
Supplementary Material:

Periodic Activation Functions Induce Stationarity

This supplementary document is organized as follows. App. A includes further details and derivations
for the periodic activation functions in the Methods section of the main paper. App. B provides a
full derivation of the correspondence between the Student-t prior and Matérn family under periodic
activation functions. App. C presents and discusses further links to existing work. App. D includes
details on the experiments, baseline methods, data sets, and additional tables and result plots.

A Derivations for Activation Functions

In this section we will introduce the detailed derivations for the activation functions presented in the
main text. In each derivation, we start from the definition of the covariance function of a random
single-layer neural network given as:

κ(x, x′) =

∫ ∫

p(w) p(b)σ(wx+ b)σ(wx′ + b) db dw, (16)

where σ(·) denotes the activation function and p(w) and p(b) the priors over weights and biases
respectively.

A.1 Sinusoidal Activation Function

Let the activation function σ(·) and prior p(b) take the following form:

σ(x) =
√
2 sin(x), (17)

p(b) = Uniform(−π, π). (18)

Then the covariance function κ(x, x′) from Eq. (16) can now be written as:

κ(x, x′) =

∫

p(w)

∫ π

−π

1

π
sin(wx+ b) sin(wx′ + b) db dw. (19)

The inner integral (over b) can now be solved by considering that sin(x) sin(y) = 1
2 [cos(x− y)−

cos(x+ y)], i.e.,
∫ π

−π

sin(wx+ b) sin(wx′ + b) db

=

∫ π

−π

cos(wx+ b− wx′ − b)− cos(wx+ b+ wx′ + b)

2
db

=
1

2

∫ π

−π

cos(w(x− x′))− cos(w(x+ x′) + 2b) db

= π cos(w(x− x′)). (20)

Plugging the above back into Eq. (19) gives us:

κ(x, x′) =

∫

p(w) cos(w(x− x′)) dw, (21)

which, by application of Euler’s formula cos(z) = 1
2 (e

iz + e−iz), can be written as:

κ(x, x′) =
1

2

∫

p(w)eiw(x−x′) dw +
1

2

∫

p(w)e−iw(x−x′) dw. (22)

Since the integration is over the entire real line we can do a change of variables w = −w in the
second integral and by assuming a symmetric prior on w, we obtain

κ(x, x′) =
1

2

∫

p(w)eiw(x−x′) dw +
1

2

∫

p(−w)eiw(x−x′) dw

=

∫

p(w)eiw(x−x′) dw. (23)

By letting r = x − x′, we find that we recover the spectral density decomposition of a stationary
process given by the Wiener–Khinchin theorem, i.e.,

κ(r) =

∫

p(w) eiwr dw, (24)

where p(w) = 1
2πS(w), which was to be shown.

A.2 Sine–Cosine Activation Function

Let us assume a bias-free random single-layer neural network. Following Eq. (16), in the infinite
limit, the corresponding covariance function would take the form:

κ(x, x′) =

∫

p(w)σ(wx)σ(wx′) dw. (25)

Let the activation function be given as:

σ(x) = sin(x) + cos(x). (26)

This gives the covariance function in the form

κ(x, x′) =

∫

p(w) [sin(wx) + cos(wx)] [sin(wx′) + cos(wx′)] dw

=

∫

p(w) sin(w(x+ x′)) dw +

∫

p(w) cos(w(x− x′)) dw. (27)

By application of Euler’s formula we get

κ(x, x′) =
1

2

[∫

p(w) eiw(x−x′) dw +

∫

p(w) e−iw(x−x′) dw

+

∫

p(w) ieiw(x+x′) dw −
∫

p(w) ie−iw(x+x′) dw
]

, (28)

where under assumption that p(w) is symmetric and has support on the entire real line the above
reduces to:

κ(x, x′) =
1

2

[∫

p(w) eiw(x−x′) dw +

∫

p(w) e−iw(x−x′) dw

]

=

∫

p(w) eiw(x−x′) dw, (29)

where the last step follows from application of the change of variables and the symmetricity of
p(w). Again, by letting r = x− x′, we find that we recover the spectral density decomposition of a
stationary process given by the Wiener–Khinchin theorem, i.e.,

κ(r) =

∫

p(w) eiwr dw (30)

confirming the statement in the main paper.

A.3 Triangle Wave Activation

The triangle wave is a periodic, piecewise linear function and it can be written in a parametric form
as

ψ(x) =
4

p

(

x− p

2

⌊
2x

p
+

1

2

⌋)

(−1)⌊
2x
p
+ 1

2 ⌋, (31)

where p is the period of the triangle wave. In the following derivation we will assume that p = 2π.
For analysis, we note that the Fourier series approximation to ψ(x) can be given in the following
form (in the limit of n):

ψ(x) = lim
n→∞

8

π2

n−1∑

k=0

(−1)k(2k + 1)−2 sin((2k + 1)x). (32)

Let λk := 2k + 1, and let us assume the triangle wave activation function and a uniform prior on b
(as in the preceding derivation):

σ(z) =
√
2

n−1∑

k=0

(−1)kλ−2
k sin(λkz), (33)

p(b) = Uniform(−π, π), (34)

where n is the number of harmonics to include in the approximation and k is the harmonic label.

The covariance function κ(x, x′) is, therefore, given as:

κ(x, x′) =

∫

p(w)

∫ π

−π

2p(b)

[
n−1∑

k=0

(−1)kλ−2
k sin(λk(wx+ b))

]

n−1∑

j=0

(−1)jλ−2
j sin(λj(wx

′ + b))

 dw db. (35)

Now, let us solve the inner integrals by ignoring the constant terms and assuming that k 6= j:

∫ π

−π

1

π
sin(λk(wx+ b)) sin(λj(wx

′ + b)) db

=

∫ π

−π

1

2π
cos(λk(wx+ b)− λj(wx

′ + b))− cos(λk(wx+ b) + λj(wx
′ + b)) db. (36)

By solving the definite integral above, we obtain:

=
sin(w(λkx− λjx

′))− sin(w(λkx− λjx
′)) + 2π(λk − λj))

λj − λk

+
sin(w(λkx+ λjx

′))− sin(w(λkx+ λjx
′) + 2π(λk + λj))

λj + λk
, (37)

where we recognise that 2π(λk − λj) will always be an even multiple of 2π, as both λk and λj are
odd. Thus, the above cancels out and Eq. (35) reduces to containing only indexes k = j:

κ(x, x′) =

∫

p(w)

∫ π

−π

2p(b)
n−1∑

k=0

(−1)2k

λ4k
sin(λk(wx+ b)) sin(λk(wx

′ + b)) dw db. (38)

The solution to the first integral for every summand is given as:

∫ π

−π

2p(b) sin(λk(wx+ b)) sin(λk(wx
′ + b)) db

=

∫ π

−π

1

2π
cos(wλk(x− x′))− cos(wλk(x+ y) + 2bλk) db

= cos(wλk(x− x′))− cos(wλk(x+ x′) + 2λkπ) sin(2λkπ))

λk
︸ ︷︷ ︸

=0

. (39)

Inserting this into the equation of the covariance function results in:

κ(x, x′) =

∫

p(w)

n−1∑

k=0

(−1)2k

λ4k
cos(wλk(x− x′)) dw. (40)

We now take into account that the exact solution is given when n→ ∞ and that (−1)2k = 1:

κ(x, x′) =

∫

lim
n→∞

p(w)

n−1∑

k=0

1

λ4k
cos(wλk(x− x′)) dw. (41)

Here we can use the dominated convergence theorem to take the limit outside of the integral. For

this we have fn(w) = p(w)
∑n−1

k=0
1
λ4
k

cos(wλk(x − x′)), and we need a function g(w) for which

|fn(w)| ≤ g(w) for all n and
∫
g(w) dw <∞:

|fn(w)| = p(w)

n−1∑

k=0

1

(2k + 1)4
| cos(wλk(x− x′))| (42)

≤ p(w)
n−1∑

k=0

1

(2k + 1)4
(43)

≤ p(w)

∞∑

k=1

1

k4
=
π4

90
p(w) (44)

Hence, by choosing g(w) = π4

90 p(w) the requirements to use the dominated convergence theorem are

satisfied since
∫

π4

90 p(w) dw = π4

90 <∞.

