
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

De-fine: Decomposing and Refining Visual Programs with
Auto-Feedback
Anonymous Authors

ABSTRACT

Visual programming, a modular and generalizable paradigm, in-
tegrates different modules and Python operators to solve various
vision-language tasks. Unlike end-to-end models that need task-
specific data, it advances in performing visual processing and rea-
soning in an unsupervised manner. Current visual programming
methods generate programs in a single pass for each task where
the ability to evaluate and optimize based on feedback, unfortu-
nately, is lacking, which consequentially limits their effectiveness
for complex, multi-step problems. Drawing inspiration from ben-
ders decomposition, we introduce De-fine, a training-free frame-
work that automatically decomposes complex tasks into simpler
subtasks and refines programs through auto-feedback. This model-
agnostic approach can improve logical reasoning performance by in-
tegrating the strengths of multiple models. Our experiments across
various visual tasks show that De-fine creates more accurate and
robust programs, setting new benchmarks in the field. The anony-
mous project is available at https://anonymous.4open.science/r/De-
fine_Program-FE15

CCS CONCEPTS
• Computing methodologies→ Computer vision problems.

KEYWORDS
Visual Programming, Training-free Visual Processing, Task Decom-
position, Program Refinement

1 INTRODUCTION

Large visual models [2, 7, 21, 26, 36] based on transformers, ex-
cel in various visual tasks, such as object detection [20], visual
question answering [4], video description [37], and visual reason-
ing [35], by using large-scale unsupervised pre-training and super-
vised multi-task training. However, these end-to-end models do
not essentially reveal internal logic and need fine-tuning for new
tasks [27], which might be costly and challenging for complex and
long-tailed tasks. In pursuit of task inference without additional
training, interpretable programming-based approaches have been
developed, allowing the expression of logic and reasoning for visual
tasks through the assembled code modules. Previous works like
Visual Programming [8] and ViperGPT [32], use code-generation
models to compose vision-language models (VLMs) [39, 41] into
subroutines and assemble a program for visual tasks. ViperGPT,
for instance, uses a provided API to access modules and generate
executable code. It requires no further training and leverages the
expressive power of programming languages, making it effective
for solving complex visual tasks.

Despite their advantages, current programming-based methods
tend to generate lines of atomic code sequentially in a single pass,
without properly decomposing the task into smaller manageable

Program

Decompose

Execute

Refine

Query:
How many muffins on the table?

6 muffins on the table
2 muffins in kids’ hand

...

Compiled successfully

First Answer : 8 After Refinement : 6

Visual Feedback

Textual Feedback

Compile Feedback

Block 1

Block 2

Block 3

pic = image_find()
. . .

num = len(muffin)
. . .

return int(num)

not on the table

#find muffin

#counting

#return
. . .

High-Quality Codebase:
def function():
. . .

Extract

Figure 1: De-fine decomposes the tasks into executable pro-
gram blocks and automatically refines the program based on
multifaceted feedback from the execution.

subtasks and generating corresponding program blocks separately.
Such a manner leads to two main issues: 1) Insufficient hierar-
chical task decomposition: Failing to plan the program structure
in a hierarchical manner, previous works [8, 32] largely struggle to
handle complex tasks efficiently, especially for handling logically
intricate tasks. This could potentially lead to sub-optimal or hard-to-
maintain code and contradict the original design intention for the
compositional task. Further, without a clear decomposition of the
problem, identifying and fixing bugs becomes daunting as the error
could be deeply embedded within intertwined program logic. Modu-
lar code, in contrast, enables easier isolation and resolution of issues.
2) Ineffective intermediate feedback utilization: Since the pro-
gram is generated in a single pass, programming-based methods
fail to take advantage of intermediate results and system-returned
values during code execution that can enhance code quality and
facilitate debugging. This indicates a lack of adeptness in leveraging
real-time feedback and adjusting code logic dynamically, which
could otherwise lead to more refined and debuggable code outputs.

Drawing an analogy from the process of human programmers [9,
24], we consider four essential steps typically followed in program
development: 1) Reference: search for the most relevant algorithm
that aligns with the given task’s logical structure to serve as a high-
level logical reference. 2) Decomposition: based on the reference’s
structure, decompose and frame the programming task into several

2024-04-13 01:17. Page 1 of 1–9.

https://anonymous.4open.science/r/De-fine_Program-FE15
https://anonymous.4open.science/r/De-fine_Program-FE15

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

subtask modules, later constructing an executable draft program.
3) Feedback: obtain systematical feedback for program revision
by comparing the expectation with program output, intermediate
variables, and compiler return values. 4) Iteration: progressively
refine the program based on the feedback until the desired correct
outcome. We exemplify the idea in Figure 1. For the query “How
many muffins on the table?”, one may first retrieve a similar query
(e.g. “How many toys on the desk?”) and parse its logic structure as
a reference. Then we decompose the task into two subtasks: “find
the muffins on the table” and “count the number of muffins”. The
programmer will further evaluate the output, intermediate results,
and the program against the expectation, and finally refine the
program iteratively until satisfied.

Inspired by this process in software engineering, we propose
De-fine, a training-free framework that decomposes intricate
tasks into executable program blocks by modeling the logic struc-
ture of relevant tasks and automatically refines the program
based on multifaceted feedbacks from the execution. Our frame-
work advances in relieving humans from the tedious process of
converting ideas into programs. Specifically, as shown in Figure
2, De-fine generates an abstract logical prompt that reveals the
internal task logic without redundancy. This prompt is selected
based on semantic similarity to the task query and can imitate the
logic of the program after masking. Then, prompted by abstract log-
ical examples, a large language model (LLM) generates executable
programs that decompose the tasks for the queries. After execution,
De-fine automatically refines the program blocks by multifaceted
feedback derived from the program results, intermediate variables,
and compiler messages. These systematic feedbacks are summa-
rized by categories through multiple targeted specific models.

