 39.73.84.117(16) 37.73.117(16) 37.74.	
ICLave	2.49±0.02(3) 10.01±0.05(26) 52.34±3.72(20) 97.98±0.51(18) 48.01±0.47(15) 53.9±3.02(56) 47.05±1.34(27) 13.27±0.47(13) 22.01±0.47(13) 13.27±0.47(13) 31.42±3.97(14)	76.75±527(8) 76.75±527(8) 58.46±758(7) 76.58±138(4) 99.28±12(6) 97.56±22(4) 10.17±003(5) 97.56±22(4) 10.17±003(5) 58.52±104(6) 55.86±016(5) 55.86±016(5)	$\begin{array}{c} 11.41\pm0.43(5)\\ 100.0\pm0.0(2.5)\\ 80.74\pm1.03(14)\\ 28.51\pm2.57(21)\\ 56.56\pm0.65(17)\\ 56.56\pm0.65(17)\\ 89.48\pm1.94(24)\\ 41.08\pm1.34(5)\\ 41.08\pm1.34(5)\\ 64.91\pm1.13(10)\\ 64.91\pm1.13(10)\\ 64.85\pm0.17(12)\\ 64.85\pm0.17$	75.312.215(8) 85.84±216(8) 971.56±798(27) 99.28±028(6) 56.71±7109(19) 38.67±338(16) 83.01±05(10) 3.66±0.23(3) 66.57±458(8)	55,59±13(27) 44,4±46(5) 24,9±46(5) 28,91±468(2) 38,91±468(2) 39,38±176(9) 84,65±34(1) 39,38±177(6) 84,85±34(1) 84,85±37(1) 84,85±37(1) 98,38±27(6) 9,38±27(1) 48,61±240(1) 48,03±422(2) 48,03±422(2) 48,03±422(2) 48,03±422(2) 48,03±422(2) 48,03±422(2) 48,03±422(2) 48,03±422(2) 48,03±422(2) 48,03±422(2) 48,03±422(2) 48,03±420(2) 49,03±124(1) 41,03±124(1)41,03±124(1) 41,03±124(1)41,03±124(1) 41,03±124(1)41,03±124(1)41,03±124(1)41,03±124(1)41,03±124(1)41,03±124(1)41,	11.184 0.403 0.990 0.952
ICI						11.184 0.403 0.990 0.952
	$\begin{array}{c} 6.09\pm0.0(12)\\ 6.09\pm0.0(4.5)\\ 67.06\pm0.0(6.5)\\ 99.08\pm0.22(9.5)\\ 99.08\pm0.22(9.5)\\ 79.3\pm0.0(4)\\ 79.3\pm0.0(6)\\ 59.77\pm0.0(10)\\ 14.31\pm0.6(10)\\ 20.62\pm0.4(7)\\ 42.14\pm2.2(11)\\ \end{array}$	79.92±1.13(7) 40.45±4.01(9) 40.45±4.07(16) 71.062±4.48(18) 94.39±1.31(8) 94.39±1.31(8) 94.39±1.31(8) 95.01±0.78(16) 96.01±0.78(16) 46,49±0.0(19)	$\begin{array}{c} 8.44\pm0.0(24)\\ 98.57\pm0.65(13)\\ 84.5\pm0.0(11)\\ 39.83\pm0.0(12)\\ 70.36\pm0.0(2)\\ 70.36\pm0.0(5)\\ 100.0\pm0.0(8.5)\\ 21.85\pm0.0(13)\\ 67.15\pm0.0(8)\\ 67.14\pm0.068\end{array}$	742.175(9) 83.82±0.0(14) 97.32±0.0(2) 97.38±0.0(17) 92.71±0.16(5) 82.54±0.0(17) 82.54±0.0(11) 82.54±0.0(11) 65.12±7.1(10) 65.12±7.1(10) 65.12±7.1(10)	81,274-00(4) 20,622-34(2) 26,622-60(1) 26,622-60(1) 901542-34(2) 26,622-60(1) 901542-37(2) 901542-37(2) 81,212-34(2) 10,346-00(1) 10,346-00(1) 15,524-00(6) 15,254-00(1) 15,25	
KNN ^{avg}	$\begin{array}{c} 0.09\pm0.0(12)\\ 11.65\pm0.0(4.5)\\ 67.06\pm0.0(6)\\ 32.06\pm0.76(15)\\ 99.08\pm0.22(9, 99.08\pm0.22(9, 99.08\pm0.22(9, 95.06))\\ 14.5\pm0.0(4)\\ 79.3\pm0.0(6)\\ 14.3\pm0.0(10)\\ 14.3\pm0.0(10)\\ 20.62\pm0.4(7)\\ 22.14\pm2.2(11)\\ 22.14\pm2.2(11)\\ \end{array}$	79.9241.13(7) 79.9241.13(7) 40.45542.07(16) 40.45544.07(16) 31.91±3.73(15) 70.6224.48(18) 94.3941.31(8) 94.3941.31(8) 94.3941.31(8) 95.01±0.78(16) 46.49±0.0(13)	8.44±0.0(24) 98.57±0.65(1) 84.5±0.0(11) 39.83±0.0(12) 39.83±0.0(12) 70.36±0.0(5) 100.0 ±0.0(8) 21.85±0.0(13) 67.15±0.0(8) 57.15±0.0(8) 57.15±0.0(8)	742.122.25(9) 83.82±0.0(14) 97.32±0.0(2) 97.38±0.0(17) 92.71±0.16(5) 82.54±0.0(11) 82.54±0.0(11) 82.54±0.0(11) 82.54±0.0(11) 65.12±7.1(10) 65.	81, 47±0.0(4) 20, 42±2, 34(2) 26, 62±2, 34(2) 26, 62±0.0(18) 90, 15±3, 37(18) 83, 17±5, 03(16) 83, 17±5, 03(16) 83, 17±5, 03(16) 10, 36±0.0(19) 10, 36±0.0(19) 115, 25±0.0(25) 15, 14±0.00(11) 15, 14±	11.719 0.380 0.963 0.932
×						-000
2.nd	$\begin{array}{l} 6.02\pm0.0(16.5)\\ 6.02\pm0.0(4.5)\\ 66.11\pm0.0(7)\\ 66.11\pm0.0(7)\\ 97.69\pm0.4(19)\\ 97.69\pm0.4(19)\\ 78.33\pm0.0(17)\\ 78.33\pm0.0(10)\\ 78.32\pm0.0(10)\\ 78.32\pm0.0(10)\\ 78.25\pm0.4(10)\\ 78.25\pm0.4(10)\\ 51.95\pm2.2(10)\\ $	$8.7.8\pm0.99(5)$ $61.88\pm0.90(5)$ $41.22\pm5.02(15)$ $41.22\pm5.02(15)$ $89.95\pm1.8(11)$ $89.48\pm1.9(14)$ $9.08\pm0.0(15.5)$ $9.08\pm0.0(15.5)$ $97.96\pm0.46(4)$ $50.55\pm0.04(6)$	$\begin{array}{c} 8.67\pm0.0(21)\\ 96.16\pm6.43(20)\\ 85.56\pm0.0(10)\\ 85.26\pm0.0(10)\\ 72.08\pm0.0(2)\\ 72.08\pm0.0(3)\\ 72.08\pm0.0(3)\\ 77.11\pm0.0(10)\\ 61.76\pm0.0(17)\\ 61$	76.642-22002 84.95±0.0(12) 96.92±0.0(35) 98.84±0.0(7) 98.84±0.0(7) 96.37±0.25(3) 96.37±0.25(3) 83.15±0.0(9) 2.82±0.0(9) 7.2.02±4.82(6)	76 64±00(14) 29 34±00(10) 29 34±400(10) 91 38±457(10) 91 38±457(10) 91 38±457(10) 91 38±457(10) 91 38±457(10) 91 38±457(10) 91 38±457(10) 91 37±400(10) 95 71±400(10) 95 71±400(10) 95 71±400(10) 19 38±400(10) 19 3	
DTE-NP ¹¹ 8	$6.02\pm0.0(165$ $6.02\pm0.0(165$ $11.65\pm0.0(45)$ $40.68\pm0.0(7)$ $79.92\pm0.81(1)$ $78.33\pm0.0(10)$ $78.33\pm0.0(10)$ $78.33\pm0.0(10)$ $78.33\pm0.0(10)$ $78.32\pm0.0(10)$	51.84 51.85	$\begin{array}{c} 8.67\pm0.0(21)\\ 96.16\pm6.43(2)\\ 85.26\pm0.0(10)\\ 41.04\pm0.0(10)\\ 72.08\pm0.0(3)\\ 72.08\pm0.0(3)\\ 72.01\pm0.0(10)\\ 61.76\pm0.0(17)\\ 61$	76.68 4.95 4.95 54.95 54.95 55.92 53.94 53.15 54 53.15 52 53.94 53.15 54 53.15 54 53.15 54 53.15 54 53.15 54 53.94 52 53.94 52 53.95 54 52 54 54 52 54 52 54 52 54 52 54 52 54 52 54 52 54 52 54 52 54 54 52 54 54 54 55 54 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 55	76.64 28.38 29.34 29.34 29.34 29.34 20.35 29.34 20.35 20.35 20.55 20.55	10.035 0.106 0.868 0.806
=						
0	5.51±0.022) 5.52±0.032) 6.372±3.08(9) 6.372±3.08(9) 6.312±2.23(30) 6.312±2.23(30) 2.025±0.0(32) 51.15±24.55(30) 7.65±0.16(22) 11.25±0.16(22) 11.25±1.1(22) 31.33±5.85(12)	50.23±11.//(27) 57.81±4.16(24) 0.33±0.03(32) 2.314±13.98(24) 3.491±13.15(32) 0.73±0.06(32) 9.89±0.52(7) 45.08±5.72(24) 71.72±21.88(31) 71.72±21.88(31)	15.74 ±6.69(2) 30.87±35.63(31) 83.19±0.66(12) 53.72±4.223243) 59.72±1.98(15) 15.65±19.61(32) 19.15±3.94(15) 73.46±2.81(1) 16.7±2.42200	$53,42\pm13,53(32)$ $77,46\pm6,34(26)$ $79,32\pm13,48(25)$ $13,35\pm0.0(32)$ $13,35\pm0$	14355-58(16) 1319-29-94/23 1319-29-94/23 1319-29-94/23 1319-29-94(19) 12238-184(13) 1961-22-400 1825-14/20 182	
DROCC	5.91 ± 0 9.52 ± 0 $63.72\pm$ $84.59\pm$ $84.59\pm$ $53.19\pm$ $51.15\pm$ $43.91\pm$ $43.91\pm$ $14.25\pm$ $14.25\pm$ $31.33\pm$ $31.33\pm$	30.2 ± 1 $57.81\pm$ $57.81\pm$ 0.33 ± 0 0.33 ± 0 0.33 ± 0 0.73 ± 0 0.73 ± 0 $1.72\pm$ $71.72\pm$ $71.72\pm$	15.74 30.87± 83.19± 59.72± 59.72± 15.65± 19.15± 19.15± 19.15±	$53.42\pm$ $77.46\pm$ $79.32\pm$ $55.62\pm$ $65.62\pm$ $79.07\pm$ $79.07\pm$ $79.07\pm$ $28.48\pm$	$74.35 \pm 74.35 \pm 74.976 \pm 74.4076 \pm 74$	22.158 1.000 1.000 1.000
	25(13) 1,55(13) 1,46(31) 45(27) 45(27) 4,56(27) 5,37(27) 4,69(27) 5,37(25) 1,56(11) 1,56(25) 1,58(27) 1,58(27) 1,58(28)(28)(28)(28)(28)(28)(28)(28)	20.11.02 6.65(2 6.65(2 20.11(20.11(20.11(32.61(1.67(8) 15.88(15.88(15.88(15.88(15.88(15.88(15.88(15.23))))))))))))))))))))))))))))))))))))	22.11(22.15(22.55(22.55(22.55(22.11(22	1.5.77() 8.54(130) 8.54(130) 9.54(230) 9.54(230) 1.2(23) 9.54(230) 1.2(23) 1.2	