We obtain:

κ(x, x′) = lim
n→∞

∫

p(w)

n−1∑

k=0

1

λ4k
cos(wλk(x− x′)) dw. (45)

It is also possible to write the density on the weights in Eq. (45) in the form of a mixture density
(assuming the density p is in the location-scale family, which is the case for the prior distributions
discussed in this paper):

κ(x, x′) = lim
n→∞

∫ n−1∑

k=0

1

λ4k
p(w)eiλkw(x−x′)dw,

κ(x, x′) = lim
n→∞

∫ n−1∑

k=0

πkp(w)e
iλkw(x−x′)dw,

κ(x, x′) = lim
n→∞

∫ n−1∑

k=0

πkp(w |λk)eiw(x−x′)dw,

(46)

where p(w |λk) denotes the density function of p(w) with scale parameter λk. Let us now denote

limn→∞

∑n−1
k=0 πkp(w |λk) as p̂(w), i.e.,

κ(x, x′) =

∫

p̂(w)eiw(x−x′)dw. (47)

By letting r = x−x′, we find that we again recover the spectral density decomposition of a stationary
process given by the Wiener–Khinchin theorem, i.e.,

κ(r) =

∫

p̂(w) eiwr dw, (48)

which recovers the statement in the main paper.

RBF kernel

0 2 4

0
0
.5

1

r

κ
(r

)

first term
first 10000 terms

0 2 4

1
0
−

1
2

1
0
−

7
1
0
−

2

r

d
if

fe
re

n
ce

in
κ
(r

)

Matérn-3/2 kernel

0 2 4

0
0
.5

1

r

κ
(r

)

first term
first 10000 terms

0 2 4
1
0
−

5

r

d
if

fe
re

n
ce

in
κ
(r

)

Matérn-1/2 kernel

0 2 4

0
0
.5

1

r

κ
(r

)

first term
first 10000 terms

0 2 4

1
0
−

8
1
0
−

5
1
0
−

2

r

d
if

fe
re

n
ce

in
κ
(r

)

Figure 7: Numerical integration results on the error introduced by approximating the mixture in
Eq. (48) using only its first component. The top row figures correspond to the RBF kernel, with p(w)
being standard normal distribution. The middle and bottom row figures correspond to the Matérn-3/2
and Matérn-1/2 kernels, with p(w) being Student-t distribution with degrees of freedom 3 and 1
respectively. The figures on the left compare the kernel values κ(r) from equation Eq. (45) with
r = x− x′, while the sum has either only the first term or the 100 first terms included. The figures
on the right show the difference between the curves on the left side figures on a logarithmic scale.
The figures show that the error introduced by approximating the mixture in Eq. (48) using only its
first component is very small when p(w) is one of the distributions used in the experiments.

We again obtain a connection between the prior (in this case, a mixture) and the spectral density
through the Wiener–Khinchin theorem. In this case, the spectral density also has to admit a mixture
density. However, working with a mixture density as prior could be potentially challenging for
inference. For this reason, in practise the mixture is approximated only using its first component,
since this is a series of rapidly decreasing terms. Fig. 7 shows simulation results of the error introduced
by approximating the mixture using only its first component. Based on these results the error from
this approximation appears very small, when p(w) is in the Matérn-class, which is the case in all
experiments in this paper.

A.4 Periodic ReLU Activation

Finally, we consider a periodic function that captures the spirit of the ReLU activation function in the
form of a repeating rectified linear pattern. This can be modelled as the sum of two triangle waves,
the second one shifted by half a period. The resulting periodic function is piece-wise linear and
defined as:

ψ(x) =
2

π

((

(x+
π

2
)−π

⌊
(x+ π

2)

π
+
1

2

⌋)

(−1)⌊
(x+π

2
)

π
+ 1

2 ⌋+

(

x−π
⌊
x

π
+
1

2

⌋)

(−1)⌊
x
π
+ 1

2 ⌋

)

, (49)

assuming a period of p = 2π. In the following derivation we will again use a Fourier series
approximation of a slightly differently weighted form of the periodic ReLU function as the activation
function, i.e.,

σ(x) = lim
n→∞

n−1∑

k=0

(−1)kλ−2
k

(

sin(λk(x+
π

2
)) + sin(λkx)

)

, (50)

and p(b) = Uniform(−π, π). Then, the covariance function is given as:

κ(x, x′) =

∫

p(w)

∫

p(b)

[

lim
n→∞

n−1∑

k=0

(−1)kλ−2
k

(

sin(λk(wx+
π

2
+ b)) + sin(λk(wx+ b))

)
]

 lim
n→∞

n−1∑

j=0

(−1)jλ−2
j

(

sin(λj(wx
′ +

π

2
+ b)) + sin(λj(wx

′ + b))
)

 dw db. (51)

As done previously, we will first solve the inner integral by assuming that k 6= j, i.e.,

∫

p(b)
(−1)k+j

λ2kλ
2
j

(

sin(λk(wx+
π

2
+ b)) + sin(λk(wx+ b))

)

(

sin(λj(wx
′ +

π

2
+ b)) + sin(λj(wx

′ + b))
)

db, (52)

where we recognise that,

sin(λk(wx+
π

2
+ b)) = (−1)k cos(λk(wx+ b)), (53)

due to the definition of λk, giving us a series of definite integrals:

∫ π

−π

(−1)k+j cos(λk(x+ b)) cos(λj(x
′ + b)) db

=
(−1)k+j

(λj − λk)(λj + λk)

(

2 sin(πλj) cos(πλk)(λk sin(λjx
′) sin(λkx) + λj cos(λjx

′) cos(λkx))

− 2 cos(πλj) sin(πλk)(λj sin(λjx
′) sin(λkx) + λk cos(λjx

′) cos(λkx))
)

= 0, (54)

which cancels out as sin(πλk) and sin(πλj) will be zero for every j and every k. Moreover, we have:

∫ π

−π

sin(λk(x+ b)) sin(λj(x
′ + b)) db

=
1

(λj − λk)(λj + λk)

(

2 sin(πλj) cos(πλk)(λj sin(λjx
′) sin(λkx) + λk cos(λjx

′) cos(λkx))

− 2 cos(πλj) sin(πλk)(λk sin(λjx
′) sin(λkx) + λj cos(λjx

′) cos(λkx))
)

= 0, (55)

which again cancels out for the same reason. Finally, we have:
∫ π

−π

(−1)j sin(λk(x+ b)) cos(λj(x
′ + b)) db

=
(−1)j

(λj − λk)(λj + λk)

(

2(cos(πλj) sin(πλk)(λj sin(λjx
′) cos(λkx)− λk cos(λjx

′) sin(λkx))

+ sin(πλj) cos(πλk)(λj cos(λjx
′) sin(λkx)− λk sin(λjx

′) cos(λkx)))
)

= 0, (56)

and the same can be shown for
∫ π

−π
(−1)k sin(λj(x

′ + b)) cos(k(x+ b)) db.

Therefore, our derivations simplify to containing only terms where k = j:

κ(x, x′) =

∫

p(w)

∫

p(b)

[

lim
n→∞

n−1∑

k=0

(−1)2kλ−4
k

(
(−1)k cos(λk(wx+ b)) + sin(λk(wx+ b))

)

(
(−1)k cos(λk(wx

′ + b)) + sin(λk(wx
′ + b))

)

]

dw db. (57)

Here we can again use the dominated convergence theorem to take the limit outside of the integrals:

κ(x, x′) = lim
n→∞

∫

p(w)
n−1∑

k=0

(−1)2kλ−4
k

∫

p(b)

[

(
(−1)k cos(λk(wx+ b)) + sin(λk(wx+ b))

)

(
(−1)k cos(λk(wx

′ + b)) + sin(λk(wx
′ + b))

)

]

dw db. (58)

We can now start by calculating the inner integral:
∫

p(b)
[(

(−1)k cos(λk(wx+ b)) + sin(λk(wx+ b))
)

(
(−1)k cos(λk(wx

′ + b)) + sin(λk(wx
′ + b))

)]

db

=

∫

p(b)

[

cos(λk(wx+ b)) cos(λk(wx
′ + b)) + sin(λk(wx+ b)) sin(λk(wx

′ + b))

+ (−1)k cos(λk(wx+ b)) sin(λk(wx
′ + b))

+ (−1)k cos(λk(wx
′ + b)) sin(λk(wx+ b))

]

db

=

∫

p(b)

[

cos(λk(wx+ b)− λk(wx
′ + b)) + (−1)k sin(λk(wx+ b) + λk(wx

′ + b))

]

db

=

∫

p(b) cos(λkw(x− x′) db+ (−1)k
∫

p(b) sin(λkw(x+ x′) + 2λkb)) db

︸ ︷︷ ︸
=0

= cos(λkw(x− x′)) (59)

Inserting this result into the original equation results in:

κ(x, x′) = lim
n→∞

∫

p(w)
n−1∑

k=0

λ−4
k cos(wλk(x− x′)) dw, (60)

where we recognise that this the exact same equation encountered in App. A.3 and the terms in the
series decrease rapidly towards zero, thus, allowing us to approximate the covariance using only the

Table 2: Priors on the weights corresponding to the spectral density of kernels in the Matérn family.