Importantly, the two core modules of De-fine collaborate well
with each other. Mutually, the refinement part can extract ap-
plicable codes based on feedback and expand the codebase to a
logically well-structured one which will be used as prompts for
future tasks. This logical codebase even does not require manual an-
notation or any ground-truth programs for training. Reversely, the
decomposition part also contributes to the refinement part by in-
structing the program to generate more detailed code that provides
richer reference information for feedback. These two components
are interdependent and synergistically reinforce each other.

Our empirical evaluation on various benchmarks reveals that
the proposed method is able to effectively decompose intricate
multi-step problems and be adapted to various visual tasks such
as grounding [14], reasoning [35], and image question answer-
ing [1, 12, 23]. By capitalizing on multi-faceted feedback and the
capabilities of other multi-modal language models, we achieve state-
of-the-art (SOTA) zero-shot results on five tasks without model
fine-tuning or supervised training.

Overall, our contributions are as follows:

• We revisit visual programming as a task of modular pro-
gramming and optimization through feedback, solving them
by the software engineering principles. With De-fine, we
break down tasks into executable program blocks and refine
them automatically using multifaceted feedback.

• De-fine constructs an abstract logical prompt to sufficiently
preserve the internal logical reasoning structure of the draft

program, and systematically defines four types of feedback
to optimize the quality and performance of programs.

• Without any supervised training data, De-fine achieves
SOTA zero-shot performance on tasks such as image ques-
tion answering, visual reasoning, and grounding.

2 RELATEDWORK
Program generation and self-optimization have seen renewed mo-
mentum owing to the incredible understanding and generation
capabilities of LLMs. We now discuss previous program genera-
tion, recent work in using LLMs for vision, and advances in self-
refinement.

Program Generation. Visual program generation is an active
research domain that aims to synthesize programs performing vi-
sion tasks using neural symbols [28] or Python modules [19, 33].
This approach is based on the assumption [3, 13] that vision tasks
are inherently compositional and can be decomposed into atomic
perceptual units like lines of code. Yet, complex tasks pose a chal-
lenge for this approach, as the generated code is often sub-optimal
due to the insufficient semantic understanding of LLMs [15]. In
contrast, De-fine can generate well-performance programs with a
hierarchical structure.

Visual Programming with LLM. Programming-based meth-
ods [29, 38, 40] are scalable and interpretable for vision tasks, as they
can incorporate any vision or language module with a predefined
interface. Additionally, they enable fine-grained image processing
and editing through code-level operations. The progress of the pro-
gram generation model [19] enhances the synthesis of programs for
visual tasks without task-specific training. Nevertheless, they still
require multiple manually labeled codes as context-learning exam-
ples. While De-fine can automatically retrieve relevant examples
to assist in program generation.

Refinement with Auto-feedback. Even for human program-
mers, there is no guarantee that the code written on the first try is
always accurate. Therefore, we hope the model can provide mul-
tifaceted feedback and refine its previously generated program.
Previous work like Self-debug [5] uses the error message of the
program as feedback to modify the code generated. Self-refine [22]
optimizes the output through feedback and refinement iteration.
However, this feedback comes from a single modality of text and
is only generated from the final result. In contrast, De-fine can
provide feedback on variables during code execution and generate
feedback types for different variable types, enabling it to handle
visual, textual, and error messages.

3 METHODOLOGY
To address the limitations of current programming-based approach
in insufficient decomposing and ineffective utilizing feedback, we
propose De-fine, a training-free framework for decomposition and
refinement, which eliminates the necessity to fine-tune any existing
pre-trained models. Our method is shown in Figure 2, given a task
query and a visual input, De-fine first generates an abstract logical
prompt that guides the decomposition and well-structured program
synthesis. (Section 3.1). During execution, it generates multifaceted
feedback considering the program results, intermediate variables,
and compiler messages (Section 3.2). De-fine then automatically

2024-04-13 01:17. Page 2 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

De-fine: Decomposing and Refining Visual Programs with Auto-Feedback Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Step1: Abstract Logical Prompt Construction
Qurey：
How many wheels does the cars have？
Abstract Logical Prompt:
#step1:Find the car
#step2:...
def function(image):

#step1:Find the object <pad>
image_patch = ImagePatch(image)
<pad> = image_patch.find("<pad>")
#step2:return the number of <pad>
return len(<pad>)

def function(image):
...

Generated Program:
def function(image):

#step1:Find the car
image_patch = ImagePatch(image)
car_patches = image_patch.find("car")
#step2:Find the wheel
num_cars = 0
num_wheels = 0
for car_patch in car_patches:

wheel_patches = car_patch.find("wheel")
num_wheels += len(wheel_patches)

#step3:return the number of wheels
return num_wheels

Step2: Program Generation and Execution Step3: Multifaceted Feedback Generation

def function(image):
#step1:Find the car
image_patch = ImagePatch(image)
car_patches = image_patch.find("car")
#step2:Count the number of wheels
num_wheels = 0
for car_patch in car_patches:

is_isetta = car_patch.simple_qurey
 ("Is this car a BMW isetta ?")

if bool_to_yesno(is_isetta):
num_wheels += 3

else:
num_wheels += 4

#step3:return the number of wheels
return num_wheels

Step4: Code Evolution

Visual Feedback:

VLM: This is a BMW isetta that
features only three wheels

VLM: This is a blue BMW
isetta with only three wheels

Textual Feedback:
 num_wheels = 0

 num_wheels = 3

 LLM: The program calculated two cars and three wheels

... Compile Feedback:
Code Static Analysis:
Unused variable 'num_cars'
IDE:
Successful Compilation!

Human Feedback
(optional):
Human:
Some wheels
cannot be seen
from a specific perspective

...