MINDYO	$9.53\pm0.46(31)$ $9.53\pm0.46(31)$ $48.03\pm17.56(26)$ $7.5\pm3.45(27)$ $90.95\pm8.57(26)$ $32.35\pm4.69(28)$ $55.86\pm7.98(28)$ $59.7\pm7.63(11)$ $9.04\pm2.75(22)$ $9.04\pm2.75(22)$ $9.84\pm9.98(24)$	$\begin{array}{c} 195.4\pm 11.02(31)\\ 56.75\pm 6.65(25)\\ 56.75\pm 6.65(25)\\ 18.62\pm 12.43(29)\\ 8.62\pm 12.43(29)\\ 54.37\pm 8.05(27)\\ 57.53\pm 32.61(19)\\ 9.22\pm 0.3(13)\\ 31.78\pm 3.63(29)\\ 71.5\pm 4.94(29)\\ 40.28\pm 2.2(16)\end{array}$	$\begin{array}{c} 10.37\pm1.67(8)\\ 73.47\pm15.88(28)\\ 64.5\pm4.62(32)\\ 64.5\pm4.62(32)\\ 46.06\pm7.88(24)\\ 70.61\pm23.94(27)\\ 70.61\pm23.94(27)\\ 4.55\pm2.39(29)\\ 60.26\pm12.84(18)\\ 10.7\pm0.6121\\ 0.020\pm12.84(18)\\ 10.7\pm0.6121\\ 0.0121\pm0.6021\\ 0.0121\pm0.6021\\ 0.0121\pm0.6021\\ 0.0121\pm0.6021\\ 0.0121\pm0.6022\\ 0.0121\pm0.6022\\ 0.0121\pm0.6022\\ 0.0121\pm0.6022\\ 0.0121\pm0.6022\\ 0.0121\pm0.602\\ 0.0121\pm0.$	5648±5.33(31) 75.98±5.33(31) 75.98±3.34(28) 65.98±23.68(27) 50.37±21.79(23) 20.92±25.93(22) 74.22±2.55(25) 73.95 ±0.75(1) 45.3 ±21.11(28)	65,08±1577733 25,06±85,44(6) 7.22±3.21(30) 7.22±3.21(30) 5.65±3.29,54(26) 3.092±2.65(23) 8.45±11.2123 3.092±2.65(23) 8.45±11.2123 3.092±6.67(23) 3.719±2.84(24) 3.719\pm2.84(24)3.719±2.84(24) 3.719\pm2.84(24.009 1.000 1.000 1.000
					22222222222222222222222222222222222222	
	$2,93\pm0.5(21)$ 10.18\pm0.78(24) 49.01±6.78(24) 5.96±3.84(29) 96.76±0.62(22) 29.75±5.8(29) 60.56±7.01(9) 9.66±7.01(2) 9.46±6.75(21) 13.42±3.87(15) 13.42±3.32(27) 13.42±3.32(27) 13.42±3.32(27) 22.56±9.16(17) 22.56±9.16(17)	22.5.9221.5329 54.492-63(27) 56.492-153(27) 56.5421.53(27) 50.15±7.4(28) 7.4649.79(31) 8.73±0.29(3) 8.73±0.20(38) 39.32±2.28(26) 39.32±2.28(26) 35.7±5.77(24)	$\begin{array}{c} 8.03\pm0.25(30)\\ 75.78\pm1.08(24)\\ 75.78\pm1.08(24)\\ 34.07\pm7.67(27)\\ 90.8\pm10.84(23)\\ 34.07\pm7.67(27)\\ 90.8\pm10.84(23)\\ 3.93\pm0.45(31.5)\\ 48.72\pm3.80(28)\\ 27.72\pm2.80(28)\\ 27.72\pm2.80(28)\\ 27.72\pm2.80(28)\\ 28.72\pm2.80(28)\\ 28.72\pm2$	$59.36\pm 7.676(2)$ $79.77\pm 0.93(22)$ $93.72\pm 0.69(12)$ $55.74\pm 40.66(29)$ $53.04\pm 7.11(21)$ $8.16\pm 5.47(24)$ $8.16\pm 4.45(20)$ $5.77\pm 11.21(16)$	64 256:65 256:65 24:01 (672:42:76(3)) (16.42:42:54(26)) (10.42:42:54(26)) 75:74:17.0420) 75:74:17.0420 75:74:17.0420 75:74:17.0420 79:61.022(25) 79:71.022(25) 70:71.022(2	
LODA	5.93 10.18 49.01 5.96 6.76 96.76 96.76 96.76 9.6 72 29.75 9.46 40 13.42 14.42 14.444 14.444 14.444 14.444 14.444 14.444 14.444 14.444 14.444 14.444 14.444 14.444 14.444 14.444 14.444 14.444 14.4444 14.4444 14.4444 14.4444 14.44444 14.4444444 14.44444444	22.59 54.49 15.555	8.03±(75.78± 43.21± 34.07± 34.07± 34.07± 3.93±(48.57± 48.57± 3.93±(48.57± 3.93±(3.25±)	559.364 93.724 55.744 55.744 53.044 8.16± 8.16± 8.16± 2.97± 6.16± 57.174	64.264 16.724 16.724 16.724 16.725 75.744 75.744 75.745 77.96±0 77.96±0 77.96±0 77.96±0 83.3±7 77.96±0 77.96±0 1775 77.96±0 1775 77.96±0 1775 77.96±0 1775 77.96±0 1775 77.96±0 1775 77.96±0 1775 77.96±0 1775 77.96±0 1775 77.96±0 1775 77.96±0 1775 77.96±0 77.95±0 1775 77.96±0 775 77.96±0 775 77.96±0 775 77.96±0 775 77.96±0 775 77.96±0 775 77.96±0 775 77.96±0 775 77.96±0 775 776 775 776 775 776 775 776 775 776 775 776 776	22.939 1.000 1.000 1.000
	a				8, 388,588,238,232,232,232,332,33	
DeepSVDD	6.23±0.35(105) 10.24±1.27(22) 27.83±5.93(32) 86.01±1.27(22) 96.01±1.28(23) 36.95±1.27(25) 36.95±1.27(25) 37.99±4.32(27) 7.09±4.32(27) 15.35±1.07(17) 2.66±1.53(28)	42.5.46148(17) 42.5.46148(26) 52.5.46117.13(12) 52.5.4511.05(7) 36.09±31.85(7) 9.68±1.47(9) 51.56±4.75(9) 9.68±1.47(9) 51.56±4.75(9) 99.69±0.81(3) 99.45±2.4(11)	8.93±0.52(16.5) 96.82±3.69(17) 69.54±0.73(28) 27.54±11.4(23) 46.0±9.55(25) 99.91±0.17(17) 4.53±1.04(30) 5.52.61±3.89(27) 5.20£±3.89(27)	5.75±1.75(38) 81.1±1.97(18) 76.38±8.21(26) 98.03±0.13(12) 42.99±3.28(25) 30.73±22.82(21) 75.26±2.44(24) 3.38±0.38(55) 3.38±0.38(55)	69.06.81(18) 69.06.81(18) 16.88±193(27) 16.88±193(27) 16.88±193(27) 86.81±11.122; 84.32±89(27) 84.32±89(27) 7.08±0.1730 84.32±89(27) 7.48±2.58(9) 10.02±10.030 31.44±2.04(25) 14.05±10.03720 85.74±2.042(25) 14.05±10.03720 14.05±10.03720 85.74±2.042(25) 14.05±10.03720 14.05±10.05±10.03720 14.05±10.03700 14.05±10.03700 14.05±10.03700 14.05±10.03700 14.05±10.03700 14.05±10.03700 14.05±10.03700 14.05±10.03700 14.05±10.03700 14.05±10.03700 14.05±10.03700 14.05±10.03700 14.05±10.03700 14.05±10.03000 14.05±10.03000 14.05±10.03000 14.05±10.030000000000000000000000000000000000	-
DeepS	6.23 10.24 10.24 84.77 84.77 96.01 36.95 38.89 38.89 38.89 38.89 38.89 15.39 15.39 2.69 ± 15.39	555.46 555.46 98.73 36.09 98.73 98.73 98.73 98.73 98.73 98.69 98.68 43.60 98.68 43.60 98.68	8.93± 96.82 69.54 69.54 72.754 99.91 99.91 99.91 99.91 99.91 99.91 99.91 99.91 99.91 99.91 99.91 99.91 99.91 90 90 82 44 80 90 80 80 80 80 80 80 80 80 80 80 80 80 80	$81.1\pm$ 81.1\pm 76.28 98.03 98.03 30.75 33.38\pm 75.26 75.26 75.26 75.26	69.06 23.42	19.114 1.000 1.000 1.000
			0		28 - 29 - 29 - 29 - 28 - 28 - 28 - 28 -	
	$0.4\pm0.0(14)$ $0.6\pm0.0(21)$ $0.0\pm0.0(23)$ $40.0\pm0.0(28)$ $9.16\pm0.2(8)$ $9.5\pm0.0(5)$ $78.55\pm0.0(9)$ $78.55\pm0.0(9)$ $16.9\pm0.79(7)$ $11.7\pm0.29(30.5)$ $11.7\pm0.29(30.5)$ $11.7\pm0.29(30.5)$ $19.22\pm1.54(19)$	51.71±0.97(1) 51.71±0.97(1) 51.71±0.030 53.22±6.942(2) 53.22±6.942(2) 53.22±6.942(2) 53.18±0.82(2) 55.18±0.82(2) 61.87±0.01(3) 61.87±0.01(3) 75.64±1.71(3) 31.09±0.0(32)	$\begin{array}{c} 10.65\pm0.0(7)\\ 94.38\pm1.43(21.5)\\ 67.92\pm0.0(29)\\ 55.2\pm0.0(1)\\ 16.86\pm0.0(31.5)\\ 98.2\pm0.0(18)\\ 98.2\pm0.0(18)\\ 5.59\pm0.0(26.5)\\ 5.58\pm0.0(26.5)\\ 58.58\pm0.0(26.5)\\ 58.58\pm0.0(26.5)$	$64.77\pm2.03(10)$ $64.77\pm2.3(25)$ $69.57\pm0.0(31)$ $95.2\pm0.0(21)$ $30.49\pm0.2(31)$ $30.49\pm0.2(31)$ $71.2\pm0.0(30)$ $71.2\pm0.0(30)$ $2.87\pm0.0(19)$ $49.0\pm3.8627)$	64.03±0.0(22) 19.93±0.8(22) 19.93±0.8(22) 17.73±0.0(2)) 7.35±0.0(2) 9.31±2.88(13) 9.31±2.88(13) 7.68±0.0(2)) 7.68±0.0(2) 7.68±0.0(2) 7.68±0.0(2) 7.68±0.0(2) 7.68±0.0(2) 7.68±0.0(2) 9.55±0.0(15) 9.5	
ECOD	6.06±0.0(14) 10.4±0.0(21) 40.02±0.0(28) 99.16±0.2(8) 49.51±0.0(5) 78.55±0.0(9) 78.55±0.0(9) 16.9±0.79(7) 11.73±0.29(30) 19.22±1.54(19)	41.27±0.97(19) 35.171±0.0(30) 35.2±4.68(21) 25.02±6.94(23) 45.8±15.47(29) 25.18±0.82228) 84.8±0.0(22) 61.87 ±0.0(1) 75.6±1.17(30) 31.09±0.0(32)	10.65±0.0(7) 94.38±1.43(21.5 67.92±0.0(29) 55.2 ±0.0(1) 16.86±0.0(31.5) 98.2±0.0(18) 5.59±0.0(26.5) 5.59±0.0(23) 41.45±0.0(23)	64.77±2.20(3) 69.57±0.0(31) 79.66±0.0(24) 95.2±0.0(21) 30.49±0.2(31) 30.49±0.2(31) 71.26±0.0(30) 71.26±0.0(30) 71.26±0.0(30) 40.0±386(27)	66 03:400(22) (1993:4724) (1772:45:400(2)) (1772:45:400(2)) (2735:44:400(2)) (2735:45:42) (2135:42) (2135:42)	21.500 1.000 1.000 1.000
ç	(c)					
5.72±0.0(27) 11.15±0.0(7.5) 29.61±0.0(31)	$\begin{array}{c} 4.84\pm0.1(30.5)\\ 99.44\pm0.1(30.5)\\ 51.05\pm0.0(1)\\ 74.88\pm0.0(14)\\ 74.88\pm0.0(14)\\ 56.07\pm0.0(18)\\ 16.48\pm0.82(9)\\ 111.73\pm0.29(305)\\ 122.26\pm0.85(23)\\ \end{array}$	53.540(22) 53.540(29) 38.43439(18) 20.094404(28) 56.08435(25) 46.314211(24) 9.3400(2) 78.494306(28) 33.82400(28) 33.82400(28) 33.82400(28)	8.85±0.0(18) 93.9±2.85(23) 72.22±0.0(27) 54.63±0.0(2) 16.86±0.0(31.5) 96.13±0.0(20) 5.59±0.0(26.5) 41.51±0.0(31) 20.85±0.0(26.5)	90.024247(19) 73.33±0.0(29) 85.27±0.0(21) 98.05±0.0(10) 98.05±0.0(10) 98.05±0.0(10) 73.58±0.0(26) 73.58±0.0(26) 73.58±0.0(26) 56.43±3.1(20)	30. 99±00(23) 15.48±184(32) 7.06±00(31) 7.06±00(31) 93±6429(12) 93±6429(12) 93±6429(12) 83.78±29(12) 83.78±29(23) 13.25±00(31) 13.25±00(31) 13.25±00(31) 13.25±00(31) 13.25±00(31) 11.03±60(31) 25±200(31) 11.03±60(31) 25±200(31) 25±2	