KERNEL FUNCTION PRIOR DISTRIBUTION

Exponential (ν = 1/2) Cauchy(0, 1)
Matérn-ν t-dist(2ν)
RBF (ν → ∞) N(0, 1)

first term of the sum which gives us (see App. A.3 for analysis on the approximation error):

κ(x, x′) =

∫

p(w) cos(w(x− x′)) dw =

∫

p(w) eiw(x−x′) dw. (61)

Finally, by letting r = x− x′, we find that we again recover the spectral density decomposition of a
stationary process given by the Wiener–Khinchin theorem, i.e.,

κ(r) =

∫

p(w) eiwr dw, (62)

which concludes the derivation.

B Derivations of Correspondence to the Matérn family

Relating to Sec. 3.3 in the main paper, we provide the following derivation. The spectral density of
the Matérn family (cf., Eq. (2)) for the 1D case is given as:

SMat.(w) = 2
√
π
Γ(ν + 1

2)

Γ(ν)
(2ν)ν

(
2ν + w2

)−(ν+ 1
2) , (63)

where ν is a smoothness parameter, and we assume unit magnitude and ℓ = 1 for simplicity. Note
that we intentionally used w instead of ω to highlight the correspondence to the prior on the weights.
By assuming the prior p(w) to follow a Student-t distribution i.e.,

p(w) =
Γ(u+1

2)√
uπΓ(u2)

(

1 +
w2

u

)−u+1
2

, (64)

and setting the degree of freedom u = 2ν, we can recover the spectral density of the Matérn family,
i.e.,

p(w) =
Γ(2ν+1

2)√
2νπΓ(2ν2)

(

1 +
w2

2ν

)− 2ν+1
2

=
Γ(ν + 1

2)√
2νπΓ(ν)

(
1

2ν
(2ν + w2)

)−(ν+ 1
2)

=
Γ(ν + 1

2)√
2νπΓ(ν)

(2ν)ν+
1
2

(
2ν + w2

)−(ν+ 1
2) =

Γ(ν + 1
2)√

πΓ(ν)
(2ν)ν

(
2ν + w2

)−(ν+ 1
2)

=
1

2π
2
√
π
Γ(ν + 1

2)

Γ(ν)
(2ν)ν

(
2ν + w2

)−(ν+ 1
2) =

1

2π
SMat.(w). (65)

A summary of the priors on the network weights corresponding to the spectral density of kernels in
the Matérn family is given in Table 2.

C Additional Insights

Fourier features, the sinusoidal (or other periodic) basis, and the special dual relationship between
stationary covariance functions and the associated spectral density, have been common building
blocks in machine learning and signal processing methods for decades. We review connections to
Random Fourier features and Fourier methods in GP models.

C.1 Connection to Random Fourier Features

Random Fourier features [43] are a popular technique for randomized, low-dimensional approxima-
tions of kernel functions. They are motivated by the observation that the spectral density of a RBF
covariance function of a Gaussian process prior can be estimated using Monte Carlo integration. Let
ω ∼ N(0, 1) be Gaussian distributed and ζω(x) = exp

(
iωT

x

)
, then

Eω[ζω(x), ζω(x
′)∗] =

∫

p(ω) exp
(
iωT

r

)
dω, (66)

where ∗ denotes the complex conjugate, is an estimator of the covariance function.

Assuming that ω and x are real-valued, let b be a value drawn uniformly from [−π, π], and by

replacing the complex exponentials with cosines zω(x) =
√
2 cos(ωT

x+ b) we obtain:

Eω[zω(x)zω(x
′)] = Eω[cos(ω

T(x− x
′))]

= Eω[Eb[
√
2 cos(ωT

x+ b)
√
2 cos(ωT

x
′ + b) | ω]] (Euler’s formula)

≈ 1

K

K∑

j=1

√
2 cos(ωT

kx+ bk)
√
2 cos(ωT

kx
′ + bk). (67)

We recognise that the estimate used in random Fourier features is similar to the covariance function
of a finite-width single hidden layer network with sinusoidal activation function.

Rahimi and Recht [43] additionally proposed a representation using a composition of a sin and
a cosine function, which motivated the use of the sine–cosine activation function in this paper.
Sutherland and Schneider [51] later showed that this representation reduces the variance of the
estimates when used to approximate the RBF kernel.

C.2 Fourier Methods in Gaussian Process Models

The Fourier duality for stationary covariance functions has been extensively leveraged in Gaussian
process models. For gridded inputs, this duality directly allows for leveraging FFT methods to speed
up inference and learning. In particular, the sparse spectrum GP (SSGP) method [24] uses the spectral
representation of the covariance function to draw random samples from the spectrum. These samples
are used to represent the GP on a trigonometric basis, i.e.,

φ(x) =
(
cos(2π s⊤1 x) sin(2π s⊤1 x) . . . cos(2π s

⊤
h x) sin(2π s⊤h x)

)
, (68)

where the spectral points sr, r = 1, 2, . . . , h (2h = m) are sampled from the spectral density of the
stationary covariance function (following the normalization convention used in the original paper).
The covariance function corresponding to the SSGP can be given in the form (cf., Mercer’s theorem):

κ(x,x′) ≈ 2

m
φ(x)φ⊤(x′) =

1

h

h∑

r=1

cos
(
2π s⊤r (x− x

′)
)
. (69)

This representation of the sparse spectrum method converges to the full GP in the limit of the number
of spectral points going to infinity, and is the preferred formulation of the method in one or two
dimensions (discussed in [24]). We can interpret the SSGP method in Eq. (69) as a Monte Carlo
approximation of the Wiener–Khinchin integral. This interpretation also gives rise to alternative
methods for GPs: the methods by Hensman et al. [19] and Solin and Särkkä [48] can be interpreted
as a dense/structural (quadrature) approximation to the same integral.

However, for high-dimensional inputs, the SSGP method requires optimization of the frequencies
rather than relying on sampling, which is problematic (as discussed in [24]), resulting in a tendency to
overfit, and loses the interpretation of the original GP prior in the model. Note that these issues have
been addressed in subsequent work. As in SSGPs, our method can be seen as a sampling/optimization
approach to a rank-reduced approximation of the induced prior covariance structure. However, the
connection we derived retains the role of the prior throughout and generalizes the interpretation of
the role of the periodic basis.

H
ig

h
ly

n
o
n
-s

ta
ti

o
n
ar

y

ArcCos-1∼ ReLU ArcCos-0∼ Step NN∼ Sigmoid

L
o
ca

ll
y

st
at

io
n
ar

y

RBF-NN (local) Matérn-3/2-NN (local) Exp-NN (local)

S
ta

ti
o
n
ar

y

RBF Matérn-3/2 Exponential

(a) Gram matrices

ArcCos-1∼ ReLU ArcCos-0∼ Step NN∼ Sigmoid

RBF-NN (local) Matérn-3/2-NN (local) Exp-NN (local)

RBF Matérn-3/2 Exponential

(b) Regression results with corresponding prior

Figure 8: Left: Gram matrices (evaluated for κ̂(x, x′) with 1000 Monte Carlo samples) corresponding
to the prior covariance induced by different finite-width NNs (10 hidden units). Right: 1D regression
results corresponding to the model induced by the prior in the left-hand panels, showing the posterior
and predictive 95% intervals of a BNN with ten hidden units obtained through sampling with dynamic
HMC for 5000 iterations.

10
1

10
2

10
3

0

0.2

0.4

0.6

K

M
ea

n
ab

so
lu

te
er

ro
r

RBF

Matérn- 3
2

Exponential

Figure 9: Simulation estimates of the error between the Gram matrix of the limiting process and the
Gram matrix of a finite width model with sinusoidal activation functions under increasing number of
hidden units (K).