After Refinement ：6

Codebase

Visual input

Retrive
Update

Extract

De-fine

Figure 2: De-fine is a programming-based framework that can decompose tasks and refine the program. We summarize the
process into four steps: (1) De-fine first constructs an abstract logical prompt. (2) We generate the program and execute it. (3)
During execution, De-fine automatically generates multifaceted feedback for optimizing. (4) De-fine keeps the well-optimized
code based on feedback and expands the codebase for future use. The pseudocode algorithm is shown in Appendix A.

refines the program according to the systematic feedback to produce
a well-performing code (Section 3.3). Moreover, these self-improved
high-quality programs enrich the codebase for future use (Section
3.4). The whole process does not require any additional input and
relies solely on the self-optimization of the model.

3.1 Abstract Logical Prompt Generation
In the context of visual programming, an effective decomposition
necessitates fulfilling two criteria: logical problem decomposition
and hierarchical code organization. Absent these, the code gener-
ated without explicit intention guidance may result in ambiguity
or even compilation errors. To address this challenge, we initially
dissect the query into natural language sub-steps, providing an
explicit logical step. Subsequently, we extract relevant code from
a database to refer to its logical structure, forming an implicit ab-
stract code. These steps culminate in the creation of the abstract
logical prompt. The prompt significantly improves code synthesis
by eliminating irrelevant variables and enhancing the visibility of
the internal logic, offering a substantial advantage in the clarity
and effectiveness of program generation.

Logical Step Generation. For a given query 𝑞, we leverage
the zero-shot reasoning capabilities of the LLM to decompose it
into sub-steps 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑁 } where 𝑞𝑖 represents the 𝑖-th
step in addressing the original problem. This logical step will be

embedded into the generated code as comments in the future to
provide readability and explicit intentional guidance for the code
generation engine.

Abstract Code Extraction. Given a textual query 𝑞, we first
retrieve 𝐾 code snippets 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝐾 } where 𝑧𝑖 represents
the 𝑖-th code whose description is similar to 𝑞 from a codebase 𝐵
(for details, please refer to Section 3.4). After getting candidates,
we use placeholders (<pad>) to discard the irrelevant parts (e.g.
variable names, specific conditions in if statements) and obtain the
abstract code 𝑍 = 𝑆 (𝑍), where 𝑍 = {𝑧1, 𝑧2, . . . , ˆ𝑧𝐾 }. This abstract
code does not require meticulous design. By masking irrelevance
that is not pertinent to the current task, it guides the model to focus
on learning universal solutions or strategies and directs the code
generation engine to decompose the tasks hierarchically.

For integration, we find the intuition from previous studies [10,
11] that codes with similar natural language descriptions share an
analogous logical structure. We go one step further by sorting ab-
stract code based on text similarity to the substeps in the logical step.
We construct an abstract logical prompt 𝐴𝐿 = {𝑄,𝑍 } shown in
Figure 3, enabling program generation 𝑧 = 𝜋 (𝑞,𝐴𝐿) via a generator
𝜋 (GPT-3.5-Turbo). During generation, the model is instructed to
insert comments derived from the logical step, thereby enhancing
the extraction and feedback of pertinent information.

2024-04-13 01:17. Page 3 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Program: ...
Program: ...

Query: How many giraffes are there?

Query: Tell me about ...
Query: What color ...

Query: How many apples ...

Program: ...Codebase with
query and program pairs

1. Retrive

Program 1:
def function(image):

#step1: find all <pad>
image_patch = ImagePatch(image)
<pad> = image_patch.find("<pad>")
#step2: return the number of <pad>
return len(<pad>)

Candidates
Query: How many dogs are left of the person?
Program:
def function(image): ...

...

Program 2: ...

2. Extract

Sub-steps + Programs = Abstract Logical Prompt -> Code Generation Model

...

Codebase

Programs

Sub-steps
#step1: find all giraffes
#step2: return the number of giraffe

Query: How many of these people are facing forward?
Program:
def function(image): ...

Query: How many apples are there?
Program:
def function(image):

#step1: find all apples
image_patch = ImagePatch(image)
apple_patches = image_patch.find("apple")
#step2: return the number of apple
return len(apple_patches)

Sort by
Text Similarity

Figure 3: The pipeline of abstract logical prompt generation. Initially, we generate sub-steps to address the given query.
Subsequently, we retrieve the most relevant code based on the semantic relevance of code comments and substeps. Then,
we mask any irrelevant or redundant information in the retrieved code. This AL is finally provided as a prompt to the code
generation model.

3.2 Multifaceted Feedback Generation
During program execution, De-fine takes advantage of interme-
diate results and system return values during code execution to
enhance code quality and facilitate debugging. To achieve this, we
systematically define several types of feedback: 1) Visual Feedback,
2) Textual Feedback, 3) Compile Feedback, and 4) Human Feedback
(optional) that can dynamically adjust code logic based on the exe-
cution outcomes. These multifaceted feedbacks are generated by
corresponding feedback generators, leading to more refined and
debuggable code outputs.

Specifically, after getting the program 𝑧, we apply an execution
engine 𝜙 (𝑧, 𝑥) and a feedback generator 𝐺 (𝜙) to execute 𝑧 on the
input image 𝑥 . The generator𝐺 extracts intermediate variables𝑉 =

{𝑣1, 𝑣2, . . . , 𝑣𝑛} (e.g. image patch, string, comment) and generates
feedbacks 𝐹 = {𝐹𝑣𝑖𝑠𝑢𝑎𝑙 , 𝐹𝑡𝑒𝑥𝑡𝑢𝑎𝑙 , 𝐹𝑐𝑜𝑚𝑝𝑖𝑙𝑒 , 𝐹ℎ𝑢𝑚𝑎𝑛} :

Visual Feedback: The execution of the grounding and finding
functions in the program 𝑧 return image patches with correspond-
ing bounding boxes. We use a VLM (mPLUG-Owl [39]) to process
the intermediate image variable, generating feedback for dual ob-
jectives: 1) Image caption extraction: The VLM captions image 𝑥 and
the image patches in 𝑉 with bounding boxes, converting visuals to
text to clarify ambiguities in code generation queries. 2) Sub-step
verification: It verifies whether the image patches in 𝑉 match the
expected results of each substep in 𝑧. For example, if a substep is
supposed to crop a face, the VLM checks whether the cropped image
contains a face or not and generates Visual Feedback accordingly.