	$\begin{array}{c} 5.72\pm0.0(27)\\ 1.1.5\pm0.0(7.5)\\ 29.61\pm0.0(31)\\ 29.61\pm0.0(31)\\ 99.44\pm0.1(30.5)\\ 99.44\pm0.1(30.5)\\ 51.05\pm0.0(1)\\ 74.88\pm0.0(1)\\ 74.88\pm0.0(1)\\ 74.88\pm0.0(1)\\ 17.7\pm0.0(18)\\ 16.78\pm0.0(18)\\ 11.73\pm0.29(30)\\ 11.73\pm0.29(30)\\ 12.26\pm0.85(23)\end{array}$	55.19 53.19 38.43 20.09 9.3±0 9.3±0 61.74 78.49 78.49 33.82	8.85± 93.9± 72.22 54.63 16.86 96.13 5.59± 41.51 41.51	69.07 73.33 85.27 98.05 98.05 98.05 73.33 73.33 73.33 73.33 73.58 73.58 73.58 73.58 73.58	30.19 - 52.019 - 52.019 - 52.019 - 52.019 - 52.019 - 52.016 + 52.016 - 52	22.044 1.000 1.000 1.000
	$\begin{array}{c} 8.8\pm0.0(24)\\ 9.8\pm0.0(12)\\ 61.12\pm0.0(12)\\ 17.81\pm1.03(18)\\ 52.05\pm5.3(32)\\ 22.9\pm0.0(30)\\ 23.51\pm0.0(32)\\ 33.51\pm0.0(32)\\ 13.66\pm1.25(21)\\ 14.66\pm1.25(21)\\ 2.23\pm0.32(30)\\ 2.23\pm0.32(30)\\ \end{array}$	$57.26\pm4.14(2)$ $60.8\pm0.0(18)$ $60.8\pm0.0(18)$ $52.08\pm0.3(3)$ $89.16\pm5.91(1)$ $50.54\pm3.34(2)$ $10.3\pm0.46(3)$ $30.56\pm0.37(3)$ $30.44\pm1.96(2)$ $37.37\pm0.0(19)$	24.7 ±0.0(1) 98.1±2.64(16) 65.76±0.0(31) 11.17±0.01(31) 11.17±0.01(31) 72.019±0.0(30) 5.14±0.0(28) 55.1±0.0(28) 55.1±0.0(22) 55.1±0.0(22) 55.1±0.0(22)	$56.78\pm3.69($ $55.78\pm3.69($ $55.78\pm3.69($ $53.01\pm0.72($ $54.87\pm0.01(32)$ $54.87\pm0.01(32)$ $54.87\pm0.01(32)$ $54.87\pm0.01(32)$ $50.5\pm0.0(32)$ $3.9\pm0.35(2)$ $3.9\pm0.35(2)$ $3.9\pm0.35(2)$ $3.9\pm0.35(2)$	66.91±00(24) 5.7±00(24) 5.7±00(21) 5.7±00(21) 5.7±00(21) 5.7±00(21) 5.7±00(21) 1.0±400(17) 1.0±400(17) 1.0±400(17) 1.0±400(12	
DIF	5.8±0.0(24) 9.89±0.41(28) 61.12±0.0(12) 72.05±5.33(32) 52.05±5.33(32) 22.4.99±0.00(32) 33.51±0.00(32) 33.51±0.00(32) 14.66±11.25(24) 14.66±11.25(24) 14.66±11.25(24) 14.66±11.25(24)	$57.26\pm0.14(21)$ $57.26\pm0.0(18)$ $2.08\pm0.0(18)$ $67.02\pm1.3(6)$ $89.16\pm5.9(13)$ $50.54\pm3.34(23)$ $10.3\pm0.46(3)$ $30.56\pm0.37(31)$ $30.56\pm0.37(31)$ $34.4\pm1.96(21)$ $37.37\pm0.0(19)$	$\begin{array}{c} 24.7 \pm 0.0(1) \\ 98.1\pm 2.64(16) \\ 65.76\pm 0.0(31) \\ 11.17\pm 0.01(31) \\ 20.19\pm 0.0(30) \\ 72.21\pm 0.0(26) \\ 5.1\pm 0.0(28) \\ 5.1\pm 0.0(28) \\ 5.1\pm 0.0(22) \\ 5.1\pm 0.0(22) \end{array}$	$\begin{array}{c} 5.78 \pm 3.04(20) \\ 63.25 \pm 0.0(32) \\ 63.25 \pm 0.0(32) \\ 94.87 \pm 0.01(22) \\ 63.01 \pm 1.72(15) \\ 63.01 \pm 1.72(15) \\ 50.5 \pm 0.0(32) \\ 3.01 \pm 0.35(2) \\ 49.13 \pm 9.19(26) \end{array}$	66091±00024) 2864±290(10) 4326 ±00(1) 4326 ±00(1) 7924±118(2) 11.08±00(17) 1	222.325 1.000 1.000 1.000
	5.7 ± 0.2428) 5.7 ± 0.2428) $5.8.7\pm5.0165$ 6.31 ± 1.9428) $98.77\pm0.37(14)$ $23.09\pm7.18(31)$ $23.09\pm7.18(31)$ $23.09\pm7.18(32)$ $67.52\pm0.82(4)$ $4.01\pm1.21(29)$ $8.69\pm0.93(32)$ $1.09\pm0.18(32)$	9.0±1.95(32) 62.14±0.82(1) 62.14±0.82(1) 65.77±5.45(1) 65.77±5.45(1) 68.38±8.01(1) 88.8±0.11(27) 88.8±0.11(27) 93.17±2.64(2) 93.15±2.65(2) 93.15±2.65(2) 93.	8.13±0.05(28) 98.76±0.88(11) 76.13±2.42(23) 27.82±3.84(22) 65.09±0.57(11) 176±1.15(21) 63.5±1.05(13) 63.5±1.05(13)	6.1.5±2.8.2.4(2) 6.1.5±2.8.2.4(2) 78.96±0.46(23) 95.89±0.1(8) 60.16±26.92(28) 42.18±1.84(26) 42.18±1.84(26) 22.4±8.48(19) 22.81±0.31(24) 49.57±1772(25) 49.57±1772(25)	80.09±0.80(9) 80.09±0.80(9) 80.91=3458(2) 80.91=3458(2) 81.91=358(15) 81.91=358(15) 81.91=358(15) 81.91=358(15) 81.91=358(15) 81.91=358(15) 81.91=358(15) 81.91=358(15) 81.91=358(15) 81.91=358(15) 81.91=358(15) 81.91=358(15) 85.92=0.4(12) 85.52=	_
GOAD	$5.7\pm$ 5.7 \pm 58.74 6.31 \pm 98.77 98.77 98.77 94.79 84.79 84.79 84.79 84.79 84.79 84.79 84.79 10 401 \pm 8.69 \pm 8.69 \pm 1.09 \pm 8.01	$\begin{array}{c} 0.012 \\$	8.13= 98.76 98.76 76.13 76.13 77.82 65.09 65.09 65.09 65.09 65.5± 7.76± 63.5±	$\begin{array}{c} 65.15\pm8.8(24)\\ 78.96\pm0.46(23)\\ 95.89\pm0.4(8)\\ 66.16\pm26.92(28)\\ 42.18\pm1.48(19)\\ 22.4\pm8.48(19)\\ 82.09\pm0.2(13)\\ 22.4\pm0.3(24)\\ 95.5\pm1772(24)\\ 24.57\pm1772(24)\\ 24.57\pm1772(24)\\ 24.57\pm1772(24)\\ 24.57\pm1772(24)\\ 24.57\pm1772(24)\\ 24.57\pm1772(24)\\ 24.57\pm1772(25)\\ 24.57\pm172(25)\\ 24.57\pm172(25)$ 24.57\pm172(25)	80.04-05.80(9) 21.39-44.87(2) 20.94-2.47(20) 20.94-2.47(20) 21.39-44.2.47(20) 21.39-44.2.47(20) 21.39-44.2.57(20) 21.31-2.47(20) 21.31-2.47(20) 21.31-2.47(20) 21.31-2.47(20) 21.31-2.47(20) 21.31-2.47(20) 21.31-2.47(20) 21.31-2.47(20) 21.31-2.47(20) 21.32	19.061 0.999 1.000 1.000
GANomaly	8.09 ±1.27(1) 9.93±0.19(27) 34.3±10.62(30) 27.87±6.63(16) 93.78±2.46(25) 39.17±4.44(22) 54.94±3.82(26) 54.94±3.82(20) 54.94±3.82(20) 17.49±2.11(14) 25.03±38.24(16)	$\begin{array}{c} 2.3 \times 2.11 \times 2.60 \\ (0.24 \pm 11.15(3) \\ (0.24 \pm 11.15(3) \\ 0.25 \pm 17.15(17) \\ 3.25 \pm 17.15(17) \\ 9.41 \pm 0.16(29) \\ 19.29 \pm 40.33(11) \\ 19.29 \pm 40.33(17) \\ 3.2.89 \pm 1.31(75) \\ 3.7.14 \pm 8.33(23) \\ 3.7.14 \pm 8.33(23) \end{array}$	8.45±0.09(23) 90.53±7.4(24) 65.83±2.36(30) 37.08±23.89(15) 47.97±4.73(23) 100.0 ±0.08.5) 11.57±3.94(19) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.65±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 46.55±1.5.20(77) 47.55±1.50(77) 47.55±1.50(77) 47.55±1.	$\begin{array}{c} 0.000 \\$	53.61±24.51(28) 23.561±24.51(28) 23.56±1.94(19) 23.56±1.94(19) 23.53±5.42(24) 23.82±1.54(24) 23.82±1.54(25) 88.85±1.26(21) 88.85±1.26(21) 88.85±1.26(21) 11.38±0.24(24)11.38±0.24(24) 11.38±0.24(24)11.38±0.24(24)11.38±0.24(24)11.38±0.24(24)110	5
GAN	8.05 9.93: 34.3: 34.3: 39.17 39.17 39.17 39.17 54.94 54.94 7.47 17.47 17.47 25.03			81.8 81.8 93.94 31.85 83.63 33.47 2.76± 33.47	23.6 21.6 21.6 23.3 23.3 21.6 23.3 21.6 23.3 23.3 23.3 21.6 23.3 23.3 23.3 21.6 23.3 23.3 23.3 21.6 23.3 23.3 21.6 21.6 23.3 23.3 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	18.561 1.000 1.000 1.000
	3 ² 2 ² ⁽² ⁽² ⁽² ⁽² ⁽² ⁽² ⁽	$3^{(2)}_{(2)}$ $3^{(2)}_{(2)$	9) 229 32) 332 32) 329 329 329 329 329 329 329 329 329 329	23. 333 999 289 289		
s	$642\pm0.0(8)$ $642\pm0.0(8)$ $39.03\pm0.0(29)$ $8.56\pm0.26(23)$ $99.08\pm0.27(9.5)$ $99.08\pm0.27(9.5)$ $58.87\pm0.0(24)$ $58.87\pm0.0(24)$ $16.77\pm0.78(8)$ $14.01\pm0.372(8)$ $5.42\pm0.61(27)$	56.53 ± 0.522 35.389 ± 0.028 $32.58 \pm 542(22)$ $53.49 \pm 5.9(22)$ $65.49 \pm 5.9(22)$ $38.95 \pm 12.16(26)$ $9.01 \pm 0.0(19)$ $64.65 \pm 3.76(32)$ $60.12 \pm 0.0(3)$	$\begin{array}{c} 8.73\pm0.0(19)\\ 96.55\pm2.11(18)\\ 77.15\pm0.0(22)\\ 21.32\pm0.0(26)\\ 22.21\pm0.0(26)\\ 100.0\pm0.0(29)\\ 100.0\pm0.0(29)\\ 12.38\pm0.0(3)\\ 22.21\pm0.0(3)\\ 22$	7.828.22.36(6) 86.49±0.05) 87.68±0.020) 97.49±0.016) 53.37±0.59(20) 1.15±0.1(27) 7.15±0.1(27) 7.15±0.1(27) 3.21±0.0(9) 3.21±0.0(9) 5.228±4.56(22)	7865±00(3) 1866±24(29) 788±00(25) 788±00(25) 787±3±11(19) 778±00(25) 778±00(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±90(25) 7771±00(25) 7771±00(25) 7765±00(27) 7775±00(27) 7755±00(27)7555±00(27) 7755±00(27	19.316 1.000 1.000