D Experiment Details and Additional Results

Our main contribution is linking globally stationary GP priors to a corresponding infinite-width NN
with one hidden layer by specifying activation functions and priors on weights and biases. Most
applications, however, require NNs with a deeper structure. In the experiments, this is achieved
by considering the preceding NN structure as a feature extractor. The layer containing the model
specification is added as the last hidden fully connected layer after the feature extractor part. This
means that the activation function and priors for weights and biases only apply to the last hidden
layer of the full NN architecture. It is important to note here that we do not mean the final output

layer that produces the class weights or regression output when we refer to the last hidden layer, but
the linear layer preceding the output layer. For NN architectures that would not otherwise have a
fully connected hidden layer before the output layer, one such layer is added. We refer to this last
hidden layer that contains the model implementation as the ‘model layer’. The weights and biases
in the model layer are initialized from the prior distributions defined by the model. Table 2 lists
prior distributions corresponding to different globally stationary priors. Prior distributions for locally
stationary and non-stationary ReLU models are N(0, 1) following the results from [34]. Many of
these priors require using periodic activation functions instead of the ReLU, which could be expected
to affect trainability. In our experiments, we observed that sometimes training neural networks with
periodic activation functions can be a bit harder compared to ReLU networks, but usually, slightly
adjusting the learning rate is enough to solve these issues. We expect that the issues with trainability
were minor as the periodic activation functions are only used in a single layer of the NN, while other
parts of the NN are still using ReLU.

Although our theoretical result considers an infinitely wide NN, we observed in practice that a good
result can be obtained if the number of hidden units is sufficiently larger than the dimensionality of
the preceding feature space. To avoid using an excessively large number of hidden units, we have
added a bottleneck layer for NN architectures for which the feature space after the feature-extraction
part would have high dimensionality. This way, we could use a model layer with roughly 100 times
more hidden units than the number of dimensions in the preceding feature space.

In the derivations for the prior on the weights, we expected ℓ = 1 for simplicity. It may be necessary
for the model to have a different lengthscale depending on the data in practice. We implemented this
by multiplying the weights by a lengthscale parameter before multiplying the input by these weights
in the forward pass. This way, we do not need to adjust the prior distribution for the weights as the
weights themselves will still stay in the space corresponding to ℓ = 1. The lengthscale parameter is
added as a trainable parameter with a prior of ℓ ∼ Γ(α = 2, β = 0.5), which is weakly informative.

The model layer produces hidden features which are mapped to outputs using the linear output layer.
The weights for the output layer are initialized from N(0, 1/K). The output f(x) dimensionality
equals the number of classes in classification tasks and one in regression tasks. Based on this output,
the data likelihood needs to be calculated for the loss function. For regression tasks the data likelihood
is N(y − f(x) | 0, s2), where s is the standard deviation of the measurement noise which we include
into the model as a trainable parameter with prior Γ(α = 0.5, β = 1). For classification, the data
likelihood is calculated by applying the softmax function on f(x) to map the outputs to probabilities
and then choosing the class probability corresponding to the class y.

To train the model, we construct a loss function that considers both the data likelihood and the prior
distributions. Since our goal is to fit an approximate posterior distribution on the model parameters,
we use the Bayes formula to obtain a loss function that is directly proportional to the posterior
distribution:

p(w, b, ℓ, s | y, x) ∝ p(y |x) p(w) p(b) p(ℓ) p(s). (70)

For optimization purposes we take a negative logarithm of the product of priors and data likelihood,
which also changes this to a minimization problem, resulting in the following loss function:

L = − log p(y |x)− log p(w)− log p(b)− log p(ℓ)− log p(s). (71)

Here p(y |x) is the data likelihood described above (for classification the cross entropy loss directly
gives − log p(y|x) from the outputs f(x)), p(w) is the prior on weights, p(b) is the prior on biases,
p(ℓ) is the prior on lengthscale, and p(s) is the prior on measurement noise variance (for classification
− log p(s) = 0). For NN architectures that have a feature-extractor part preceding the model layer,
we also include standard L2-regularization on the parameters of the feature-extractor network to
prevent the model from completely bypassing the defined priors by learning extreme values for
feature-extractor network parameters. For globally stationary models p(b) = Uniform(−π, π),
meaning that the bias term is defined on a constrained space. We therefore optimise b̂ ∈ R, which is

defined on an unconstrained space, and apply the map/link function b = 2π sigmoid(b̂)− π.

The calculations for obtaining the experiment results were mostly performed using computer resources
within the Aalto Science-IT project. These resources included both CPU nodes and GPU nodes
(NVIDIA V100 and Tesla P100). Some results were also calculated on local GPU resources (NVIDIA
RTX 2080). All of the utilized data sets are publicly available and widely used, and none of them
contain any personally identifiable information or offensive content. The illustrative toy BNN

examples are implemented using HMC in Turing.jl [14], GP regression results use GPflow [33], and
all other experiments are implemented using PyTorch [41].

D.1 Illustrative Toy Examples

The NN model architecture for the illustrative toy examples contains only the model layer with
30 hidden units and the output layer. The posterior estimates are obtained through dynamic HMC
sampling [14] run for 10k iterations and four independent chains. Fig. 1 shows predictive densities
for non-stationary, locally stationary, and globally stationary activation functions on the banana
classification task. The top row illustrates the predictive densities of infinite-width BNNs (GP),
and the bottom row shows corresponding results for a finite-width BNN. We observe that models
with global stationarity-inducing activation functions revert to the prior outside the data, leading to
conservative behaviour (high uncertainty) for out-of-domain samples. Moreover, we see that the
finite-width BNNs result in similar behaviour to their infinite-width counterpart, while the locally
stationary activation functions in finite-width BNNs exhibit a slower reversion to the mean than their
infinite-width corresponding GPs. Fig. 10 shows additional BNN results for the same experiment for
globally stationary models using different periodic activation functions. We see that we obtain similar
results regardless of the choice of the periodic activation function. As expected, all periodic activation
functions result in low variance only for the training data clusters and revert to the prior outside the
data. Fig. 11 shows the effect of varying the number of hidden units in the same experiment.

Additionally, we include a 1D toy regression study highlighting the differences between different
prior assumptions encoded by choice of the activation function. Fig. 2 shows the corresponding prior
covariance as well as posterior predictions for the infinite-width (GP) model. In Fig. 8, we replicate
the same study with a finite-width network and recover the same behaviour. For the finite-width
results, posterior estimates are obtained through dynamic HMC sampling for 5000 iterations. Fig. 9
illustrates the error between the Gram matrices of the infinite width and finite width models.

D.2 Benchmark Regression Tasks

For the UCI [8] regression tasks, the NN architecture is a fully connected network with layers d-1000-
1000-500-25-2000-1. A dropout layer with p = 0.1 is applied at the 500 nodes wide layer to prevent
overfitting. For these experiments, we used a 10-fold cross-validation setup performed for a single
repetition per experiment. Each model is trained for 100 epochs using SGD (momentum 0.9). The
batch sizes used for each data set are listed in Table 3. The learning rates for the lengthscale parameter
ℓ and measurement noise standard deviation s were set to 0.01. All learning rates were decreased to
0.72 of the original value during training, using a schedule having square root dependence on the
progression through epochs (slower than linear learning rate decay). The lengthscale parameter ℓ was
initialized with a value of five, and s was initialized with one. For the non-stationary ReLU model,
the lengthscale parameter does not have a similar significance as in the global and local stationary
models and therefore was initialized with a value of one to prevent vanishing or exploding gradients.
Posterior inference was performed using KFAC Laplace [45].

Since we observed that the results were sensitive to the SGD learning rate and the variance scale
parameter of KFAC Laplace, we performed a grid search over both of these hyperparameters.
Therefore, we split the training set such that 80% is used for training and the remaining 20% is used
as a validation set for the grid search. First, a grid search for the SGD learning rate was performed
over the values [5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3], choosing the learning rate that achieved
the smallest RMSE on the validation set. A single common learning rate was chosen for all ten
folds. Subsequently, KFAC Laplace was applied on models trained using the best learning rate,
using variance scales in the grid [0.01, 0.05, 0.1, 0.15, 0.2, 0.25]. 30 samples were used for model
averaging in the grid search. As the objective in the KFAC Laplace variance scale grid search, we
used a weighted sum of validation set data negative log-likelihood and an OOD noise validation set
negative log-likelihood [22]. We used λ = 0.2 as the parameter controlling the weighting between
the regular validation set score and the OOD noise set score (one-fifth of the weight on the OOD set).
A single common KFAC Laplace variance scale was chosen for all ten folds. After the best learning
rate and KFAC Laplace variance scale has been selected, the model is retrained from the start on the
full training set of each fold using the best learning rate. KFAC Laplace model with the best variance
scale is then fitted on the trained model, and 50 samples from the approximate posterior are used for
model averaging to obtain the final results.