Textual Feedback: We use the cognitive capability of the lan-
guage model (LLaMA [34]) to provide Textual Feedback for two
purposes: 1) Logical question answering: We ask the model to answer
logical questions about the text output, like how the intermediate

variables 𝑉 deduce the final answer, and whether they match the
substep reasoning process. 2) Text summarization: For atomic code,
the program may produce verbose and repetitive output strings if
there is a loop in the program. For the entire program, we also need
to verify whether the reasoning between the steps in the comments
is correct. We summarize these string outputs by the language
model and generate Textual Feedback from a higher level.

Compile Feedback: We first conduct a static analysis to iden-
tify potential hazards, including variable shadowing and naming
conflicts. During compilation, the compiler identifies and reports
any syntax or semantic errors, such as omitted semicolons, unde-
clared variables, and data type incompatibilities. These notifications
serve as Compile Feedback for refining the compilation process and
improving the precision of code execution.

Human Feedback (optional): De-fine may also cooperate
feedback directly from humans for optional. In programming, users
can iteratively modify the program alignment with their intentions
until get the anticipated outcome. This intention termed Human
Feedback, tends to be markedly explicit and facilitates human-in-
the-loop inference. De-fine is capable of leveraging human knowl-
edge and expertise, alongside human creativity and heuristic rea-
soning, to provide high-quality feedback. We show an example of
human feedback in Figure 4d.

The feedback generated by De-fine above can consolidate the
correct steps, clarify the ambiguous parts, and correct the wrong
parts simultaneously. This enables the exploitation of the program
itself and its intermediate variables, providing multifaceted feed-
back for the automatic refinement process of the model. We list the
prompts required by the model in Appendix D.

2024-04-13 01:17. Page 4 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

De-fine: Decomposing and Refining Visual Programs with Auto-Feedback Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Visual grounding task results.We report the accuracy
of the REC (referring expression comprehension) task and
testA split on the RefCOCO and RefCOCO+.

IoU(%)

RefCOCO RefCOCO+
GLIP [18] 55.0 52.2
ReCLIP [30] 58.6 60.5
GENOME [6] 69.2 -
ViperGPT [32] 73.1 67.9
De-fine 75.2 70.0

3.3 Automatic Code Refinement
In the previous step, we obtained feedback that can integrate in-
formation from various sources, such as patches and strings from
intermediate variables, result output from the program, and returns
from the compiler, into new programs. This feedback is then used
to optimize the draft program with the help of De-fine’s refiner,
which is especially useful for code optimization, as it can enhance
the performance and logic of the program.

The automatic refiner reuses our previous code generationmodel
𝜋 . Given a query 𝑞, an initial program 𝑧, and feedback 𝐹 , the refiner
𝜋 refine a new program 𝑧∗ = 𝜋 (𝑞, 𝑧, 𝐹) that improves on 𝑧 in terms
of accuracy, conciseness, and logic. The execution engine 𝜙 then
takes an input image 𝑥 and the refined program 𝑧∗, then generates
a result 𝑟 = 𝜙 (𝑥, 𝑧∗) as the final output.

Unlike rule-based or heuristic-based strategies, our refinement
is feedback-oriented, facilitating adaptability across diverse queries
and programs through the assimilation of execution feedback. Ad-
ditionally, it adopts a holistic perspective, thereby optimizing the
program in its entirety rather than optimizing isolatedly. More-
over, the process is interactive and iterative, rather than being
constrained to a one-off or static execution, thereby excelling in
the enhancement of the program via multiple iterations of feedback
from the user or the execution.

3.4 Codebase Evolution
De-fine takes advantage of optimized code that has a consistent
and hierarchical structure refined by feedback. This type of code
can produce optimal results and facilitate code reuse. By adding the
optimized code back to the codebase, we can enhance the quality
and reliability of the programs in the codebase over iteration.

We revisit the mention presented in Section 3.1 here. During the
inference process, if there is no code corresponding to the current
query in the codebase, the generated program will be added to it.
Otherwise, it means that the updated code needs to be compared
with the draft one. At this time, we execute themwith auto-feedback
as we mentioned in 3.2 and reuse the refiner as a selector and retain
one of them.

Initialization of the database, we randomly select 20% of all
samples within the current testing task to fabricate query-code
dyads for code retrieval and generate the program first (De-fine
will still infer them later). It is worth noting that De-fine is a
training-free framework. Consequently, we do not utilize any train-
ing data from any tasks, aiming to circumvent potential misun-
derstandings or accusations of unfairness that might arise from

Table 2: GQAResults.We report accuracy on the GQA test-dev
set.𝐺𝑇 −𝑑𝑎𝑡𝑎=ground-truth data,𝐴𝐿=abstract logical prompt.

Accuracy(%) 𝐺𝑇 − 𝑑𝑎𝑡𝑎 Voting
VISPROG 50.5 ✓ ✓
BLIP-2 [16] 44.7 ✗ ✗

GENOME [6] 45.6 ✗ ✗

ViperGPT [32] 49.7 ✗ ✗

ViperGPT+𝐴𝐿 52.2 ✗ ✗

De-fine 55.3 ✗ ✗

Table 3: Visual question answering and reasoning tasks re-
sults. We measure the accuracy (%) of the models on the val
set of OK-VQA, the test set of TallyQA, and the test set of
NLVRv2.