HBOS	6.42 39.0 39.0 99.0 99.0 99.0 99.0 99.0 99.0	53.8 53.8 53.4 53.4 53.5 53.8 53.5 53.5 53.5 53.5 53.5 53.5		75.8 86.4 97.4 53.3 78.4 78.4 78.4 78.4 222	76.9 18.8 7.7.8 87.7 7.7.8 7.7.7 7.7.7 7.7.7 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 7.7.8 7.7.7 87.7 7.7.8 7.7.8 87.7 7.7.8 7.7.7.8 7.7.7.7.	19.316 1.000 1.000 1.000
	32) (30) (30) (30) (30) (30) (30) (30) (12) (12) (12) (12) (12) (12) (12) (12	$^{49,51}_{42,512}$, $^{49,512}_{42,512}$, $^{49,512}_{42,522}$, $^{49,23}_{42,232}$, $^{40,23}_{42,234}$, $^{40,23}_{42,232}$, $^{40,23}_{42,232}$, $^{40,22}_{42,232}$, $^{41,22}_{42,232}$, 41,	(13) 11(18) 11(18) 12(29) 22(29) 22(29) 22(29) 12(21) 12(21) 12(24) 12(2	66(14) 7(24) 7(24) 7(24) 3(0) 3(1) 3(1) 5(2) 3(1) 5(2) 5(2) 5(2) 5(2)	757794578(15) 9674252094542(2) 9674252084570(2) 7099410.40(2) 712464153224(2) 717464153224(1) 170725410.40(2) 717464153224(10) 17072524(1) 717464153224(10) 170724224(10) 170724224(10) 170724224(10) 170724224(10) 1707442224(10) 1707442224(10) 1707442224(10) 1707442224(10) 1707442224(10) 17044423224(10) 1704442324(10) 1724444419 1724444419 172444444444444444444444444444444444444	
PlanarFlow	9.56±0.50(32) 9.56±0.50(30) 65.15±2.63(8) 97.47±1.08(20) 7.47±1.08(20) 42.77±2.92(20) 68.92±1.77(21) 58.92±1.77(21) 58.92±1.67(21) 1.28±4.44(4) 1.38±0.6(31) 1.98±0.6(31)	49.51±14.82(15) 60.35±29(20) 62.81±9.37(3) 62.81±9.37(3) 30.93±6.56(18) 89.63±5.08(12) 5.223±4.21(22) 5.223±4.21(22) 7.55±0.67(10) 7.55±0.67(10) 7.55±0.88(9) 34.19±0.88(9) 34.19±0.88(9) 34.19±0.94(27)	9.19±0.81(13) 96.24±4.22(19) 78.51±2.91(18) 18.52±9.52(29) 55.22±3.33(21) 3.56±4.31(31) 3.35±6.433.45(11) 5.32±4.34(31) 3.33±6.47(31,5) 5.32±4.50(124)	712.32.32.96(14.5) $77.86\pm2.47(24)$ $62.47\pm5.18(29)$ $51.66\pm12.93(30)$ $74.74\pm17.48)$ 74.74 ± 17.48 $85.54\pm2.63(4)$ $3.26\pm0.57(7)$ $5.241\pm12.56(27)$	7579467 7815) 7759467 7815) 9.674-25(28) 9.674-25(28) 9.674-25(28) 7009410.49(25) 7009410.49(25) 71094411.320(10) 7736411.320(10) 78584-27(10) 78584-27(10) 78584-104(10) 163741.222(10) 163741.2	132 30 30
Plai		89.00 80.00 80.000				19.132 0.999 1.000 1.000
	0.22±0.0(7,5) 0.72±0.0(7,5) 56.57±0.0(18) 9.91±0.13(5,5) 48.8±0.0(11,5) 86.17±0.00(2) 9.68±0.0(2) 9.68±0.0(2) 9.68±0.0(2) 9.68±0.0(2) 16.17±0.86(2) 16.15±0.86(1) 16.15±0.85(1	(24) (26) (27) (22) (22) (22) (22) (22) (22) (22	200 200 200 200 200 200 200 200 200 200	91.92±0.0(15.5) 91.92±0.0(16) 96.27±0.0(19.5) 96.29±0.33(28) 96.27±0.0(19.5) 96.27±0.0(19.5) 96.27±0.0(15.5) 81.84±0.0(15.5) 53.881±7.82(17) 53.881±7.82(17)	81244-00(5) 192.641.41(28) 1051.4-00(23) 84.341.600(23) 94.341.87(6) 94.341.87(6) 94.341.87(6) 94.341.87(6) 94.341.87(6) 94.341.90(32) 1277-00(128) 90.224.60(128) 97.246.00(128) 11.248-40(1018) 11.248-408-408-408-408-408-408-408-408-408-4	
_	$653\pm0.0(7.5)$ $10.72\pm0.0(17.5)$ $56.57\pm0.0(18)$ $7.9\pm0.13(25)$ $99.19\pm0.15(5.5)$ $48.8\pm10.0(11.5)$ $48.8\pm10.0(11.5)$ $66.68\pm0.0(2)$ $69.68\pm0.0(2)$ $20.95\pm11.06(11.5)$ $20.05\pm10.0(11.5)$ $10.17\pm0.86(20)$ $16.17\pm0.86(20)$	5.5.22±1.21(24) 60.35±0.020) 26.93±1.9(28) 20.96±5.76(26) 64.85±5.06(20) 91.69±1.57(25) 8.71±0.0(25) 90.94±1.25(25) 90.94±1.25(25) 32.77±0.0(22) 32.77±0.0(22)	$\begin{array}{c} 8.01\pm 0.0(31)\\ 98.49\pm 0.55(14)\\ 75.2\pm 0.0(26)\\ 41.65\pm 0.0(7)\\ 64.9\pm 0.0(12.5)\\ 100.0\pm 0.0(8.5)\\ 6.02\pm 0.0(2.4)\\ 5.925\pm 0.0(21)\\ 5.925\pm 0.0(21)\\ 5.925\pm 0.0(21)\end{array}$	7.11863.2.9(15) 77.79.40.0(26) 91.92.40.0(16) 96.27.40.0(19.5) 36.39.40.3(28) 49.5.46.1(11) 81.84.40.0(15.5) 81.84.40.0(15.5) 58.81.47.82(17) 58.81.47.82(17) 58.81.47.82(17)	8.134±005) 10.35±014(28) 10.35±014(28) 9.43±1187(6) 9.43±1187(6) 8.205±4.51(17) 8.205±4.51(17) 8.205±4.51(17) 8.205±4.51(17) 8.205±4.51(17) 9.43±101(28) 9.23±001018) 5.616±00178, 5.616±00018, 5.616±00018, 5.616±00018, 5.616±00018, 5.616±00018, 5.616±00018, 5.616±00018, 5.616±00018, 5.616±00018, 5.616±00018, 5.616±00018, 5.616±000018, 5.616±000018, 5.616±000018, 5.616±000018, 5.616±000018, 5.616±00000000000000000000000000000000000	17.904 0.996 1.000 1.000
PC						17.90 0.996 1.000 1.000
	$0.72\pm0.0(17.5)$ $0.72\pm0.0(17.5)$ $5.74\pm0.0(17)$ $9.17\pm0.17(7)$ $9.17\pm0.17(7)$ $18.84\pm0.0(11.5)$ $88.25\pm0.0(1)$ $69.69\pm0.0(1)$ $0.9.5\pm1.11(1.5)$ $19.82\pm0.55(11)$ $16.05\pm0.88(21)$	$ \begin{array}{c} 222 \\ 121 \\ 121 \\ 112 $	2) 1((12) (25) (25) (25) (25) (20) (20)	$7.5149\pm 5.00(13)$ 81.04 $\pm 0.11(19)$ 92.94 $\pm 0.28(13)$ 96.27 $\pm 0.0(19.5)$ 40.14 $\pm 0.33(27)$ 40.14 $\pm 0.33(27)$ 81.84 $\pm 0.0(15.5)$ 81.84 $\pm 0.0(15.5)$ 59.92 $\pm 7.90(15.5)$	81,335,006) 11,855,18390 10,1±0.01(27) 8,4±0.0(25) 93,22±2,74(1) 93,22±2,74(1) 93,22±2,74(1) 93,22±2,74(1) 93,22±2,74(1) 93,25±2,74(1) 94,25±2,74(2) 94,25±2,75±2,74(2) 94,25±2,75±2,75±2,75±2,75±2,75±2,75±2,75±2	
ш	$\begin{array}{c} 6.54\pm0.0(5)\\ 6.54\pm0.0(7.5)\\ 5.67\pm0.0(7.5)\\ 5.67\pm0.0(7)\\ 9.17\pm0.17(7)\\ 9.9.17\pm0.17(7)\\ 48.84\pm0.0(11.5)\\ 88.25\pm0.0(11.5)\\ 69.69\pm0.0(11)\\ 69.69\pm0.0(11)\\ 19.82\pm0.56(11)\\ 10.82\pm0.58(21)\\ 16.05\pm0.88(21)\end{array}$	560351±0.712.57 56035±0.0720 28.74±5.54260 18.51±3.73(30) 64.48±5.1(21) 90.42±1.67(12) 8.71±0.0(29.5) 46.97±0.0(22.5) 91.42±1.3(24) 40.29±7.3(15)	$\begin{array}{c} 8.0\pm0.0(32)\\ 98.59\pm1.01(12)\\ 75.27\pm0.0(25)\\ 41.76\pm0.02(6)\\ 64.9\pm0.012.5)\\ 100.0\pm0.0(12.5)\\ 100.0\pm0.0(2.5)\\ 501\pm0.0(22)\\ 59.39\pm0.0(2)\\ 59.39\pm0.0(2)\end{array}$	71.49±4.60(19) 81.04±0.11(19) 92.94±0.28(13) 96.27±0.0(19.5) 40.14±0.33(27) 49.3±6.44(13) 81.8±4.40(15.5) 81.8±4.40(15.5) 5992±7.90(15.5)	8.1334.00(6) [17.854] 85(30) [17.854] 85(30) [17.854] 85(40) [17.854] 85(40) [17.854] 85(40) [17.954] 82(252) [17.954] 82(25) [17.954] 82(25) [17.954] 80(25) [17.954] 80(25)	17.482 0.995 1.000 1.000
VAE		28.70 90.44 91.4 91.4 91.4 91.4 91.4 91.4 91.4 9	8.0 98.0 75. 644 644 601 601 59.5 59.5	811 811 818 818 818 818		17. 0.95 1.00 1.00
	amazon amazon backdoor breast w campaign cardio cardio celeba cceleba corer sover	s e	aphy nma raphy s	0	within within within waveform whe with whe with whe with whe whe whe whe whe whe whe whe whe wh	
	aloi amazon amutyroid backdoor breast w campaign cardio cardio cardio celeba census cover cover	donors fault fraud glass hepatitis http indb internetads ionosphere landsat	letter lymphography magic.gamma mannography mnist musk optdigits pageblocks	permugus satellite satimage-2 skintle skin santp spambase speech stambs	thyroid watebral wwateform waveform wate wite wite wite wite wyte TashiomMNI FashiomMNI FashiomMNI SVHN MVTec-AD MVTec-AD MVTec-AD	$\begin{array}{l} \operatorname{Rank}(\operatorname{avg})\\ \operatorname{All} \\ d \leq 20 \\ d \leq 50 \end{array}$
Dataset				ਮੁਜ ਦ ਦ ਦ ਦ ਦੇ ਨੇ ਕੇ ਕ	. ~	Rank(avg) All $d \le 20$ $d \le 50$