S
in

A
ct

iv
at

io
n

Exponential (mean) Exponential (variance) Matérn- 32 (mean) Matérn- 32 (variance) RBF (mean) RBF (variance)

S
in

e
C

o
si

n
e

T
ri

an
g
le

W
av

e
P

er
io

d
ic

R
eL

U

Figure 10: Posterior predictive densities of globally stationary BNNs with 30 hidden units on the
banana classification task. Table rows show results for different periodic activation functions, and
columns show different prior covariance functions. For each model, the resulting predictive mean
and variance are plotted side by side. For predictive mean plots, the colour intensity represents
confidence in the class prediction. For the variance plots, white colour represents high variance, and
black colour represents low variance. We obtain comparable results regardless of the choice of the
periodic activation function. Estimated using dynamic HMC run for 10k iterations and 4 chains.

The results for the boston (2–3 h), concrete (2–3 h) and airfoil (6–8 h) data sets were calculated using
a single CPU per experiment, and the results for the elevators (1–2 h) data set were calculated using a
single GPU per experiment. Copyright of the concrete data set: Prof. I-Cheng Yeh [62].

Table 3 shows results on four UCI regression data sets comparing deep neural networks with ReLU,
locally stationary RBF [60], and locally stationary Matérn-3/2 and Matérn-5/2 [34] against global
stationary models. Table 3 lists root mean square error (RMSE) and negative log predictive density
(NLPD), which captures the predictive uncertainty, while the RMSE only accounts for the mean. The
table lists mean and standard deviation values across folds of the 10-fold cross-validation. The values
for the best performing models are shown in bold. Especially on small data sets, the standard deviation
values are large, which is mostly due to differences between different folds instead of variations in
model performance. The table shows that global stationary models provide better estimates of the
target distribution in all cases while obtaining comparable RMSEs. Moreover, we observe that the
periodic ReLU activation function tends to outperform the sinusoidal activation. Also, the importance
of the choice of prior covariance can be seen in Table 3. It appears that the Matérn-3/2 covariance is
the best choice for the smallest boston data set, while the smoother Matérn-5/2 or RBF covariance
functions seem to be more suitable for the larger data sets.

D.3 Benchmark Classification Tasks

The experimental setup for the UCI [8] classification tasks is the same as for the regression tasks,
apart from the following details. For the UCI classification tasks, the NN architecture is a fully
connected network with layers d-1000-1000-500-25-2000-c. The batch sizes used for each data set
are listed in Table 4. The lengthscale parameter ℓ was initialized at value one.

Exponential (mean) RBF (mean)

S
in

A
ct

iv
at

io
n

K = 10 K = 20 K = 30 K = 10 K = 20 K = 30

S
in

e
C

o
si

n
e

T
ri

an
g
le

W
av

e
P

er
io

d
ic

R
eL

U

Figure 11: Posterior predictive densities of stationary BNNs for varying number of hidden units K on
the banana classification task. Table rows show results for different periodic activation functions, and
columns show different number of hidden units, denoted as K. Results are shown for the two extreme
cases, i.e. Exponential and RBF kernel. We obtain comparable results for all periodic activation
function. Results are estimated using dynamic HMC run for 10k iterations and 4 chains.

Table 3: Examples of UCI regression tasks, showing the globally stationary NN model directly gives
competitive mean negative log predictive density (NLPD) and root mean square error (RMSE) to
locally stationary and non-stationary NN models. KFAC Laplace was used as the inference method.

BOSTON CONCRETE AIRFOIL ELEVATORS

(n, d) (506, 12) (1030, 5) (1503, 5) (16599, 18)

(c, nbatch) (1, 50) (1, 50) (1, 50) (1, 500)

NLPD RMSE NLPD RMSE NLPD RMSE NLPD RMSE

ReLU 0.51±0.32 0.37±0.07 0.78±0.16 0.48±0.04 0.51±0.53 0.41±0.21 0.38±0.03 0.35±0.01
loc RBF 0.52±0.30 0.37±0.08 0.78±0.22 0.44±0.05 0.10±0.15 0.26±0.03 0.41±0.04 0.35±0.01
glob RBF (sin) 0.42±0.34 0.36±0.07 0.74±0.15 0.49±0.05 0.14±0.17 0.29±0.05 0.38±0.03 0.35±0.01
glob RBF (tri) 0.44±0.38 0.36±0.09 0.75±0.16 0.49±0.05 0.08±0.11 0.27±0.03 0.38±0.03 0.35±0.01
loc Mat-5/2 0.74±0.42 0.36±0.07 0.87±0.19 0.47±0.04 0.14±0.16 0.27±0.03 0.41±0.04 0.35±0.01
glob Mat-5/2 (sin) 0.41±0.33 0.36±0.08 0.67±0.09 0.47±0.03 0.05±0.12 0.26±0.03 0.37±0.04 0.35±0.01
glob Mat-5/2 (tri) 0.45±0.38 0.36±0.09 0.65±0.09 0.46±0.03 0.05±0.16 0.26±0.03 0.37±0.03 0.34±0.01
loc Mat-3/2 0.71±0.38 0.40±0.08 0.84±0.28 0.42±0.04 0.11±0.18 0.26±0.03 0.43±0.04 0.35±0.01
glob Mat-3/2 (sin) 0.43±0.27 0.39±0.08 0.73±0.16 0.49±0.05 0.07±0.15 0.27±0.03 0.37±0.03 0.35±0.01
glob Mat-3/2 (tri) 0.46±0.39 0.36±0.09 0.71±0.14 0.48±0.04 0.19±0.43 0.34±0.21 0.37±0.03 0.35±0.01
glob RBF (sincos) 0.50±0.36 0.37±0.08 0.73±0.13 0.49±0.04 0.19±0.21 0.30±0.07 0.38±0.02 0.35±0.01
glob Mat-5/2 (sincos) 0.41±0.23 0.39±0.08 0.72±0.12 0.49±0.04 0.04±0.11 0.26±0.03 0.38±0.03 0.35±0.01
glob Mat-3/2 (sincos) 0.35±0.32 0.34±0.07 0.68±0.14 0.47±0.04 0.05±0.16 0.27±0.04 0.56±0.54 0.42±0.21
glob RBF (prelu) 0.39±0.30 0.36±0.07 0.74±0.14 0.49±0.04 0.05±0.12 0.26±0.03 0.74±0.73 0.46±0.21
glob Mat-5/2 (prelu) 0.50±0.42 0.37±0.08 0.64±0.11 0.46±0.04 0.08±0.16 0.27±0.04 0.37±0.03 0.35±0.01
glob Mat-3/2 (prelu) 0.38±0.22 0.38±0.08 0.72±0.18 0.48±0.05 0.08±0.12 0.27±0.03 0.39±0.03 0.36±0.01

The results for the diabetes (3–4 h) data set were calculated using a single CPU per experiment, and
the results for the adult (4–6 h), connect-4 (6–8 h) and covtype (8–12 h) data sets were calculated

Table 4: Examples of UCI classification tasks, showing the globally stationary NN model directly
gives competitive accuracy and mean negative log predictive density (NLPD) to non-stationary and
locally stationary NN models. KFAC Laplace was used as the inference method.

DIABETES ADULT CONNECT-4 COVTYPE

(n, d) (768, 8) (45222, 14) (67556, 42) (581912, 54)

(c, nbatch) (2, 50) (2, 500) (3, 500) (7, 500)

NLPD ACC NLPD ACC NLPD ACC NLPD ACC

ReLU 0.48±0.05 0.76±0.04 0.31±0.01 0.85±0.00 0.57±0.01 0.82±0.00 0.18±0.00 0.93±0.00
loc RBF 0.48±0.04 0.76±0.04 0.31±0.01 0.85±0.00 0.54±0.01 0.81±0.00 0.19±0.01 0.93±0.00
glob RBF (sin) 0.48±0.05 0.77±0.04 0.32±0.01 0.85±0.00 0.61±0.02 0.81±0.00 0.18±0.01 0.93±0.00
glob RBF (tri) 0.48±0.05 0.77±0.04 0.31±0.01 0.85±0.00 0.61±0.01 0.82±0.00 0.18±0.01 0.93±0.00
loc Mat-5/2 0.52±0.04 0.78±0.06 0.32±0.01 0.85±0.00 0.50±0.01 0.81±0.00 0.22±0.00 0.92±0.00
glob Mat-5/2 (sin) 0.48±0.04 0.77±0.04 0.31±0.01 0.85±0.00 0.64±0.03 0.82±0.00 0.17±0.01 0.93±0.00
glob Mat-5/2 (tri) 0.48±0.04 0.77±0.04 0.31±0.01 0.85±0.00 0.64±0.03 0.82±0.00 0.17±0.00 0.93±0.00
loc Mat-3/2 0.49±0.04 0.76±0.05 0.32±0.01 0.85±0.01 0.53±0.01 0.81±0.00 0.19±0.01 0.93±0.00
glob Mat-3/2 (sin) 0.48±0.04 0.77±0.04 0.32±0.01 0.85±0.00 0.66±0.03 0.81±0.00 0.17±0.01 0.93±0.00
glob Mat-3/2 (tri) 0.48±0.04 0.78±0.04 0.32±0.01 0.85±0.00 0.66±0.02 0.81±0.00 0.18±0.01 0.93±0.00
glob RBF (sincos) 0.48±0.05 0.77±0.05 0.32±0.01 0.85±0.00 0.61±0.01 0.82±0.00 0.18±0.00 0.93±0.00
glob Mat-5/2 (sincos) 0.48±0.04 0.76±0.04 0.31±0.01 0.85±0.00 0.64±0.02 0.82±0.00 0.17±0.01 0.93±0.00
glob Mat-3/2 (sincos) 0.48±0.04 0.76±0.04 0.32±0.01 0.85±0.00 0.66±0.03 0.81±0.01 0.18±0.00 0.93±0.00
glob RBF (prelu) 0.48±0.05 0.77±0.04 0.31±0.01 0.85±0.00 0.61±0.02 0.82±0.00 0.18±0.00 0.93±0.00
glob Mat-5/2 (prelu) 0.47±0.04 0.77±0.04 0.32±0.01 0.85±0.00 0.64±0.02 0.81±0.00 0.18±0.00 0.93±0.00
glob Mat-3/2 (prelu) 0.48±0.04 0.77±0.05 0.32±0.01 0.85±0.00 0.65±0.02 0.81±0.00 0.18±0.01 0.93±0.00

