1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference’17, July 2017, Washington, DC, USA

A PSEUDOCODE DIAGRAM

We show a pseudocode algorithm here so that readers can better understand our process in Figure 2.

Anonymous Authors

Algorithm 1: The algorithm of De-fine

Input: An image x and a query ¢q
Output: The result of the query g about image x
Logic_step = LLM_decompose(q);

o

¥

Abstract_code = sketch(c in codebase if c.comments() relevant to g);
3 AL = Logic_step, Abstract_code;
for i in iteration do
Origin_code = Code_generator(APLAL,q);
Feedback = Feeback_generator(Compilor(Origin_code,x));
Code = Refiner(Origin_code,Feedback);
s end

ST

N

©

result = Compilor(Code,x)

B THE IMPACT OF CAPTION AND INFORMATION

The improvements in performance are not solely due to providing captions or information for images. In the appendix, we conducted
additional ablation experiments on the backbone, where the backbone was only given the captions of images and the textual traces after

code execution. Comparing this data to our results in Table 5, there remains a noticeable difference. This indicates that it is our feedback
mechanism, rather than the addition of information, that contributes to the performance improvements.

Table 8: Evaluation of Caption and Information.

GQA
Backbone 52.6
+ caption 53.7

+ execution trace 52.8
+ compiler output 52.6

C HUMAN EVALUATION

In this section, we explain the sources of error details of our experiments in Figure 5. We manually selected 100 samples from the GQA

dataset, analyzed each program’s errors, and classified them into five categories: 1) Incorrect Program: For those programs that cannot be
compiled, we all classify error codes. 2) Multiple Answer: As the function ’best_text_match’ will return the most relevant string of image
patch, there may be multiple correct results in the result. Therefore, the errors corresponding to this function are classified as Multiple
Answer. 3) VQA: In the method, we have the ’simple_query’ function, the "llm_query’ function and the ’verify_property’ function. These
question-and-answer functions correspond to the Vga function of Visual Programming. The program errors caused by these functions will be
classified as VQA. 4) Location: Positioning is very critical in visual tasks. It is implemented by the ’Loc’ function in Visual Programming and
the 'find’ function in De-fine. 5) Crop: In Visual Programming, there is the ’Crop’ function, while in De-fine it is defined in the ‘ImagePatch’

class. Therefore, incorrect answers due to image cropping will be recorded here.

D PROMPT USED IN THE MODEL.

We used the following prompt during our experiments:
Logical Step Decompose:

1 Given a VQA query, output the decomposed sub-step to how to answer it.
» The output must be brief and short.
5 Query: <QUERY>

Your answer should only start with #stepl:, #step2 etc.:

Code Generation:

You are a helpful assistant.
<API>

3 <AL_PROMPT>

<QUERY>

5 Only answer with a function starting def execute_command(image):

Visual Feedback (Image caption):

Please give me a short caption of <IMAGE2> located in the <BBOX> of <IMAGE1>.
It mainly focuses on the connection between the object itself and the overall picture:

Submission ID: 2472. 2024-04-12 09:01. Page 10 of 1-14.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

1150

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218

o=

E > & = 3 ¢ »

1

De-fine: Decomposing and Refining Visual Programs with Auto-Feedback

Visual Feedback (Sub-step verification):

<IMAGE_LIST> Is it possible that these pictures are the output of <substeps>?
Textual Feedback (Text summarization):

<TRACE> Please summarize in natural language what program trace outputs.
Textual Feedback (Logical verification):

<SUB_STEPS> Is it possible that these sub_steps can solve <QUERY>?
If not, please modify it and only start with #stepl:, #step2 etc.

Refiner Prompt:

You are a program optimizer (or corrector).

I will give you some information about how to use an API and a query about a picture.

Your task is to refine (or correct) the code that can answer the query by using API.
Please refine (or correct) the origin code based on feedbacks.