Accuracy(%)

OK-VQA TallyQA NLVRv2
VISPROG 52.6 68.1 62.4
BLIP-2 [16] 45.9 48.4 -
Flamingo [2] 50.6 - -
ViperGPT [32] 52.5 70.2 62.9
ViperGPT+𝐴𝐿 54.8 71.7 64.0
De-fine 57.1 73.2 67.3

using training set data or labels. Our approach is meticulously de-
signed to avoid any form of data leakage. Hence, we only used the
questions from the test dataset (without labels) as part of our
initial dataset to further this goal. We first infer a subset of the
testing set, thereby excluding the utilization of training set data.
This procedure will eschew annotations for the filtration, as well as
abstain from leveraging data from its training dataset, ensuring no
data leakage risk. Subsequently, the feedback generated during ex-
ecution will be utilized to filter these pairs and preserve executable
codes. In this way, the codebase can be expanded as samples are
continuously inferred, providing more accurate retrieval and more
relevant results in subsequent iterations.

4 EXPERIMENTS
The De-fine framework exhibits the capability to execute a multi-
tude of visual tasks without training or access to ground-truth data.
In this section, we present the experimental setup (Section 4.1) and
undertake a comprehensive evaluation across three distinct visual
tasks: (1) visual grounding (Section 4.2), (2) compositional visual
question answering (Section 4.3), and (3) zero-shot reasoning on
image pairs (Section 4.4). Additionally, we have conducted exten-
sive ablation studies to assess the impact of various parameters and
components within our framework (Section 4.5).

4.1 Experimental Setup
Model Setup. For abstract code extraction, we can replace vari-
ables, judgments, and constant strings with placeholders (<pad>) in
static code analysis. In practice, during the experiment, we use an
end-to-end sketcher [17] to implement the mask operation. For the
program generator, refiner, and filter, we adopt the GPT-3.5-Turbo

2024-04-13 01:17. Page 5 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 4: Ablation results (%) of individual components.

GQA OK-VQA
0 Backbone 49.1 52.0
1 + decompose (in-context prompt) 50.6 52.9
2 + abstract logical prompt 52.5 54.1
3 + feedback 54.8 56.2
4 + code evolution 55.2 56.7
5 ViperGPT + in-context prompt 51.0 53.5

(1106) [25] language model, as provided through the official Ope-
nAI API. For visual feedback, we use mPLUG-Owl (7B pre-trained
version) [39] as a caption extraction and logical judgment tool. For
textual feedback, we utilize LLaMA (7B) [34] to extract the text out-
put and intermediate variable returns in the program and generate
corresponding feedback. In quantitative experiments, Human Feed-
back was not incorporated into our experiment due to efficiency
and cost.

Baselines. We use the following baselines: Visual Program-
ming [8], the procedure is given 24 contextual instances, run 5
times per execution for majority voting. For a fair comparison, all
experiments utilize GPT-3.5-Turbo (1106) as the code generation en-
gine within ViperGPT [32]. Furthermore, the analysis encompasses
BLIP-2 [16], Flamingo [2], GLIP [18], ReCLIP [30] , GENOME [6]
as additional comparative frameworks.

4.2 Visual Grounding
We compare different models on visual grounding tasks on Ref-
COCO and RefCOCO+ [14] datasets. This task requires the model
to locate the object in an image that corresponds to a given natural
language description, as well as to demonstrate the ability of the
model to reason about spatial relations and visual features.

As the result shown in Table 1, De-fine achieves a significant
improvement over existing models under zero-shot settings. A po-
tential reason for the inferior performance of end-to-end models
(e.g. GLIP, ReCLIP) is their lack of an explicit representation of the
internal reasoning structure and their inability to leverage modular
tools. In contrast, ViperGPT can access modules via a predefined
API, but De-fine surpasses it by automatically optimizing the pro-
gram and refinement. This suggests that De-fine can validate and
modify the generated program for better performance based on the
feedback from intermediate variables at the refining stage. Further-
more, this result verifies the flexibility of De-fine, which can adapt
to different queries and tasks by adjusting the program structure
and parameters.

4.3 Compositional Visual Question Answering
De-fine is a novel method specifically designed for complex visual
question answering tasks. It can intuitively show the process in
which a complex problem is decomposed step by step and con-
tinuously improved program by its own feedback. In this section,
we demonstrate the effectiveness of our model on three datasets:
GQA [12], OK-VQA [23], and TallyQA [1].

As shown in Tables 2 and 3, programming-based methods, de-
spite employing large foundation models, are constrained by their
single-pass approach. Different from Visual Programming which

Table 5: Ablation results (%) of multifaceted feedback.

Feedback Module Accuracy

Visual Textual Compile GQA OK-VQA

0 Backbone 52.6 54.4

1 + Visual ✓ 54.5 56.3
2 + Textual ✓ 53.9 55.0
3 + Compile ✓ 52.9 54.8

4 + Visual + Textual ✓ ✓ 55.1 56.7
5 + Visual + Compile ✓ ✓ 54.8 56.6
6 + Textual + Compile ✓ ✓ 54.2 55.5

7 De-fine ✓ ✓ ✓ 55.3 57.1

takes a majority voting strategy for maximum consensus predic-
tions per query, De-fine decomposes the task into finer-grained
subtasks without using any ground-truth data and incorporating
feedback from multiple variables in iteration. Despite using the
same abstract logical prompt as an example for ViperGPT, De-fine
consistently outperforms existing models by a large margin in all
VQA tasks.

De-fine can also perform error correction on the generated
programs. By using the Compile Feedback that we designed, the
model can rapidly identify and fix the flaws in the program in the
subsequent generation.

4.4 Zero-shot Reasoning on Image Pairs
We extend De-fine to accomplish reasoning on multiple images,
not just one. Our model performs well on the NLVRv2 [31] bench-
mark which involves verifying statements about image pairs, the
results are shown in Table 3.