Table 5: Examples of UCI classification tasks, showing the globally stationary NN model directly
gives competitive area under receiver operating characteristic curve (AUC) to non-stationary and
locally stationary NN models. KFAC Laplace was used as the inference method.

DIABETES ADULT CONNECT-4 COVTYPE

(n, d) (768, 8) (45222, 14) (67556, 42) (581912, 54)

(c, nbatch) (2, 50) (2, 500) (3, 500) (7, 500)

AUC AUC AUC AUC

ReLU 0.84±0.03 0.91±0.00 0.90±0.00 0.99±0.00
loc RBF 0.84±0.03 0.91±0.00 0.90±0.00 0.99±0.00
glob RBF (sin) 0.84±0.03 0.91±0.00 0.90±0.00 0.99±0.00
glob RBF (tri) 0.84±0.03 0.91±0.00 0.90±0.00 0.99±0.00
loc Mat-5/2 0.84±0.03 0.91±0.00 0.89±0.00 0.99±0.00
glob Mat-5/2 (sin) 0.84±0.03 0.91±0.00 0.90±0.00 0.99±0.00
glob Mat-5/2 (tri) 0.83±0.03 0.91±0.00 0.90±0.00 0.99±0.00
loc Mat-3/2 0.84±0.03 0.91±0.00 0.90±0.00 0.99±0.00
glob Mat-3/2 (sin) 0.84±0.03 0.91±0.00 0.90±0.00 0.99±0.00
glob Mat-3/2 (tri) 0.84±0.03 0.91±0.00 0.90±0.01 0.99±0.00
glob RBF (sincos) 0.83±0.04 0.91±0.00 0.90±0.00 0.99±0.00
glob Mat-5/2 (sincos) 0.83±0.03 0.91±0.00 0.90±0.00 0.99±0.00
glob Mat-3/2 (sincos) 0.84±0.03 0.91±0.00 0.90±0.01 0.99±0.00
glob RBF (prelu) 0.84±0.03 0.91±0.00 0.90±0.00 0.99±0.00
glob Mat-5/2 (prelu) 0.84±0.03 0.91±0.00 0.90±0.00 0.99±0.00
glob Mat-3/2 (prelu) 0.84±0.03 0.91±0.00 0.90±0.01 0.99±0.00

using a single GPU per experiment. Copyright of the covtype data set: Jock A. Blackard and Colorado
State University.

Table 4 and Table 5 show results on standard UCI [8] classification data sets comparing results for
different activation functions. We compare a neural network with a non-stationary model using the
ReLU activation function to both local stationary [34] and global stationary models for different
covariance functions. Table 4 lists predictive accuracies and negative log predictive densities (NLPD)
for each model. Moreover, Table 5 lists the area under the receiver operating characteristic curve
(AUC) for the different models. The tables lists mean and standard deviation values across folds
of the 10-fold cross-validation. The values for the best performing models are shown in bold. The
classification results indicate that there are very few differences in the performance between the
different models and that global stationary models achieve competitive predictive accuracy, NLPD,
and AUC compared to the locally stationary and non-stationary models.

For the UCI classification tasks, we performed additional experiments using SWAG [29], inference
instead of KFAC Laplace. The experiment setup here was also 10-fold cross-validation. The NN
architecture is a fully connected network with layer widths d-1000-1000-500-50-c for all models.
The models were trained for 20 epochs using batch sizes listed in Table 6 with Adam optimizer
and a learning rate of 1× 10−4. The learning rate for the lengthscale parameter ℓ was separately
set to 0.01 and initialized with one. A schedule was used for the Adam learning rates, decreasing
them to one-tenth of the current value at epochs 10 and 15. The SWAG model was collected for 40
epochs (with M = 20 samples to estimate the covariance matrix) using SGD (momentum 0.9) as

Table 6: Examples of UCI classification tasks, showing the globally stationary NN model directly
gives competitive accuracy and mean negative log predictive density (NLPD) to non-stationary and
locally stationary NN models. SWAG was used as the inference method.

DIABETES ADULT CONNECT-4 COVTYPE

(n, d) (768, 8) (45222, 14) (67556, 42) (581912, 54)

(c, nbatch) (2, 50) (2, 500) (3, 500) (7, 500)

NLPD ACC NLPD ACC NLPD ACC NLPD ACC

ReLU 0.53±0.07 0.75±0.03 0.38±0.15 0.79±0.18 0.54±0.12 0.79±0.04 0.19±0.00 0.92±0.00
loc RBF 0.49±0.05 0.76±0.04 0.33±0.01 0.85±0.00 0.47±0.01 0.81±0.00 0.19±0.00 0.93±0.00
glob RBF (sin) 0.51±0.05 0.76±0.04 0.35±0.03 0.85±0.00 0.51±0.05 0.81±0.01 0.18±0.00 0.93±0.00
glob RBF (tri) 0.53±0.07 0.73±0.04 0.33±0.01 0.85±0.00 0.51±0.05 0.81±0.01 0.19±0.01 0.92±0.00
loc Mat-5/2 0.49±0.05 0.76±0.04 0.32±0.01 0.85±0.00 0.47±0.01 0.82±0.00 0.25±0.01 0.91±0.00
glob Mat-5/2 (sin) 0.53±0.07 0.74±0.04 0.34±0.02 0.85±0.01 0.49±0.01 0.81±0.00 0.18±0.00 0.93±0.00
glob Mat-5/2 (tri) 0.52±0.05 0.73±0.03 0.34±0.01 0.85±0.00 0.50±0.03 0.81±0.01 0.19±0.00 0.92±0.00
loc Mat-3/2 0.49±0.04 0.75±0.03 0.32±0.01 0.85±0.00 0.47±0.01 0.82±0.00 0.23±0.01 0.91±0.00
glob Mat-3/2 (sin) 0.57±0.07 0.73±0.04 0.35±0.02 0.84±0.00 0.50±0.01 0.81±0.00 0.19±0.01 0.93±0.00
glob Mat-3/2 (tri) 0.55±0.07 0.74±0.04 0.34±0.01 0.85±0.01 0.50±0.02 0.80±0.00 0.19±0.00 0.93±0.00
glob RBF (sincos) — — 0.37±0.10 0.83±0.07 0.54±0.07 0.80±0.01 0.18±0.01 0.93±0.00
glob Mat-5/2 (sincos) — — 0.34±0.02 0.85±0.01 0.52±0.03 0.81±0.01 0.18±0.01 0.93±0.00
glob Mat-3/2 (sincos) 0.58±0.05 0.72±0.03 0.39±0.11 0.81±0.08 0.51±0.02 0.81±0.00 0.18±0.01 0.93±0.00
glob RBF (prelu) 0.52±0.06 0.76±0.04 0.34±0.01 0.85±0.00 0.50±0.01 0.81±0.00 0.19±0.01 0.92±0.00
glob Mat-5/2 (prelu) 0.53±0.05 0.75±0.03 0.33±0.01 0.85±0.00 0.49±0.01 0.81±0.00 0.19±0.00 0.92±0.00
glob Mat-3/2 (prelu) 0.58±0.07 0.73±0.03 0.34±0.01 0.85±0.00 0.49±0.01 0.81±0.00 0.19±0.01 0.93±0.00

Table 7: Examples of UCI classification tasks, showing the globally stationary NN model directly
gives competitive area under receiver operating characteristic curve (AUC) to non-stationary and
locally stationary NN models. SWAG was used as the inference method.