	, Tich	NCD	$3.41 \pm 0.14(31)$ $11.32 \pm 0.23(9)$	50.37±0.0(19) 19.49±27.36(18)	95.84±0.67(14)	$48.33\pm1.62(16)$ $59.09\pm0.0(21)$	36.48±1.78(28) 25.12±4.446)	$29.45 \pm 3.37(1)$	$3.44\pm0.31(28)$	56.37±1.62(13)	56.19±3.88(11) 16.75±0.00/75)	$49.49\pm11.04(26)$	93.05±1.51(9) 7.44±0.22(11)	$33.42\pm0.0(28)$	88.64±1.2(15.5)	$47.7 \pm 9.54(11)$ $2.4 \pm 0.89(17.5)$	83.73±4.92(24)	67.89±0.12(19) 2.62±0.63(32)	55.97±2.61(18)	53.61±14.3(29) 0.0±0.0(30)	57.57±0.11(17)	14.50±0.33(29) 70.86±2.2(7)	63.15±5.11(29) os 77 ±0.0(1)	84.62±0.0(25)	76.76±0.35(12)	77.7±2.09(17)	2.62±1.47(24) 30.07±8.32(31)	73.12±0.0(14)	17.32±5.22(21)	$9.0\pm0.0(22)$	$79.13\pm14.06(20)$ $58.73\pm7.26(25)$	7.78±0.0(13)	(41.28±3.93(20)	46.27±0.18(25) 12.52±0.3/23)	25.69±4.92(27)	37.35±5.77(25) 17.91±2.06(22)	14.34±1.94(25)	14.72±1.95(8)	13.08±0.32(19) 18.912	1,000
		II.oIcst	4.2±0.20(20.2) 11.28±0.64(10)	55.02±4.22(14) 4.07±2.4(29)	$96.94 \pm 0.46(1)$	43.7±0.91(19) 67.5±3.32(10)	56.14±2.75(7) 17 33±2 30(15)	10.54±1.4(25)	11.61±1.24(25)	43:40±3.34(16) 53:64±1.34(25.5)	28.03±4.09(29) 16.18±7.01/26)	54.0±5.54(24)	25.8±22.46(20)	$26.41 \pm 4.44(32)$	83.43±3.5(22)	43.27±1.34(14) 3.8±1.1(13.5)	85.05±4.72(23)	69.64±1.25(14) 39.23±2.48(14)			42.63±2.29(29)	51.55±4.73(12) 69.57±2.68(12)	67.12±0.64(21) e0.5e±1.61(0)	06.71±0.53(16)	78.06±0.72(11)			80.43 ±3.08(1)	15.84±2.0(24) 15.2±3.62(23)	10.2±2.17(19)	88.25±2.41(9) 70.91±11.05(21)	2.02±0.33(21)			34.7±2.59(21)	45.33±2.4(23) 18.19±1.18(21)	16.45±1.06(21)	(C.61)c0:12:00(19:0) 10:49±1.66(26)	(22)(0)(22) 17.781	1.000
	01 100		_	48.8±7.04(25) 84.45±2.16(4)	$74.03\pm10.32(29)$	47.85±2.0(18) 36.82±14.29(30)	31.67±2.63(31) 10.11±5.61(10.5)	$17.47\pm2.81(15)$	77.79±3.91(3)	55.81±0.56(18)	55.61±10.96(12) 76.4±13.6(7)	99.64 ±0.79(2.5)	78.82±42.94(16) 10.36±5.1323)	54.95±5.79(7)						88.06±25.36(25) 27.07±18.57(10)	54.59±2.54(20)	65.17±3.7(22)	70.57±3.05(15)	$98.78 \pm 0.09(2)$	93.36±2.92(5) 27.01±24.52(10)				46.58±10.24(4) 36.0±2.45(5)	24.8±4.27(13)	62.64±10.31(24) 89.47±7.99(3)	64.75 ±4.54(2)			46.21±5.11(9)	54.66±2.68(18) 19.97±2.49(19)				0.603
Montholio Montholio <t< td=""><td></td><td>1</td><td>~</td><td></td><td></td><td></td><td>57.94±0.0(5)</td><td>20.67±0.38(11)</td><td></td><td></td><td></td><td>66.61±4.93(17)</td><td>99.78 ±0.3(2) 5 8±0.000 D</td><td></td><td></td><td></td><td>~</td><td></td><td></td><td></td><td></td><td></td><td>67.34±0.0(20)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>$56.44\pm0.0(14)$ 22.81±0.0(12)</td><td></td><td>-</td><td>(c1)0:</td><td></td></t<>		1	~				57.94±0.0(5)	20.67±0.38(11)				66.61±4.93(17)	99.78 ±0.3(2) 5 8±0.000 D				~						67.34±0.0(20)													$56.44\pm0.0(14)$ 22.81±0.0(12)		-	(c1)0:	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(11)1107 = 0.11(11)	$57.23 \pm 2.96(11)$ $3.6\pm 0.62(20)$	05.04±0.75(20)			$20.27\pm0.48(12)$			73.16 ±2.29(1) 22 81 ±13 36(10)	$36.69 \pm 4.26(9)$	9.68±0.3(3) 5.56±0.00.050		~			$78.88 \pm 0.95(4)$ $24.62 \pm 4.04(26)$			_			Ĵ.					37.54±12.52(7)	12.0±1.22(17.5)	$36.03 \pm 5.16(15)$ $79.28 \pm 7.36(13)$	$20.23 \pm 0.91(6)$			$12.44\pm0.25(14)$	$56.67 \pm 0.27(13)$ $22.98 \pm 0.41(8)$				
T/T SA14(0) STABA(0) STABAA(0) STABA(0) STABAA(0)			_	3								ିନ								2																				
I Restandio Feature Diff. Diff. Current Current <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td>÷</td><td>5.00</td><td></td><td></td><td></td><td>_</td><td>(61</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>±0.57(2)</td><td></td></t<>								_						_					÷	5.00				_	(61							_							±0.57(2)	
72.43.041(4) 0.69.4417(1) 82.43.00(1) 12.43.03.05 81.43.00(1) 95.441.010 95.444.010 95.444.010 95.444.010 95.444.010 95.444.010 95.444.010 95.444.010 95.444.010																				ñ						-		~											(11)(77.0	
III.7323.34(a) III.84.13(b) III.84.13(b	-0.0(3)				_						6		_		~					2															_					
473±4107(1) 137±407(17) 647±4127(17) 647±4127(17) 647±4127(17) 647±4127(17) 547±4127(17) <td>(265) 153(2)</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td></td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	(265) 153(2)													_					-	_											~									
TX2:501(0) 6A2:401(0) 6A2:401(0) 6A2:401(0) 6A2:400(1) 5A2:400(1) 5A2:400				_								ଚ								_				_					<i>.</i>							6				
7.8.2.6.41(1) 7.8.2.6.41(1) 8.8.2.6.01(1) 7.8.2.6.41(1) 0.8.4.6.07(1) 9.8.4.6.01(1) 0.8.2.5.6.00(2) 9.8.4.6.01(1) 0.8.4.1.7.6(1) 0.8.2.5.6.00(2) 9.8.4.6.01(2) 0.8.4.1.7.6(1) 9.8.2.5.6.01(2) 9.8.4.6.10(2) 0.8.4.1.7.6(1) 9.8.2.5.6.01(2) 9.8.4.6.10(2) 0.8.4.1.7.6(1) 9.8.2.5.6.01(2) 9.8.8.6.1.6(2) 0.8.8.6.1.6(1) 9.8.2.5.6.01(2) 9.8.8.8.6.10(2) 0.8.8.8.1.6(1) 9.8.1.4.5.60(1) 7.8.4.1.6.60(2) 0.8.8.1.2.6(1) 9.8.1.4.5.60(1) 7.8.4.1.6.60(2) 0.8.4.1.2.6(1) 9.8.1.4.5.60(1) 7.8.4.1.6.60(2) 0.8.4.1.2.6(1) 9.8.1.4.6.10(1) 9.8.4.1.6.6(1) 0.8.4.1.1.6(1) 9.8.4.4.6.10(1) 9.8.4.1.6.6(1) 0.8.4.1.1.6(1) 9.8.4.4.6.11(1) 9.8.4.1.6.6(1) 0.8.4.1.1.6(1) 9.8.4.4.6(1) 9.8.4.1.6.6(1) 0.8.4.1.1.6(1) 9.8.4.4.6(1) 9.8.4.1.6.6(1) 9.8.4.1.8.6(1) 9.8.4.4.6.10 9.8.4.1.8.6(1) 9.8.4.1.8.6(1) 9.8.4.4.6.10 9.8.4.1.8.6(1) 9.8.4.								÷					U		_					~										4 (4										
 TZE-240(10) TZE-240(_								_			Ģ															0.32
processional secondary secondary secondary secondary processional proc		_	-	6								2				_	~												_						-				= =	0.037
														_								6		2				_		_	-									
		Tiomor						17.4±5.2	69.92±7	57.5±0.0	6134±1 776±60	99.64 ±	89.24±5	internetads 40.82±7	ionosphere 92.31±1	52.66±0 4.0±0.0(49.67±1	74.27±0	2.95±1.2 85 79 ±	59.14±0	64.44 ±	waveform 8.0±0.00	91.15±6 92.67 ±	TT.04 ±	58.02±1	50.49±0 16.12+3					agnews 1/.01±4 Rank(avg) -	

