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A PSEUDOCODE DIAGRAM
We show a pseudocode algorithm here so that readers can better understand our process in Figure 2.
Algorithm 1: The algorithm of De-fine
Input: An image 𝑥 and a query 𝑞
Output: The 𝑟𝑒𝑠𝑢𝑙𝑡 of the query 𝑞 about image 𝑥

1 Logic_step = LLM_decompose(𝑞);
2 Abstract_code = sketch(𝑐 in 𝑐𝑜𝑑𝑒𝑏𝑎𝑠𝑒 if 𝑐 .comments() relevant to 𝑞);
3 AL = Logic_step, Abstract_code;
4 for 𝑖 in 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
5 Origin_code = Code_generator(API,AL,𝑞);
6 Feedback = Feeback_generator(Compilor(Origin_code,𝑥 ));
7 Code = Refiner(Origin_code,Feedback);
8 end
9 result = Compilor(Code,x)

B THE IMPACT OF CAPTION AND INFORMATION
The improvements in performance are not solely due to providing captions or information for images. In the appendix, we conducted
additional ablation experiments on the backbone, where the backbone was only given the captions of images and the textual traces after
code execution. Comparing this data to our results in Table 5, there remains a noticeable difference. This indicates that it is our feedback
mechanism, rather than the addition of information, that contributes to the performance improvements.

Table 8: Evaluation of Caption and Information.

GQA
Backbone 52.6
+ caption 53.7
+ execution trace 52.8
+ compiler output 52.6

C HUMAN EVALUATION
In this section, we explain the sources of error details of our experiments in Figure 5. We manually selected 100 samples from the GQA
dataset, analyzed each program’s errors, and classified them into five categories: 1) Incorrect Program: For those programs that cannot be
compiled, we all classify error codes. 2) Multiple Answer: As the function ’best_text_match’ will return the most relevant string of image
patch, there may be multiple correct results in the result. Therefore, the errors corresponding to this function are classified as Multiple
Answer. 3) VQA: In the method, we have the ’simple_query’ function, the ’llm_query’ function and the ’verify_property’ function. These
question-and-answer functions correspond to the Vqa function of Visual Programming. The program errors caused by these functions will be
classified as VQA. 4) Location: Positioning is very critical in visual tasks. It is implemented by the ’Loc’ function in Visual Programming and
the ’find’ function in De-fine. 5) Crop: In Visual Programming, there is the ’Crop’ function, while in De-fine it is defined in the ’ImagePatch’
class. Therefore, incorrect answers due to image cropping will be recorded here.

D PROMPT USED IN THE MODEL.
We used the following prompt during our experiments:
Logical Step Decompose:

1 Given a VQA query, output the decomposed sub-step to how to answer it.

2 The output must be brief and short.

3 Query: <QUERY>

4 Your answer should only start with #step1:, #step2 etc.:

Code Generation:
1 You are a helpful assistant.

2 <API>

3 <AL_PROMPT>

4 <QUERY>

5 Only answer with a function starting def execute_command(image):

Visual Feedback (Image caption):
1 Please give me a short caption of <IMAGE2> located in the <BBOX> of <IMAGE1>.

2 It mainly focuses on the connection between the object itself and the overall picture:
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Visual Feedback (Sub-step verification):
1 <IMAGE_LIST> Is it possible that these pictures are the output of <substeps>?

Textual Feedback (Text summarization):
1 <TRACE> Please summarize in natural language what program trace outputs.

Textual Feedback (Logical verification):
1 <SUB_STEPS> Is it possible that these sub_steps can solve <QUERY>?

2 If not, please modify it and only start with #step1:, #step2 etc.:

Refiner Prompt:
1 You are a program optimizer (or corrector).