Current visual models can process multiple images as input, yet
they treat each image in isolation. The interrelation of different
images relies on network fusion, which is affected by the sequence
and quantity of images. De-fine synthesizes information from di-
verse modalities via feedback and offers a comprehensive correction
proposal. This enables the model to improve its performance on
multi-image tasks substantially.

4.5 In-Depth Analysis
Qualitative Analysis. Figure 4 showcases how De-fine dynam-
ically refines programs by systematical feedback across various
modalities. We also display some error cases and generated feed-
back in Appendix E and F. A notable advantage of our approach is
its facilitation of human-in-the-loop programming, enabling
direct incorporation of human reasoning and knowledge through
feedback. This process fosters a collaborative environment where
users impart heuristic insights to the model, which in turn, validates
these inputs via programmatic reasoning and outputs, enhancing
human-computer interaction.

Effectiveness of Individual Components. We perform an
ablation study in four configurations of our model on the GQA and
OK-VQA tasks (Table 4): 0) backbone: only single-pass program
generation and execution, 1) backbone + in-context prompt: with
decomposition module and the in-context prompt that uses the
retrieved sample directly 2) backbone + abstract logical prompt:

2024-04-13 01:17. Page 6 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

De-fine: Decomposing and Refining Visual Programs with Auto-Feedback Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Query: How much is it, if $1 for a bottle of Coke? De-fine
def function(image):

#step1:Find all coke patches
image_patch = ImagePatch(image)
coke_patches = image_patch.find("coke")
#step2:Define unit price and half price
unit_price = 1
half_price = 0.5
#step3:Count the number of coke
unit_price_coke = ceil(len(coke_patches) / 2.0)
half_price_coke = floor(len(coke_patches) / 2.0)
#step4:Calculate total cost and return
cost = unit_price_coke * unit_price +

 half_price_coke * half_price
return cost

ViperGPT
def function(image):

image_patch = ImagePatch(image)
coke_patches = image_patch.find("coke")
unit_price = 1
cost = len(coke_patches) * unit_price
return cost

Visual Feedback:
Buy one get the 2nd
one half price
...

Textual feedback:
The total cost is $3
...

(a) De-fine can solve complex question answering tasks

Query: If there comes another kid,
 how many muffins on the table can each kid have equally ?
ViperGPT
def function(image):

image_patch = ImagePatch(image)
muffin_patches = image_patch.find("muffin")
kid_patches = image_patch.find("kid")
return (len(muffin_patches)+1)//len(kid_patches)

De-fine
def function(image):

#Step1:find the muffin on table
image_patch = ImagePatch(image)
table_patches = image_patch.find("table")
table_patch = table_patches[0]
muffin_patches = table_patch.find("muffin")
#Step2:find the kids
kid_patches = image_patch.find("kid")
#Step3:Calculate the number of muffins
 divided equally by one more child
return len(muffin_patches)//(len(kid_patches)+1)

Visual Feedback:
A brown muffin on the table × 6*
A muffin in a kid's hand × 2*
...

Textual feedback:
We find 2 children, but the
query stated that there is one more.
...

* Since each image receives a caption in Visual Feedback, for simplicity, we show it in the figure with a ×6 and ×2 notation.

(b) De-fine can modify program logic errors

Query: Find all the people on the front island.
 （*no island in image at all）

De-fine
def function(image):

#Step1:find the island
image_patch = ImagePatch(image)
island_patches = image_patch.find("island")
#Step2:sort and select the island in front
island_patches.sort
(key=lambda island: island.compute_depth())
#Step3:if If there is no island, return "no island"
if len(island_patches) = 0:

return "There is no island in picture"
#Step4:return all the people on the front island.
people_patches = island_patches[0].find("man")
return people_patchesCompile Feedback: IndexError: list index out of range

ViperGPT
def function(image):

image_patch = ImagePatch(image)
island_patches = image_patch.find("island")
island_patches.sort
(key=lambda island: island.compute_depth())
people_patches = island_patches[0].find("man")
return people_patches

(c) De-fine can correct code compilation errors

Query:
According to the current clock, what time is it in Paris now?
ViperGPT
def function(image):

image_patch = ImagePatch(image)
clock_patches = image_patch.find("clock")
time = clock_patches[0].simple_query
("what time is it in Paris now?")
return time

De-fine
def function(image):

#step1:find the current clock and get time
image_patch = ImagePatch(image)
clock_patches = image_patch.find("clock")
time = clock_patches[0].simple_query("what time is it?")
#step2:Query the time difference between the two places
time_difference = llm_query
("What is the time difference between London and Paris")
#step3:Calculate the final time
time_in_Pairs = llm_query("{time} {time_difference}"}
return time_in_Pairs

Human Feedback:
The picture was taken in London, while the query is about Paris

(d) De-fine can update code with knowledge from human feedback

Figure 4: Refinement examples by the feedback of De-fine.

with decomposition module and the abstract logical prompt, 3)
backbone + decompose + feedback: with feedback generation and
refinement of program, and 4) backbone + decompose + feedback
+ code evolution: with codebase updating component for better
searching results. 5) We also compare our approach with ViperGPT
given by the in-context prompt. The result provides strong evidence
that the performance improvement is not attributable to the use
of in-context prompts, but rather to the logical structure format of
the abstract logical prompt.

By analyzing the data in the table, we conclude that 1) the de-
compose module enables effective decomposition of the task into
multiple sub-tasks. 2) A non-redundant prompt truly guides the
model to focus on logical imitation, which results in a significant im-
provement in solving complex problems. 3) Refinement by feedback
provides the most enhancement, as feedback conveys high-level
information and allows the model to revise and update the code
which can correct the potential errors or integrate information to
obtain the correct answer. 4) By code evolution, the model can

2024-04-13 01:17. Page 7 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 6: Impact of code generation engines.