. E

Mat No. Mat No. Mat Mat <th>1</th>	1	
	Cave	
	DTE	
Num Num <td></td>		
Matrix Matrix<	2	
	2vrN	
(10,100, 10,10,100, 10,10,100, 10,100, 10,100, 10,100, 10,100, 10,100, 10,100,		
	2vidN	
V Mc K Mc Deadle DBM DB	DTE-1	
Monthly Setuppin		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
NG NC Defile R/S Orden Defile R/S R/S <th r="" s<<="" td=""><td>MM</td></th>	<td>MM</td>	MM
Viet Key Paulies Obs Dis Colomany Dist Colomany Dist	DAG	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	FODA	
Size 17(0) Size 17		
Reserved 10 Section 10 Sectio	±0.92(2 6±2.19(3±5.12(
15.4.17213 15.4.6.073 15.4.6.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)(25)	
$ \begin{array}{c} 111111111111111111111111111111111111$	0777	
Statisticiti Statisticiti<		
110.000123 10.04.00123 35.44.0023 35.44.0023 35.44.0023 35.44.0023 35.44.0023 35.44.0023 35.44.0033 31.74.4013 35.4.4.4013 35.4.4.4013 36.4.4.4013 35.4.4.4013 35.4.4.4013 36.4.4.4013 35.4.4.4.412 31.4.4.4.4.122 31.4.4.4.4.122 31.4.4.4.4.122 31.4.4.4.4.122 31.4.4.4.4.122 31.4.4.4.4.122 31.4.4.4.4.122 31.4.4.4.4.122 31.4.4.4.4.4.122 31.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	58±0.0C	
Ret_ALON(3) Rest_ALON(3) TypeCon(1) Rest_ALON(3) TypeCon(1) Ty		
$ \begin{array}{c} 1.0.400(12) & 0.001(25) & 0.04160(25$	=0.0(28)	
WE KA Dentricos HOS Colonalysis $NE-40053$ 1764-0053 3334-07250 3534-042050 3534-042050 3534-0420	DIF	
763-6005.5 763-6005.5 763-6005.5 753-6007.26 753-6007.26		
WE CA PanuFlow BDS GANomaly 7.354.07(2) 533.407(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) 573.411(2) <td>GOAD</td>	GOAD	
WE FCA Punnifion HDGS 8:3:4:10(25) 3:8:4:10(25) 3:8:4:10(25) 3:8:4:10(25) 3:8:4:10(25) 8:3:4:10(25) 5:8:4:10(25) 3:8:4:10(25) 3:8:4:10(25) 3:8:4:10(25) 8:3:4:10(25) 5:8:4:10(25) 5:8:4:10(25) 5:8:4:10(25) 5:8:4:10(25) 8:3:4:10(25) 5:8:4:10(25) 5:7:4:2:17(4) 5:9:7:4:10(25) 5:9:7:4:10(25) 8:3:4:10(25) 5:8:4:10(25) 5:7:4:2:17(4) 5:9:7:4:10(25) 5:9:7:4:10(25) 9:3:4:10(25) 5:8:4:10(25) 5:7:4:2:17(4) 6:9:7:4:10(25) 5:9:7:4:10(25) 9:3:7:4:10(25) 5:8:4:10(25) 5:7:4:10(25) 5:7:4:10(25) 5:8:4:10(25) 9:3:7:4:10(25) 5:7:4:10(25) 5:7:4:10(25) 5:7:4:10(25) 5:7:4:10(25) 9:3:7:4:10(25) 5:7:4:10(25) 5:7:4:10(25) 5:7:4:10(25) 5:7:4:10(25) 9:3:7:7:4:10(25) 5:7:4:4:10(25) 5:7:4:4:10(25) 5:7:4:4:10(25) 9:3:7:7:4:10(25) 5:7:4:4:10(25) 5:7:4:4:10(25) 5:7:4:4:10(25) 9:3:7:7:4:10(25) 5:7:7:4:4:10(25) 5:7:4:		
WE FCA PumuFlow HDGS 7.84-00250 384-00250 384-00250 384-00020 8.84-00020 384-00220 384-002020 384-00020 8.84-00020 8.84-00021 384-00021 384-00020 8.84-00020 8.84-00021 384-00021 384-00021 8.84-00014 8.84-00012 8.84-00012 884-00012 8.84-00014 8.84-00012 8.84-00012 884-00012 9.87-14-0014 8.84-00012 8.84-00012 8.94-00012 9.87-14-0014 8.84-00012 9.77-14-94012 7.94-0012 9.87-14-0014 8.84-00012 9.77-14-94012 7.94-0012 9.87-14-0014 9.77-14-9402 7.94-0012 2.94-14-0413 9.77-14-00042 9.77-14-9402 7.94-14-0413 7.94-14-0413 9.77-14-00042 9.77-14-9402 7.94-14-0413 7.94-14-0413 9.77-14-00042 9.77-14-14002 9.77-14-14002 9.77-14-14002 9.77-14-00042 9.77-14-14002 9.77-14-14002 9.74-14-1402 9.74-14-14042 9.74-	Nomaly	
(ME FCA Pumethos 1103-601253 7:64-00.653 3:84-10.27239 1103-601253 7:64-00.653 3:84-10.27239 1103-601253 5:87-80.661.6723 3:84-10.27239 1103-601253 5:87-80.661.6723 3:84-10.6723 18:4-10.721 8:54-10.721 5:74-94.61.61 3:74-11.6723 19:4-10.710 8:57-80.61.623 9:69-10.0723 9:74-14.61.0723 10:4-10.713 8:54-10.721 8:74-46.61.11 2:71-8-40.67.23 10:4-10.723 6:75-44.61.721 9:74-44.61.90.22 9:74-44.61.71 10:75-61.010125 6:75-44.61.721 9:74-44.61.91 9:77-44.61.721 9:77-44.61.721 10:75-61.0110 0:75-41.721 0:75-44.51.11 0:75-44.51.11 0:75-44.51.11 10:75-75 0:74-44.51.11 0:77-44.51.01 0:75-44.51.12.12 0:75-44.51.11 10:74-75.7113 0:75-44.72.21 0:75-44.72.13 0:75-44.15.11 0:75-74.14.61 10:74-75.71021 0:75-44.14.61 0:76-44.14.61 0:76-44.14.61 0:76-44.14.61 10:74-75.71021 0:77-44.61.00253	ЧÖ	
7.63-6005.5) 7.63-6005.5) 7.63-6005.5) 9.83-4072.20 10.10-0012.5) 10.10-0002.15) 9.84-4107.60 9.84-4107.60 10.10-0012.5) 60.12-60.701.5) 9.84-4107.60 9.84-4107.60 9.61.24-67.01 9.83-410.60 9.94-41.976.70 9.84-410.60 9.61.24-67.01 9.84-40.01 9.84-40.01 9.84-40.01 9.61.24-67.01 9.84-40.01 9.94-41.976.71 9.94-44.97.11 9.61.24-67.01 9.92-41.926.71 9.94-44.56.11 9.94-44.56.11 9.61.24-67.01 9.94-41.27.01 9.94-44.56.11 9.94-44.56.11 9.84-67.01 9.84-60.01.5 9.94-44.56.11 9.94-44.56.11 9.94-15.201 9.04-44.57.11 9.94-44.56.11 9.94-44.56.11 9.94-44.56.11 9.94-15.201 9.94-44.56.11 9.94-44.56.11 9.94-44.56.11 9.94-44.56.11 9.94-44.56.11 9.94-15.201 9.94-45.201 9.94-45.26.10 9.94-45.56.10 9.94-45.56.10 9.94-45.66.10 9.94-45.66.10 9.94-45.66.10 9.94-45.66.10 9.94-45.66.10 9.94-45.66.10 9.94-45.66.10 9.94-45.66.10 </td <td></td>		
Num PCA 1 Mum PCA 1 Mum PCA 1 Mum PCA 1 Mum State 107(2) 1 Mum	HBOS	
TAH-00(25) TAH-00(25) TAH-00(25) 11(0)-00(125) 10(0)-00(25) 80(0)-00(21) 85:84-00(21) 85:84-00(21) 85:84-00(21) 85:84-00(21) 85:84-00(21) 85:84-00(21) 85:84-00(21) 85:84-00(21) 85:84-00(21) 85:84-00(21) 85:84-00(21) 70:84-00(21) 70:82-4-00(21) 70:84-4-00(21) 70:84-4-00(21) 70:82-4-00(21) 70:84-4-00(21) 70:84-4-00(21) 70:82-4-00(21) 70:84-4-00(21) 70:84-4-00(21) 71:70-40-80(21) 70:74-4-00(21) 70:74-4-00(21) 71:70-40-80(21) 70:74-4-00(21) 70:74-4-00(21) 71:70-40-80(21) 70:74-4-00(21) 70:74-4-00(21) 71:70-40-80(21) 70:74-4-00(21) 70:74-4-00(21) 71:70-70-75 50:74-00(22) 70:74-4-00(21) 71:70-70-75 50:74-00(22) 70:74-4-00(21) 71:70-70-75 50:74-00(22) 70:74-4-00(21) 71:70-70-75 50:74-00(22) 70:74-4-00(21) 71:70-70-75 50:74-00(22) 70:74-40(21) 71:70-70-75		
Nucl. FCA 7.Kai-mong 5) 1.Kai-mong 5) 1.Kai-mong 2) 1.Kai-mong 2) 1.Kai-mong 2) <td>lanarHo</td>	lanarHo	
7. 63-400 (5.5) (10.4400 (2.5) 50. (1940 (2.6)) 50. (1	4	
VAE 1, 54:3406,55 1 1, 54:3406,25 5 1, 54:3406,25 5 8, 6, 124,07(1) 8, 6, 124,07(1) 8, 6, 124,07(1) 8, 8, 444,07(1) 7, 85, 41,07(1) 7,043,440,145 7,043,440,145 7,043,440,145 7,044,641,10 10,044,641,10 7,044,641,10 10,044,641,10 7,044,641,10 10,044,641,10 7,044,641,10 10,044,641,10 7,044,641,10 10,044,641,10 7,044,641,10 10,044,641,10 7,044,641,10 10,044,641,10 7,044,641,10 10,044,641,10 7,044,641,10 10,044,641,10 7,044,641,10 10,044,641,10 7,044,641,01 10,044,641,01 1,044,641,01 10,044,641,01 1,044,641,01 10,044,641,01 1,044,641,01 10,044,641,01 1,044,641,01 10,044,641,01 1,044,641,01 10,044,641,01 1,044,641,01 10,044,641,01 1,044,641,01 10,044,641,01 1,		
	PCA	
	VAE	
i i i i i i i i i i i i i i i i i i i		
	1 set	