[API manual]: <API_MANUAL>
[Queryl: <QUERY>

[Code]: <ORIGIN_CODE>

[Visual Feedback]: <FEEDBACK_V>
[Textal Feedback]: <FEEDBACK_T>
[Compile Feedback]: <FEEDBACK_C>
Your answer should start with:
def execute_command(image):

E ERROR CASES

Conference’17, July 2017, Washington, DC, USA

1) On the GQA task, for the image named n172618.jpg, with the question “What is the height of the girl that is holding the kite?”, De-fine

generated the following code:

Figure 7: Image n172618.jpg with query “What is the height of the girl that is holding the kite?”

def execute_command(image):
#Stepl1: Find the patch containing the girl
girl_patches = ImagePatch(image).find("girl")
#Step2: Find the girl holding the kite
kite_patches = ImagePatch(image).find("kite")
kite_patch = kite_patches[0]
girl_holding_kite_patches = []
for girl_patch in girl_patches:

if girl_patch.overlaps_with(kite_patch.left, kite_patch.lower, kite_patch.right, kite_patch.upper):

girl_holding_kite_patches.append(girl_patch)
#Step3: Calculate the height of the girl holding the kite
girl_holding_kite_patch = girl_holding_kite_patches[@]
height = girl_holding_kite_patch.upper - girl_holding_kite_patch.lower
return str(height) + "pixels"

Listing 1: Code for image n172618.jpg

Although the code is executed correctly and the logic was sound, the result was incorrect when compared to the expected answer “Tall”.

This is because the question could not be adequately transformed into a classification problem of tall or short.

Submission ID: 2472. 2024-04-12 09:01. Page 11 of 1-14.

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

2) On the OK-VQA task, regarding the image COCO_val2014_000000029393.jpg with the question, “What type of dog is this?”, De-
fine produced the following code:

Figure 8: Image COCO_val2014_000000029393.jpg with query “What type of dog is this?”

def execute_command(image):
#Stepl: Create an ImagePatch object from the image
image_patch = ImagePatch(image)
#Step2: Use simple_query method to get the answer
dog_breed = image_patch.simple_query("What type of dog is this?")
#Step3: Return the answer
return dog_breed

Listing 2: Code for image COCO_val2014_000000029393.jpg

The error in this instance was related to the use of the Blip tool in the simple_query function, which returned the answer "a dachshund".
However, when we replaced the function called by simple_query with GPT-4V, "Rhodesian Ridgeback" was obtained. Although the label is
"hound".

F FEEDBACK GENERATOR OUTPUT EXAMPLE

Our feedback is multifaceted. We will showcase some examples from the experimental process and include them in the appendix:
1) On the GQA task, for the image named n172618.jpg, with the question “What is the height of the girl that is holding the kite?”, De-fine
generated the following feedback:

Visual Feeback: The young girl on the right in vibrant outdoor clothing holds onto a colorful kite, preparing to catch the wind on a
lively day in the field. The young adventurer on the left in a pink sweater encounters the wonders of nature and the images you’ve provided
do seem like they could be the result of an operation that extracts a specific area or "patch” from a larger image

Textual Feeback: There is a kite. There is a child holding the kite in her hand. The height of the child holding the kite is 355 pixels.
Those sub-steps could be part of a process to estimate the height of the girl holding the kite.

Compile Feeback: Execution succeed!

2) On the OK-VQA task, regarding the image COCO_val2014_000000029393.jpg with the question, “What type of dog is this?”, De-fine
generated the following feedback:

Visual Feeback: A vigilant dog stands guard on a sunlit garden deck, with a lemon tree backdrop. From the context provided, it seems
like these images could indeed be part of such a picture.

Textual Feeback: The breed of the dog is dachshund. But those steps alone are insufficient to determine the breed of a dog from an
image. A specialized image recognition model would be required.

Compile Feeback: Execution succeed!