Accuracy(%)
Engine GQA OK-VQA Average
Code-Llama (34B) 54.7 56.6 55.65
Code-Llama (70B) 54.8 57.3 56.05
GPT-3.5-Turbo (1106) 55.3 57.1 56.20

Table 7: Evaluation of Code Quality. We use pylint as a tool
to evaluate code quality and report the average score and
compilation success rate.

Pylint score Compilation accuracy
ViperGPT 6.64 86.5%
De-fine (Code-Llama) 7.21 90.2%
De-fine (ChatGPT) 7.50 92.8%

accumulate more experience stored in the codebase and utilize it
for future problem-solving.

The Impact of Multifaceted Feedback. Table 5 delineates the
ablation studies conducted on varied feedback modules. Within this
framework, Visual Feedback exhibited the most significant impact.
This is attributed to the capability of visual feedback to amalgamate
visual cues with textual information during code synthesis, offer-
ing a substantial enhancement for language models lacking direct
access to visual data. Succeeded by Textual Feedback, providing
ancillary support in the integration of context and semantics into
the generated code. Ultimately, Compile Feedback, while beneficial
for refining code style, appears to have a negligible effect on the
overall accuracy. This phenomenon is ascribed to the high rate
of successful code execution in the baseline, thereby limiting the
scope for significant accuracy improvements through compilation
feedback alone. To prove the improvements are not solely due to
providing image captions or text information we conducted an
additional ablation experiment in Appendix B.

The Impact of Code Generation Engines. We conducted ex-
periments on different code generation engines, shown in Table 6. It
is observable that variations in model and parameter size exert lim-
ited influence on De-fine, substantiating that our model-agnostic
approach can be widely applied across diverse models. The pro-
grams generated by the code generation engine are presented in
Appendix G, with an analysis of structure and style.

Evaluation of Code Quality The performance on VQA tasks
directly indicates the code’s ability to be correctly interpreted and
executed. However, acknowledging the missing systematic evalua-
tion for code generated within the VQA domain, we employ Pylint,
a static code analysis tool. This tool is instrumental in evaluating
the code quality produced by both ViperGPT and De-fine. The
findings from this comprehensive analysis are detailed in Table 7.
Remarkably, the code generated by our system achieved an average
score that surpasses that of ViperGPT. We attribute this superior
performance to the minimal presence of dependency issues and the
elimination of redundant variables in our code. These improvements
are in line with the observations from our other ablation studies,
underscoring our system’s refined code generation capabilities.

Number of iterations

Ac
cu

ra
cy

(%
) GQA

OK-VQA
Tally-QA

72

0 1 2 3 4 5

56

54

58

74

(a)

52
53
54
55
56
57
58

Ac
cu

ra
cy

(%
)

GQA
OK-VQA

0 1 2 3
Number of prompts

(b)

Figure 5: Analysis on (a) the number of iterative refinement
and (b) abstract logical prompts.

16%

10%

10%
8%1%

55%

VISPROG
5%

11%

8%

9%
2%65%

De-fine

Incorrect Program
Multiple Answer

VQA
Location

Crop
Correct

Figure 6: Sources of error in GQA task.

Analysis on the Number of Iterative Refinement. We show
how the number of iterative refinements affects the performance
in Figure 5a. The plot indicates that three iterations are sufficient
to optimize the program, as the performance plateaus after that.
Considering the token cost of accessing a large model, we adopt
the outcomes of three iterations as our results.

Analysis on the Number of Prompts. To investigate how the
number of abstract examples affects the performance, we varied the
number of abstract codes (0-3) as prompts for the code generation
model. Figure 5b shows that 2 program examples are sufficient to
showcase the capability of the model, so we adopt the two program
examples setting for our demonstrations.

Human Evaluation. To conduct an error analysis, we followed
Visual Programming and manually selected 100 samples from GQA
to identify the sources of errors, shown in Figure 6. The results indi-
cate that our method outperforms Visual Programming in reducing
the “Incorrect Program” errors. We will detail the types of errors
and comparisons in Appendix C.

5 CONCLUSION
We propose De-fine, a method that decomposes tasks by construct-
ing an abstract logical prompt to guide the well-performing code
generation. After execution, De-fine refines the program based
on the four types of systematic feedback. Through experimenta-
tion, we demonstrate that De-fine serves as a self-optimization
approach that is model-agnostic, scalable, and interpretable.

2024-04-13 01:17. Page 8 of 1–9.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

De-fine: Decomposing and Refining Visual Programs with Auto-Feedback Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Manoj Acharya, Kushal Kafle, and Christopher Kanan. 2018. TallyQA: Answering

Complex Counting Questions. arXiv preprint arXiv:1810.12440 (2018).
[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana

Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds,
Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong,
Sina Samangooei, Marianne Monteiro, Jacob L Menick, Sebastian Borgeaud,
Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikoł aj Bińkowski,
Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan.
2022. Flamingo: a Visual Language Model for Few-Shot Learning. In Ad-
vances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 23716–23736. https://proceedings.neurips.cc/paper_files/paper/2022/file/
960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf

[3] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016. Neural
module networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 39–48.

[4] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In
Proceedings of the IEEE international conference on computer vision. 2425–2433.

[5] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching
large language models to self-debug. arXiv preprint arXiv:2304.05128 (2023).

[6] Zhenfang Chen, Rui Sun, Wenjun Liu, Yining Hong, and Chuang Gan. 2023.
GENOME: GenerativE Neuro-symbOlic visual reasoning by growing and reusing
ModulEs. arXiv:2311.04901 [cs.CV]

[7] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdh-
ery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,
et al. 2023. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378 (2023).

[8] Tanmay Gupta and Aniruddha Kembhavi. 2023. Visual programming: Com-
positional visual reasoning without training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 14953–14962.

[9] Stefan Haefliger, Georg Von Krogh, and Sebastian Spaeth. 2008. Code reuse in
open source software. Management science 54, 1 (2008), 180–193.

[10] Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and Percy S Liang. 2018.
A retrieve-and-edit framework for predicting structured outputs. Advances in
Neural Information Processing Systems 31 (2018).