2106 H BENCHMARK OD DATASETS 2107

Table 15: Description of all datasets in ADBench Livernoche et al. (2024).

_	Dataset Name	# Samples	# Features	# Anomaly	% Anomaly	Category
	ALOI	49534	27	1508	3.04	Image
	annthyroid	7200	6	534	7.42	Healthcare
	backdoor	95329	196	2329	2.44	Network
	breastw	683	9	239	34.99	Healthcare
	campaign	41188	62	4640	11.27	Finance
	cardio	1831	21	176	9.61	Healthcare
	Cardiotocography	2114	21	466	22.04	Healthcare
	celeba	202599	39	4547	2.24	Image
	census	299285	500	18568	6.20	Sociology
	cover	286048	10	2747	0.96	Botany
	donors	619326	10	36710	5.93	Sociology
	fault	1941	27	673	34.67	Physical
	fraud	284807	29	492	0.17	Finance
		214	7	4 <i>92</i> 9	4.21	Forensic
	glass					
	Hepatitis	80	19	13	16.25	Healthcare
	http	567498	3	2211	0.39	Web
	InternetAds	1966	1555	368	18.72	Image
	Ionosphere	351	32	126	35.90	Oryctognos
	landsat	6435	36	1333	20.71	Astronautic
	letter	1600	32	100	6.25	Image
	Lymphography	148	18	6	4.05	Healthcare
	magic.gamma	19020	10	6688	35.16	Physical
	mammography	11183	6	260	2.32	Healthcare
	mnist	7603	100	700	9.21	Image
	musk	3062	166	97	3.17	Chemistry
	optdigits	5216	64	150	2.88	Image
	PageBlocks	5393	10	510	2.88 9.46	Document
	pendigits	6870 769	16	156	2.27	Image
	Pima	768	8	268	34.90	Healthcare
	satellite	6435	36	2036	31.64	Astronautic
	satimage-2	5803	36	71	1.22	Astronautic
	shuttle	49097	9	3511	7.15	Astronautic
	skin	245057	3	50859	20.75	Image
	smtp	95156	3	30	0.03	Web
	SpamBase	4207	57	1679	39.91	Document
	speech	3686	400	61	1.65	Linguistics
	Stamps	340	9	31	9.12	Document
	thyroid	3772	6	93	2.47	Healthcare
	vertebral	240	6	30	12.50	Biology
	vowels	240 1456	12	50 50	3.43	Linguistics
			21			
	Waveform	3443		100	2.90	Physics
	WBC	223	9	10	4.48	Healthcare
	WDBC	367	30	10	2.72	Healthcare
	Wilt	4819	5	257	5.33	Botany
	wine	129	13	10	7.75	Chemistry
	WPBC	198	33	47	23.74	Healthcare
	yeast	1484	8	507	34.16	Biology
-	CIFAR10	5263	512	263	5.00	
						Image
	FashionMNIST	6315	512	315	5.00	Image
	MNIST-C	10000	512	500	5.00	Image
	MVTec-AD	5354	512	1258	23.50	Image
	SVHN	5208	512	260	5.00	Image
_	Agnows	10000		500	5.00	NLP
	Agnews	10000	768		5.00	
	Amazon	10000	768	500	5.00	NLP
	Imdb	10000	768	500	5.00	NLP
	Yelp	10000	768	500	5.00	NLP
	20newsgroups	11905	768	591	4.96	NLP

2160 I DIFFERENCES TO PRIOR WORK ON PFNS FOR TABULAR DATA 2161

There exist applications of PFNs (originally developed by Müller et al. (2022)) that pre-date our proposed FoMo-0D, namely, TabPFN (Hollmann et al., 2023) for supervised classification, LC-PFN (Adriaensen et al., 2024) for learning curve extrapolation, PFN4BO (Müller et al., 2023) for Bayesian optimization, and ForecastPFN (Dooley et al., 2023) for time series forecasting.

Here we highlight the differences of our proposed FoMo-0D from these existing PFNs.

- 1. **First PFN4OD:** We employ prior-data fitted networks (PFNs) for outlier detection (OD) for the first time.
- 2. First large-scale pretrained OD model: FoMo-0D is the first model for zero-shot OD that is pretrained at large scale on a large collection of (synthetic) datasets, due to the minuscule nature of existing real-world OD benchmark datasets.
- 3. **New data prior:** Thanks to PFN's reliance on synthetically generated datasets, we establish a new data prior for OD, specifically for outlier synthesis.
- 4. **Data transformation for scale:** While drawing samples from a data prior may be relatively fast, pretraining a large foundation model requires many such draws for every step of each epoch. To speed up data synthesis on-the-fly, we are the first to leverage a linear transformation.
- 2178 5. Router-based attention for scale: PFNs ingest the entire training dataset as context for in2179 context learning at inference time. To accommodate larger datasets at both training (for better
 2180 generalization) and inference (for large-scale real-world datasets), we leveraged a "bottleneck"
 2181 architecture for scalable self-attention, and in turn, larger context size.

2183 J RELATED WORK

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2182

2184

2185 **Outlier Detection (OD):** Thanks to diverse applications in numerous fields, such as security, finance, 2186 manufacturing, to name a few, OD on tabular (or point-cloud) datasets has a vast literature with a 2187 long list of techniques. For earlier, shallow approaches preceding the advances in deep learning, we refer to the books by Aggarwal (2013) and Aggarwal and Sathe (2017). The modern, deep learning 2188 based techniques are surveyed in Chalapathy and Chawla (2019); Pang et al. (2021); Ruff et al. 2189 (2021). Most recent deep OD techniques take advantage of newly emerging paradigms, including 2190 self-supervised learning (Hojjati et al., 2022; Yoo et al., 2023) as well as the most recently popularized 2191 diffusion-based models (Yoon et al., 2023; Livernoche et al., 2024; Du et al., 2024; He et al., 2024). 2192

Unsupervised Model Selection for OD: It is typical of models to exhibit various hyperparameters (HPs) that play a role in the bias-variance trade-off and hence the generalization performance, and OD models are no exception. Many earlier work on OD have showcased the sensitivity of classical (i.e. shallow) OD methods to the choice of their HP(s) (Aggarwal and Sathe, 2015; Campos et al., 2016; Goldstein and Uchida, 2016). Similarly, sensitivity to HPs has also been shown for deep OD models more recently (Zhao et al., 2021; Ding et al., 2022), as well as for those relying on self-supervised learning/data augmentation (Yoo et al., 2023).