G CODE GENERATED BY DIFFERENT ENGINES

In this section, we show the program output by different code generation engines and try to analyze them. Specifically, we take the same
prompt as input and generate the corresponding codes by Code-Llama (34B), Code-Llama (70B), and GPT-3.5-Turbo (1106) respectively.
In the subsequent exposition, we present a trio of illustrative examples involving multi-step queries and their corresponding responses,
wherein the generation of code was efficaciously accomplished notwithstanding the limitations inherent in the model. Nevertheless, it is
pertinent to acknowledge that the Code-Llama (70B) model exhibits occasional discrepancies in its interpretation of the ‘verify_property’

Submission ID: 2472. 2024-04-12 09:01. Page 12 of 1-14.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

De-fine: Decomposing and Refining Visual Programs with Auto-Feedback Conference’17, July 2017, Washington, DC, USA

1393 function. Concurrently, the Code-Llama (34B) variant demonstrates a partial deficiency in its capacity to decompose the problem at hand, 1451
1304 potentially leading to lapses in logical reasoning. 1452
1395 Query: Does the flag that is to the left of the bucket have large size and blue color? 1453
139 | def execute_command(image) : 1454
1397 #Step1: Find the flag and bucket patches 1455
1398 3 flag_patches = ImagePatch(image).find("flag") 1456
1399 ¢ bucket_patches = ImagePatch(image).find("bucket") 1457
5 #Step2: Check if there is a flag to the left of the bucket
1400 for flag_patch in flag_patches: 1458
1401 4 if flag_patch.horizontal_center < bucket_patches[@].horizontal_center: 1459
1402 38 #Step3: Check if the flag has large size and blue color 1460
1403 ° if flag_patch.verify_property("flag", "large") and flag_patch.verify_property("flag", "blue"): 1461
a0a P return "yes" 1462
11 #Step4: If no flag to the left of the bucket has large size and blue color, return "no"
1405, return "no" 1463
1406 e - 1464
. Listing 3: Python program generated by GPT-3.5-Turbo (1106) s
1408 def execute_command(image) : 1466
1409 2 #Stepl: Find the bucket and flag patches 1467
1410 3 image_patch = ImagePatch(image) 1468
1411 4 bucket_patches = image_patch.find("bucket") 1469
5 flag_patches = image_patch.find("flag")
mz #Step2: Check if there is a flag to the left of the bucket 1470
1413, flag_patches_left = [] 1471
1414 8 for flag_patch in flag_patches: 1472
1415 9 for bucket_patch in bucket_patches: 1473
a6 #Step3: Check if the flag has large size and blue color 1474
11 if flag_patch.left > bucket_patch.left and flag_patch.right < bucket_patch.right:
417, flag_patches_left.append(flag_patch) 1475
1418 13 if len(flag_patches_left) == 0: 1476
1419 14 return "no" 1477
1420 #Step4: Return if flag to the left of the bucket has large size and blue color 1478
16 flag_patch = flag_patches_left[0]
ua return bool_to_yesno(flag_patch.verify_property("flag", "size", "large") and flag_patch.verify_property("flag", "color", "blue")) 1479
1422 .. 1480
s Listing 4: Python program generated by Code-Llama (70B) s
24 gef execute_command(image) : 1482
1425, #Stepl: Find the flag and bucket patches 1483
1426 3 image_patch = ImagePatch(image) 1484
1407 4 flag_patches = image_patch.find("flag") 1485
1428 5 bucket_patches = image_patch.find("bucket") 1486
6 flag_patch = flag_patches[0]
1429 bucket_patch = bucket_patches[0] 1487
1430 3 #Step2: Return if flag to the left of the bucket has large size and blue color 1488
1431 9 return bool_to_yesno(flag_patch.verify_property("flag", "large") and flag_patch.verify_property("flag", "blue") and flag_patch. 1489
1432 verify_property("flag", "left", bucket_patch)) 1490
1433 Listing 5: Python program generated by Code-Llama (34B) 1491
13 Query: Of what race is the man the skateboard is to the right of? 1492
1 1 def execute_command(image): e
1436 . 1494
2 # Stepl: Find the man patch
1437 4 image_patch = ImagePatch(image) 1495
1438 4 man_patches = image_patch.find("man") 1496
1439 5 man_patch = man_patches[0] 1497
1440 ¢ # Step2: Find the skateboard patch to the right of the man 1498
’ skateboard_patches = image_patch.find("skateboard")
a4 right_skateboard_patches = [] 1499
1442 for skateboard_patch in skateboard_patches: 1500
1443 10 if skateboard_patch.left > man_patch.right: 1501
1444 U right_skateboard_patches.append(skateboard_patch) 1502
1445 12 # Step3: Find the race of the man the skateboard is to the right of 1503
13 race = ""
1446, if len(right_skateboard_patches) > 0: 1504
1447 15 race = right_skateboard_patches[0].simple_query("What is the race of the man?") 1505
1448 16 return race 1506
1449 Listing 6: Python program generated by GPT-3.5-Turbo (1106) 1507