DIABETES ADULT CONNECT-4 COVTYPE

(n, d) (768, 8) (45222, 14) (67556, 42) (581912, 54)

(c, nbatch) (2, 50) (2, 500) (3, 500) (7, 500)

AUC AUC AUC AUC

ReLU 0.82±0.04 0.87±0.12 0.86±0.08 0.99±0.00
loc RBF 0.83±0.03 0.91±0.00 0.90±0.00 0.99±0.00
glob RBF (sin) 0.82±0.04 0.90±0.01 0.89±0.01 0.99±0.00
glob RBF (tri) 0.81±0.04 0.91±0.00 0.89±0.01 0.99±0.00
loc Mat-5/2 0.84±0.03 0.91±0.00 0.90±0.00 0.99±0.00
glob Mat-5/2 (sin) 0.80±0.05 0.90±0.01 0.89±0.01 0.99±0.00
glob Mat-5/2 (tri) 0.81±0.04 0.90±0.00 0.89±0.01 0.99±0.00
loc Mat-3/2 0.83±0.03 0.91±0.00 0.90±0.01 0.99±0.00
glob Mat-3/2 (sin) 0.79±0.04 0.90±0.01 0.89±0.00 0.99±0.00
glob Mat-3/2 (tri) 0.81±0.04 0.90±0.01 0.89±0.01 0.99±0.00
glob RBF (sincos) — 0.85±0.16 0.88±0.02 0.99±0.00
glob Mat-5/2 (sincos) — 0.90±0.00 0.88±0.01 0.99±0.00
glob Mat-3/2 (sincos) 0.78±0.03 0.84±0.15 0.88±0.01 0.99±0.00
glob RBF (prelu) 0.81±0.04 0.91±0.01 0.89±0.00 0.99±0.00
glob Mat-5/2 (prelu) 0.81±0.03 0.90±0.01 0.89±0.01 0.99±0.00
glob Mat-3/2 (prelu) 0.79±0.03 0.91±0.01 0.89±0.01 0.99±0.00

the optimizer, updating the posterior estimate once per epoch. The lengthscale parameter is kept
fixed during the SWAG model collection, as no SWAG posterior estimate is collected for it. The
learning rate for SGD in the SWAG model collection part (the SWAG learning rate) was selected
using Bayesian optimization with BoTorch in the range (1× 10−4, 3), selecting the value providing
the best negative log-likelihood on the validation set. We used one-fifth of the training set of the
current fold for validation, and after selecting the best SWAG learning rate we trained the model from
the beginning using the full training set for each fold using the best performing SWAG learning rate.
We used a fixed value for ℓ equal to what the earlier optimization ended at (this is to prevent ending up
in a different local optimum where the optimized SWAG learning rate does not provide good results).
Each models SWAG learning rate was optimized individually, but a common SWAG learning rate was
used for all ten folds of a single experiment. For model averaging, 50 samples from the approximate
posterior were sampled. The SWAG results for all UCI classification data sets were calculated on
a single GPU per experiment and the rough running times for each data set were diabetes: 2–4 h,
adult 6–8 h, connect-4 8–10 h and covtype 15–20 h. For the SWAG results, Table 6 lists predictive
accuracies and NLPDs, and Table 7 lists AUC values for the different models. The results show that
similar to the KFAC Laplace results, the global stationary models using periodic activation functions
achieve competitive predictive accuracy, NLPD, and AUC compared to the locally stationary and
non-stationary models. The main difference to results obtained using KFAC Laplace is that SWAG
seems to produce more variability in the results between different models. The missing values in
Table 6 and Table 7 are due to the optimization diverging in the SWAG model collection phase.

D.4 Detection of Distribution Shift with Rotated MNIST

For the MNIST ([25], available under CC BY-SA 3.0) digit classification experiment, the feature
extractor part of the NN architecture has two convolutional layers (32 and 64 channels, both using
a 3× 3 kernel) followed by a fully connected layer taking the dimensionality down to 25, and the
following model layer has 2000 hidden units. The models were trained on the MNIST training set for
50 epochs using a batch size of 64 with an SGD optimizer (learning rate 1× 10−3, momentum 0.9),
using only unrotated images. A schedule was used for the SGD learning rates, decreasing them to
0.9 of the current value at epochs 25 and 37. The learning rate for the lengthscale parameter ℓ was
set to 1× 10−4, and was initialized with 0.2. The posterior inference was performed using KFAC
Laplace [45] with a fixed variance scale of one. For model averaging, we used 30 posterior samples.
We tested the trained model on the standard unrotated MNIST test set and rotated versions of the
same test set for rotation angles every 10◦ up to 360◦. Running this experiment for one model on one
GPU took roughly 2 hours due to testing the model on multiple test sets.

Fig. 5 shows the results on the rotated MNIST experiment for different models. We evaluate the
predictive accuracy, mean confidence of the predicted class, and NLPD on the rotated test sets. The
results indicate that all models obtain similar accuracy results, while only local and global stationary
models do not result in over-confident uncertainty estimates. For an ideally calibrated model, the
mean confidence would decrease as low as the accuracy curve when the digits are rotated, which
would keep the NLPD values as low as possible. We see that even for the local and global stationary
models, the mean confidence has a minimum of around 0.55 while the accuracy decreases below 0.2.
We also observe that the NLPD curves rise to high values (over 3) for the better performing models.
The accuracy of all models increases near the 180◦ rotation. This is most likely due to numbers 0, 1
and 8 appearing similar with 0◦ and 180◦ rotations. Interestingly, the NLPD values for the local and
global stationary models hardly decrease for the rotation angle of 180◦ although the accuracy for this
angle increases compared to adjacent angles. This could be due to number 6 looking like number
9 at 180◦ rotation, and vice versa, causing the model to make overconfident incorrect predictions.
Although, this kind of overconfident misclassification cannot be prevented even with a correctly
calibrated model, as samples of one class genuinely appear to belong to another class.

Fig. 12 shows additional results on the rotated MNIST experiment for different models, using only
a maximum a posteriori (MAP) estimate for the model parameters. The models used for the MAP
results are the same trained models that were used for the results in Fig. 5, but for the MAP results
the KFAC Laplace inference step is skipped. The MAP results are almost identical to the KFAC
Laplace results, except that 90◦ and 270◦ rotations for mean confidence have slightly higher values
for the MAP results. This suggests that the KFAC Laplace inference might not be very successful in
improving data set shift detection properties in this experiment.

0◦ 90◦ 180◦ 270◦ 360◦

0
.2

0
.4

0
.6

0
.8

1

rotation angle

A
cc

u
ra

cy

0◦ 90◦ 180◦ 270◦ 360◦

0
.6

0
.8

1

rotation angle

M
ea

n
co

n
fi

d
en

ce

0◦ 90◦ 180◦ 270◦ 360◦

0
2

4
6

rotation angle

N
L

P
D

Figure 12: Rotated MNIST maximum a posteriori (MAP) results: The models have been trained
on unrotated digits. The test-set digits are rotated at test time to show the sensitivity of the trained
model to perturbations. Model predictions are based on a MAP estimate of model parameters. All
models perform equally in terms of accuracy, while ReLU () shows overconfidence in terms of
mean confidence and NLPD. The stationary RBF models (local, sin, sin–cos) capture
uncertainty.

D.5 Out-of-distribution Detection Using CIFAR-10, CIFAR-100, and SVHN

For this experiment, the feature extractor part is a GoogLeNet [52] followed by a 512 node wide
model layer. Pre-trained weights are used for the feature extractor part of the NN, and kept unchanged
during the model training (pre-trained model from https://github.com/huyvnphan/PyTorch_
CIFAR10). The models were trained on CIFAR-10 [23] for 20 epochs using a batch size of 128 with
Adam optimiser and a learning rate of 1× 10−4. The learning rate for the lengthscale parameter ℓ
was separately set to 1× 10−5, and the lengthscale parameter was initialised with one. The posterior
inference was performed using SWAG [29]. The SWAG model was collected for 40 epochs (M = 20)
using SGD (momentum 0.9) as the optimiser, updating the posterior estimate once per epoch. The
lengthscale parameter is kept fixed during the SWAG model collection. The learning rate for SGD in
the SWAG model collection part (the SWAG learning rate) was selected using Bayesian optimisation
with BoTorch in the range (1× 10−4, 3) based on the negative log-likelihood on the validation set.
As validation data, we used the CIFAR-10 test set. Using the CIFAR-10 test set as the validation set
for selecting hyperparameters is valid here; as for this experiment, the focus is not on measuring the
performance on the test set but evaluating OOD detection performance on the CIFAR-100 and SVHN
test sets. After selecting the best SWAG learning rate, we trained the model from the beginning using
the best performing SWAG learning rate and a fixed value for ℓ equal to the earlier optimisation.
For each model, the SWAG learning rate was optimised individually. For model averaging, 30
samples from the approximate posterior of the parameters were sampled to calculate the predictions
on CIFAR-10, CIFAR-100 [23], and SVHN [39]. Running this experiment for one model on one
GPU took roughly one day due to the Bayesian optimization process.