While critical, work on unsupervised outlier model selection (UOMS) is slim as compared to the vast literature on detection methods. A handful of existing, mostly heuristic strategies has been studied by Ma et al. (2023) reporting discouraging results; they have shown that existing heuristics are either not significantly different from random selection, or do not outperform iForest (Liu et al., 2008) with its default HPs (an extremely fast ensemble of randomized trees).

More recent, state-of-the-art (SOTA) UOMS approaches go beyond heuristic measures and instead 2205 design scalable hyperensembles (Ding et al., 2022; 2024), as well as take advantage of meta-learning 2206 on historical real-world OD datasets (Zhao et al., 2021; 2022; Zhao and Akoglu, 2024). These 2207 SOTA approaches demonstrate the value of learning from many other OD datasets, and transfer these 2208 learnings to a new dataset. While sharing the same spirit on learning from a large collection of (in 2209 our case, simulated) datasets, our FoMo-0D differs from these prior art in a key aspect; FoMo-0D is 2210 not a model selection technique, but rather, a foundation model that abolishes model training and 2211 selection altogether and unlocks zero-shot inference on a new dataset. 2212

Prior-data Fitted Networks: Based on the seminal work by Müller et al. (2022), Prior-data-fitted Networks (PFNs) establish a new paradigm for machine learning, where a PFN is pretrained on

2214 synthetic datasets generated from a data prior, and the pretrained PFN can then infer the posterior 2215 predictive distribution (PPD) for test points in a new dataset in a single forward pass, through in-2216 context learning (Xie et al., 2021; Garg et al., 2022). It is shown that PFNs provably approximate 2217 Bayesian inference (Müller et al., 2022). Follow-up TabPFN (Hollmann et al., 2023) achieved SOTA 2218 classification performance on small tabular datasets of size up to 1024. Other subsequent works designed LC-PFN (Adriaensen et al., 2024) and ForecastPFN (Dooley et al., 2023), respectively 2219 zero-shot learning curve extrapolation and zero-shot time-series forecasting models, trained purely 2220 on synthetic data. PFN4BO (Müller et al., 2023) employed PFNs for Bayesian optimization, while Nagler (2023) studied the statistical foundations of PFNs. As training data is passed as context to 2222 PFN, others proposed scaling solutions to enable training on larger pretraining datasets for better 2223 generalization (Ma et al., 2024; Feuer et al., 2023; 2024). 2224

Our proposed FoMo-0D differs from these in being the first PFN for OD, using a novel inlier/outlier data prior, employing linear transform for fast data synthesis, and incorporating the "router" attention mechanism for linear-time scalability w.r.t. context size. See Appendix I for additional details.

Zero-Shot Outlier Detection: Foundation models pretrained on massive text and image corpora,
such as large language and/or vision models (L(V)LMs) like OpenAI's GPT-series (Achiam et al.,
2023), DALL-E (Ramesh et al., 2021) and Flamingo (Alayrac et al., 2022), CLIP (Radford et al.,
2021), and LLaVA (Liu et al., 2024) to name a few, have demonstrated remarkable success on
several zero-shot tasks in CV and NLP. Follow-up work extended these models for zero-shot out-ofdistribution detection (Esmaeilpour et al., 2022), zero-shot image OD (Liznerski et al., 2022; Jeong et al., 2023) as well as dialogue-based industrial image anomaly detection (Gu et al., 2024).

2235 Foundation models, however, do not exist for tabular data which is widespread across OD applications 2236 in the real world, such as detecting credit card fraud, network intrusion, medical anomalies, and any 2237 sensor measurement abnormalities, to name a few. The recent ACR model by Li et al. (2023) on zero-shot OD does not rely on a pretrained foundation model, but rather is meta-trained on each specific domain using inlier-only datasets from the same domain. Concurrent to our work, Li et al. 2239 (2024) apply pretrained LLMs for prompt-based OD on tabular data which they serialize to text. 2240 Similar to our work, they also use *simulated* labeled OD datasets to fine-tune several existing LLMs 2241 to improve their performance. Their work, however, is quite preliminary in several fronts; a key 2242 limitation is that they assume independent features and query the LLM one-feature-at-a-time to reach 2243 an outlier score. Further, they fine-tune using only 5,000 data batches with up to 100 samples each, 2244 subsample 150 points and the first 10 columns of each dataset for evaluation (due to GPU memory 2245 constraint), and their testbed includes only two baseline methods. In contrast, FoMo-0D employs and 2246 pretrains PFNs at a much larger scale with rigorous evaluation on a much larger testbed.

2247 2248 2249

K DISCUSSION

2250 2251

Summary: We introduced FoMo-0D, the first foundation model for outlier detection (OD) on
tabular data. FoMo-0D is a prior-data fitted network (PFN), pretrained on a large number of *synthetic*datasets generated from a new data prior for OD, which can infer the posterior predictive distribution
for test points in a new dataset in a zero-shot fashion where the training data is input as context,
capitalizing on *in-context learning*.

Zero-shot OD implies no more OD model (parameter) training and no more model selection, given
 a new OD task. That is a revolution for OD (!), for which algorithm and hyperparameter selection are
 notoriously-hard *without any labeled data*, and also computationally taxing especially for today's
 modern deep OD models with numerous parameters *and* a long list of hyperparameters. What is
 more, FoMo-0D provides extremely fast inference thanks to a mere *single forward pass*, making it
 amenable for OD on data streams.

Building on the PFN paradigm (Müller et al., 2022), FoMo-0D breaks new ground not only conceptually by abolishing the burden of model training and selection, but also empirically: Against
26 different (both classical and modern) baselines on 57 public benchmark datasets from diverse domains, FoMo-0D performs on par with the top 2nd baseline, while significantly outperforming the majority of the baselines. Without the need to train any, let alone multiple models for HP tuning, FoMo-0D takes a mere 7.7 ms per test sample for inference only.

Limitations and Future Directions: FoMo-0D employs a simple straightforward data prior based on GMMs. While it is remarkable to see how far one can go with synthetic data from such a simple prior, future work can design more comprehensive data priors, inclusive of discrete features as well as other possible outlier types. We have also pretrained FoMo-0D solely on synthetic datasets, while future work can augment both synthetic and real-world datasets for pretraining.

2273 Besides the lack of massive real-world datasets for tabular OD, a motivation for a data prior to pretrain 2274 purely on synthetic datasets comes from neural scaling laws (Kaplan et al., 2020; Zhai et al., 2022). 2275 Interestingly, the scaling laws for large Transformer models have shown that their generalization 2276 error tends to drop as a power law with the amount of training data (also, with number of parameters 2277 and amount of compute), but the power law exponent is very small-suggesting that acquiring more 2278 colossal real-world datasets would be a slow, if not expensive approach to advancing ML/AI. Others have proposed ways to subset-select smaller, non-redundant "foundation datasets" (Sorscher et al., 2279 2022; Paul et al., 2021), and emphasized the importance of task/dataset diversity in pretraining 2280 (Raventós et al., 2024). Arguably, synthetic data from a complex and diverse data prior is a potential 2281 gateway to obtaining non-redundant and diverse datasets for pretraining large foundation models like 2282 FoMo-0D. On the other hand, designing such a data prior requires a level of domain/prior knowledge. 2283

Another improvement could be scaling up to even larger context (i.e. dataset) size and dimensionality. While FoMo-OD generalizes beyond pretrained context sizes and dimensionality, it is limited to and performs particularly well on downstream datasets of similar nature as our experiments showed. A promising direction for size generalization is using PFNs as extremely fast ensemble components at inference; since "*PFNs are quick enough to be used as ensemble members. The size constraints could therefore be overcome by boosting and bagging techniques*" (Nagler, 2023).

Further, our work focused on semi-supervised OD with clean/inlier-only training data. Future work can study the unsupervised OD setting and pretraining with mixed/"contaminated" data in this transductive setting, where the unlabeled test data is the same as training data. In addition, we performed offline evaluation of FoMo-OD on static datasets, while its fast inference lends itself to streaming OD, which future work can explore. Technically, both extensions (unsupervised OD and streaming OD) are straightforward from the implementation perspective.

Our current work is limited to OD for tabular (or point-cloud) data. Our ideas can be extended to other data modalities, such as image, graph, and text outliers, to comprise other domains with critical OD applications such as video surveillance, fraud detection and LLM hallucination detection. To that end, the design of novel inlier/outlier priors would be an open direction. A promising approach here could be the use of pretrained generative models to draw synthesized image/text/etc. datasets for pretraining the PFN, in place of manually-designed data priors.

Finally, our quest here has been mainly experimental. Theoretically understanding why these models work as well as they do and investigating their failure cases are important yet open questions.

As the first foundation model for OD, FoMo-0D inspires many promising directions for future research that could lead to fruition for additional practical applications.

2306 2307 2308

L BROADER IMPACT STATEMENT

2309 2310

FoMo-0D is zero-shot, abolishing not only parameter training but also model selection given a new dataset. This is a radical paradigm shift for OD literature, which historically focused on designing new models and recently also effective ways for unsupervised model selection. Obviating the need for either, we expect FoMo-0D to route attention of the community from new OD model design and selection to designing better data priors and gathering datasets for PFN pretraining, along with better and more scalable architectures for PFN.

From the applied perspective, a zero-shot OD model like FoMo-0D is a game-changer for practitioners! Given the plethora of OD algorithms to choose from, which often come with a list of hyperparameters to set, and not having the tools for effective and efficient model selection, the practitioners are burdened with a "choice paralysis". With FoMo-0D, practitioners can not only bypass such dilemmas on one dataset, but thanks to the "train once, use many times" nature of pretrained models, they can do so for any dataset such as those arriving over time. In fact, provided its lightening-fast inference via a single forward pass, FoMo-0D is amenable to deploy in real time on streaming datasets, such that each (test) sample over a stream can be inferred with the preceding samples passed as context.

M REPRODUCIBILITY STATEMENT

We expect that the disruptive nature of FoMo-0D will trigger future innovations in the OD literature, as well as a widespread adoption by practitioners thanks to its key desirable properties. To foster future research and accessibility in practice, we make all resources (our codebase used for prior data synthesis, data transformation, and pretraining as well as our pretrained model checkpoints) publicly available at https://anonymous.4open.science/r/PFN40D. Further, full implementation details are provided in Appendix C.