[11] Shirley Anugrah Hayati, Raphael Olivier, Pravalika Avvaru, Pengcheng Yin, An-
thony Tomasic, andGrahamNeubig. 2018. Retrieval-based neural code generation.
arXiv preprint arXiv:1808.10025 (2018).

[12] Drew A Hudson and Christopher D Manning. 2019. Gqa: A new dataset for real-
world visual reasoning and compositional question answering. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 6700–6709.

[13] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li
Fei-Fei, C Lawrence Zitnick, and Ross Girshick. 2017. Inferring and executing
programs for visual reasoning. In Proceedings of the IEEE international conference
on computer vision. 2989–2998.

[14] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. 2014.
Referitgame: Referring to objects in photographs of natural scenes. In Proceedings
of the 2014 conference on empirical methods in natural language processing (EMNLP).
787–798.

[15] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter
Clark, and Ashish Sabharwal. 2022. Decomposed prompting: Amodular approach
for solving complex tasks. arXiv preprint arXiv:2210.02406 (2022).

[16] Junnan Li, Dongxu Li, Silvio Savarese, and StevenHoi. 2023. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders and large language
models. arXiv preprint arXiv:2301.12597 (2023).

[17] Jia Li, Yongmin Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing Hu. 2023. Skcoder:
A sketch-based approach for automatic code generation. arXiv preprint
arXiv:2302.06144 (2023).

[18] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan
Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al.
2022. Grounded language-image pre-training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 10965–10975.

[19] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien deMasson d’Autume, Igor Babuschkin, XinyunChen,
Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,
Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-level code generation
with AlphaCode. Science 378, 6624 (2022), 1092–1097. https://doi.org/10.1126/
science.abq1158 arXiv:https://www.science.org/doi/pdf/10.1126/science.abq1158

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740–
755.

[21] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual Instruc-
tion Tuning. arXiv:2304.08485 [cs.CV]

[22] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao,
Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with self-feedback. arXiv preprint
arXiv:2303.17651 (2023).

[23] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mottaghi. 2019.
Ok-vqa: A visual question answering benchmark requiring external knowledge.
In Proceedings of the IEEE/cvf conference on computer vision and pattern recognition.
3195–3204.

[24] Audris Mockus. 2007. Large-scale code reuse in open source software. In First
International Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS’07: ICSE Workshops 2007). IEEE, 7–7.

[25] OpenAI. [n. d.]. GhatGPT. https://openai.com/chatgpt.
[26] OpenAI. 2023. GPT-4 Technical Report. ArXiv abs/2303.08774 (2023). https:

//api.semanticscholar.org/CorpusID:257532815
[27] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730–27744.

[28] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong
Zhou, and Pushmeet Kohli. 2016. Neuro-symbolic program synthesis. arXiv
preprint arXiv:1611.01855 (2016).

[29] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan
Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. 2023. Progprompt:
Generating situated robot task plans using large language models. In 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 11523–11530.

[30] Sanjay Subramanian, William Merrill, Trevor Darrell, Matt Gardner, Sameer
Singh, and Anna Rohrbach. 2022. Reclip: A strong zero-shot baseline for referring
expression comprehension. arXiv preprint arXiv:2204.05991 (2022).

[31] Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi.
2018. A corpus for reasoning about natural language grounded in photographs.
arXiv preprint arXiv:1811.00491 (2018).

[32] Dídac Surís, Sachit Menon, and Carl Vondrick. 2023. Vipergpt: Visual inference
via python execution for reasoning. arXiv preprint arXiv:2303.08128 (2023).

[33] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
IntelliCode Compose: Code Generation Using Transformer. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Virtual Event, USA)
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,
1433–1443. https://doi.org/10.1145/3368089.3417058

[34] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[35] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu,
Kriti Aggarwal, Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al.
2022. Image as a foreign language: Beit pretraining for all vision and vision-
language tasks. arXiv preprint arXiv:2208.10442 (2022).

[36] Teng Xi, Yifan Sun, Deli Yu, Bi Li, Nan Peng, Gang Zhang, Xinyu Zhang, Zhigang
Wang, Jinwen Chen, Jian Wang, et al. 2022. UFO: unified feature optimization. In
European Conference on Computer Vision. Springer, 472–488.

[37] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-vtt: A large video description
dataset for bridging video and language. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 5288–5296.

[38] Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yumao Lu, Zicheng Liu,
and LijuanWang. 2022. An empirical study of gpt-3 for few-shot knowledge-based
vqa. In Proceedings of the AAAI Conference on Artificial Intelligence. 3081–3089.

[39] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang
Wang, Anwen Hu, Pengcheng Shi, Yaya Shi, et al. 2023. mplug-owl: Modular-
ization empowers large language models with multimodality. arXiv preprint
arXiv:2304.14178 (2023).

[40] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong,
Stefan Welker, Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani,
et al. 2022. Socratic models: Composing zero-shot multimodal reasoning with
language. arXiv preprint arXiv:2204.00598 (2022).

[41] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. 2023.
Minigpt-4: Enhancing vision-language understanding with advanced large lan-
guage models. arXiv preprint arXiv:2304.10592 (2023).

2024-04-13 01:17. Page 9 of 1–9.

https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://arxiv.org/abs/2311.04901
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.abq1158
https://arxiv.org/abs/2304.08485
https://openai.com/chatgpt
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://doi.org/10.1145/3368089.3417058

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Abstract Logical Prompt Generation
	3.2 Multifaceted Feedback Generation
	3.3 Automatic Code Refinement
	3.4 Codebase Evolution

	4 Experiments
	4.1 Experimental Setup
	4.2 Visual Grounding
	4.3 Compositional Visual Question Answering
	4.4 Zero-shot Reasoning on Image Pairs
	4.5 In-Depth Analysis

	5 Conclusion
	References