1450 Submission ID: 2472. 2024-04-12 09:01. Page 13 of 1-14. 1508

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566

1

Conference’17, July 2017, Washington, DC, USA

def

def

execute_command(image) :
Stepl: Find the skateboard patch
image_patch = ImagePatch(image)
skateboard_patches = image_patch.find("skateboard")
skateboard_patch = skateboard_patches[0]
Step2: Find the man the skateboard is to the right of
man_patches = image_patch.find("man")
for man_patch in man_patches:
if man_patch.right > skateboard_patch.right:
Step3: Return the race of the man
return man_patch.simple_query("What race is this man?")

Listing 7: Python program generated by Code-Llama (70B)

execute_command(image) :
Stepl: Find the skateboard patch
image_patch = ImagePatch(image)
skateboard_patches = image_patch.find("skateboard")
skateboard_patch = skateboard_patches[0]
Step2: Find the man patch
man_patches = image_patch.find("man")
man_patch = man_patches[0]
Step3: Return the race of the man the skateboard is to the right of
if skateboard_patch.horizontal_center > man_patch.horizontal_center
return man_patch.simple_query("What is the race of the man?")
else:
return "No man in the image"

Listing 8: Python program generated by Code-Llama (34B)

Query: Is the material of the computer monitor the same as the TV?

def execute_command(image):

Stepl: Find the patches for the computer monitor and the TV

image_patch = ImagePatch(image)

monitor_patches = image_patch.find("computer monitor")

tv_patches = image_patch.find("TV")

Step2: Check if the material of the computer monitor is the same as the TV
monitor_material = monitor_patches[@].simple_query("What is the material?")
tv_material = tv_patches[@].simple_query("What is the material?")
is_same_material = monitor_material == tv_material

Step3: Return the answer

return bool_to_yesno(is_same_material)

Listing 9: Python program generated by GPT-3.5-Turbo (1106)

def execute_command(image):

Stepl: Find the computer monitor patches
image_patch = ImagePatch(image)
computer_patches = image_patch.find("computer monitor")
Step2: Check if the material of the computer monitor is the same as the TV
tv_patches = image_patch.find("tv")
for computer_patch in computer_patches:
for tv_patch in tv_patches:
if computer_patch.overlaps_with(tv_patch):
Step3: Return the answer
return bool_to_yesno(computer_patch.verify_property(tv_patch)

Listing 10: Python program generated by Code-Llama (70B)

def execute_command(image):

Stepl: Find the computer monitor and TV patches

image_patch = ImagePatch(image)

computer_monitor_patches = image_patch.find("computer monitor")

tv_patches = image_patch.find("TV")

Step2: Check if the material of the TV is the same as the computer monitor
tv_patch = tv_patches[0]

computer_monitor_patch = computer_monitor_patches[@]

Anonymous Authors

return bool_to_yesno(tv_patch.verify_property("TV", "material") == computer_monitor_patch.verify_property("computer monitor", "material"))

Listing 11: Python program generated by Code-Llama (34B)

Submission ID: 2472. 2024-04-12 09:01. Page 14 of 1-14.

1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

1624

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Abstract Logical Prompt Generation
	3.2 Multifaceted Feedback Generation
	3.3 Automatic Code Refinement
	3.4 Codebase Evolution

	4 Experiments
	4.1 Experimental Setup
	4.2 Visual Grounding
	4.3 Compositional Visual Question Answering
	4.4 Zero-shot Reasoning on Image Pairs
	4.5 In-Depth Analysis

	5 Conclusion
	References
	A Pseudocode diagram
	B The Impact of Caption and Information
	C Human Evaluation
	D Prompt used in the model.
	E Error cases
	F Feedback generator output example
	G Code generated by different engines