Fig. 14 compares model performance on out-of-distribution detection for image classification for
non-stationary, local stationary and global stationary models. Both CIFAR-100 (more similar) and
SVHN (more dissimilar to CIFAR-10) images are OOD data, and the models should show high
uncertainties (high predictive entropy, high predictive variance) for the respective test images. The
histograms of predictive entropies for different test sets show that most models can separate between
in-distribution and OOD data based on this metric. However, the predictive marginal variance
histograms show that the global stationary models can better detect the OOD samples compared
to ReLU and local stationary models. Interestingly, the ReLU model shows higher variance on
CIFAR-100 images compared to SVHN images, although SVHN images are more different from the
training set images. For global stationary models, both entropy and variance histograms show that
the models clearly consider SVHN more OOD than CIFAR-100, which is intuitive as CIFAR-100
resembles CIFAR-10 more than SVHN. Fig. 14 also shows sample images for most/least similar
to the training data distribution that the model has learned. Looking at these images for different
models, we can see that for CIFAR-10, images with dark background result in high uncertainty for all
models. For the CIFAR-100 sample images, the global stationary Matérn-3/2 model has classified
pictures of animals and humans with the highest confidence, which seems intuitive as these could
be considered resembling some of the CIFAR-10 classes (for example, dogs or cats). Moreover, the
images with the highest uncertainty seem visually very different from CIFAR-10 images. For the
SVHN sample images, all models seem to be most confident about clear and sharp images and blurry
images result in high uncertainty, which is reasonable as CIFAR-10 images usually have clear shapes.
However, this is again most apparent for the global stationary models, suggesting the model has
learned meaningful representations of the input space.

Using the same results that are visualized in the histograms in Fig. 14, we calculated area under
receiver operating characteristic curve (AUC) and area under precision-recall curve (AUPR) values
for OOD detection in the CIFAR-10 experiment to provide additional quantitative results, treating
either CIFAR-100 or SVHN as the OOD data set. We calculated the AUC and AUPR measures using
the marginal variance as the metric to determine whether a sample is OOD or not. We consider this a
better metric for OOD detection compared to predictive entropy, as in-distribution samples that are
hard to classify are expected to have high predictive entropy, not necessarily allowing the detection
of OOD samples based on this metric. Table 8 lists the calculated AUC and AUPR numbers. The
results for SVHN as the OOD data set indicate a clear difference between the non-stationary (ReLU)
and the stationary (local and global) models. The globally stationary RBF model achieves the best
AUC score. Treating CIFAR-100 as an OOD set is not as straightforward considering numerical
AUC and AUPR comparisons. CIFAR-100 images are visually very similar to CIFAR-100 images
but representing different classes, and hence can be considered not strictly OOD. For example, it is
reasonable to expect that even a correctly operating model may consider some CIFAR-100 images

https://github.com/huyvnphan/PyTorch_CIFAR10
https://github.com/huyvnphan/PyTorch_CIFAR10

Table 8: Table of numerical results on the image classification OOD task. The results used to calculate
the numbers in this table are the same that were used to create histograms in Fig. 14. The table lists
the area under receiver operating characteristic curve (AUC) and the area under precision-recall curve
(AUPR) for each of the models. Numbers are calculated both for considering CIFAR-100 or SVHN
as the OOD set, while CIFAR-10 is the in-distribution data. The table also visualizes whether each
model considers CIFAR-100 or SVHN more OOD based on which data set is detected as OOD more
effectively.

AUC AUPR

OOD data set CIFAR-100 SVHN CIFAR-100 SVHN

ReLU 0.974 > 0.961 0.963 < 0.970
loc RBF 0.976 < 0.987 0.976 < 0.995
glob RBF (sin) 0.942 < 0.988 0.940 < 0.995
loc Mat-3/2 0.973 < 0.983 0.972 < 0.993
glob Mat-3/2 (sin) 0.965 < 0.981 0.965 < 0.993

x1

x2

x3

...

xd

y1

y2

y3

Feature
extractor

Input
layer

Model
layer

Output
layer

Figure 13: An illustrative figure describing the model architecture. The model first passes an input
x ∈ R

d into a feature extractor. The feature extractor part is a task dependent neural network
architecture, which can be for example a fully connected structure or some convolutional layers. The
feature extractor results in some L-dimensional representation (in the illustration L = 3), which is
followed by a fully connected hidden layer (referred to as model layer in the text) resulting in a K
dimensional representation (K = 7 in the figure). The model specific activation function is applied
on this K-dimensional representation (sinusoidal activation in the figure). The output y ∈ R

c is
produced by a fully connected output layer. Here c is the number of classes in case of a classification
task (c = 3 in the figure).

more in-distribution than the most difficult or visually peculiar CIFAR-10 test images. For this reason,
it is reasonable to compare AUPR and AUC numbers of each model for the two OOD data sets,
CIFAR-100 and SVHN, and observe which data set is considered more OOD. We expect SVHN to
be considered more OOD, which is true except for the ReLU model based on the AUC metric.

Results with ReLU model

0 0.5 1 1.5 2

Predictive entropy

CIFAR-10
CIFAR-100
SVHN

0 0.01 0.02

Predictive marginal variance

CIFAR-10
CIFAR-100
SVHN

CIFAR-10←Most similar Least similar→ CIFAR-100←Most similar Least similar→ SVHN←Most similar Least similar→

Results with locally stationary RBF model

0 0.5 1 1.5 2

Predictive entropy

CIFAR-10
CIFAR-100
SVHN

0 0.01 0.02

Predictive marginal variance

CIFAR-10
CIFAR-100
SVHN

CIFAR-10←Most similar Least similar→ CIFAR-100←Most similar Least similar→ SVHN←Most similar Least similar→

Results with globally stationary RBF model (sinusoidal)

0 0.5 1 1.5 2

Predictive entropy

CIFAR-10
CIFAR-100
SVHN

0 0.01 0.02

Predictive marginal variance

CIFAR-10
CIFAR-100
SVHN

CIFAR-10←Most similar Least similar→ CIFAR-100←Most similar Least similar→ SVHN←Most similar Least similar→

Results with locally stationary Matérn- 32 model

0 0.5 1 1.5 2

Predictive entropy

CIFAR-10
CIFAR-100
SVHN

0 0.01 0.02

Predictive marginal variance

CIFAR-10
CIFAR-100
SVHN

CIFAR-10←Most similar Least similar→ CIFAR-100←Most similar Least similar→ SVHN←Most similar Least similar→

Results with globally stationary Matérn- 32 model (sinusoidal)

0 0.5 1 1.5 2

Predictive entropy

CIFAR-10
CIFAR-100
SVHN

0 0.01 0.02

Predictive marginal variance

CIFAR-10
CIFAR-100
SVHN

CIFAR-10←Most similar Least similar→ CIFAR-100←Most similar Least similar→ SVHN←Most similar Least similar→

Figure 14: OOD detection experiment results for models trained on CIFAR-10 and tested on CIFAR-
10, CIFAR-100, and SVHN. Predictive entropy histograms of test image results are on the left, and
predictive marginal variance histograms are on the right. On the bottom are sample images from each
test set: left-side images with lowest entropy/highest confidence, and right-side images with highest
entropy/lowest confidence.

	 Supplementary Material: Periodic Activation Functions Induce Stationarity
	Derivations for Activation Functions
	Sinusoidal Activation Function
	Sine–Cosine Activation Function
	Triangle Wave Activation
	Periodic ReLU Activation

	Derivations of Correspondence to the Matérn family
	Additional Insights
	Connection to Random Fourier Features
	Fourier Methods in Gaussian Process Models

	Experiment Details and Additional Results
	Illustrative Toy Examples
	Benchmark Regression Tasks
	Benchmark Classification Tasks
	Detection of Distribution Shift with Rotated MNIST
	Out-of-distribution Detection Using CIFAR-10, CIFAR-100, and SVHN