2

3 I will give you some information about how to use an API and a query about a picture.

4 Your task is to refine (or correct) the code that can answer the query by using API.

5 Please refine (or correct) the origin code based on feedbacks.

6

7 [API manual]: <API_MANUAL>

8 [Query]: <QUERY>

9 [Code]: <ORIGIN_CODE>

10 [Visual Feedback]: <FEEDBACK_V>

11 [Textal Feedback]: <FEEDBACK_T>

12 [Compile Feedback]: <FEEDBACK_C>

13 Your answer should start with:

14 def execute_command(image):

E ERROR CASES
1) On the GQA task, for the image named n172618.jpg, with the question “What is the height of the girl that is holding the kite?”, De-fine
generated the following code:

Figure 7: Image n172618.jpg with query “What is the height of the girl that is holding the kite?”

1 def execute_command(image):

2 #Step1: Find the patch containing the girl

3 girl_patches = ImagePatch(image).find("girl")

4 #Step2: Find the girl holding the kite

5 kite_patches = ImagePatch(image).find("kite")

6 kite_patch = kite_patches[0]

7 girl_holding_kite_patches = []

8 for girl_patch in girl_patches:

9 if girl_patch.overlaps_with(kite_patch.left, kite_patch.lower, kite_patch.right, kite_patch.upper):

10 girl_holding_kite_patches.append(girl_patch)

11 #Step3: Calculate the height of the girl holding the kite

12 girl_holding_kite_patch = girl_holding_kite_patches[0]

13 height = girl_holding_kite_patch.upper - girl_holding_kite_patch.lower

14 return str(height) + "pixels"

Listing 1: Code for image n172618.jpg

Although the code is executed correctly and the logic was sound, the result was incorrect when compared to the expected answer “Tall”.
This is because the question could not be adequately transformed into a classification problem of tall or short.
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2) On the OK-VQA task, regarding the image COCO_val2014_000000029393.jpg with the question, “What type of dog is this?”, De-
fine produced the following code:

Figure 8: Image COCO_val2014_000000029393.jpg with query “What type of dog is this?”

1 def execute_command(image):

2 #Step1: Create an ImagePatch object from the image

3 image_patch = ImagePatch(image)

4 #Step2: Use simple_query method to get the answer

5 dog_breed = image_patch.simple_query("What type of dog is this?")

6 #Step3: Return the answer

7 return dog_breed

Listing 2: Code for image COCO_val2014_000000029393.jpg

The error in this instance was related to the use of the Blip tool in the simple_query function, which returned the answer "a dachshund".
However, when we replaced the function called by simple_query with GPT-4V, "Rhodesian Ridgeback" was obtained. Although the label is
"hound".

F FEEDBACK GENERATOR OUTPUT EXAMPLE
Our feedback is multifaceted. We will showcase some examples from the experimental process and include them in the appendix:
1) On the GQA task, for the image named n172618.jpg, with the question “What is the height of the girl that is holding the kite?”, De-fine
generated the following feedback:

Visual Feeback: The young girl on the right in vibrant outdoor clothing holds onto a colorful kite, preparing to catch the wind on a
lively day in the field. The young adventurer on the left in a pink sweater encounters the wonders of nature and the images you’ve provided
do seem like they could be the result of an operation that extracts a specific area or "patch" from a larger image

Textual Feeback: There is a kite. There is a child holding the kite in her hand. The height of the child holding the kite is 355 pixels.
Those sub-steps could be part of a process to estimate the height of the girl holding the kite.

Compile Feeback: Execution succeed!
2) On the OK-VQA task, regarding the image COCO_val2014_000000029393.jpg with the question, “What type of dog is this?”, De-fine
generated the following feedback:

Visual Feeback: A vigilant dog stands guard on a sunlit garden deck, with a lemon tree backdrop. From the context provided, it seems
like these images could indeed be part of such a picture.

Textual Feeback: The breed of the dog is dachshund. But those steps alone are insufficient to determine the breed of a dog from an
image. A specialized image recognition model would be required.

Compile Feeback: Execution succeed!

G CODE GENERATED BY DIFFERENT ENGINES
In this section, we show the program output by different code generation engines and try to analyze them. Specifically, we take the same
prompt as input and generate the corresponding codes by Code-Llama (34B), Code-Llama (70B), and GPT-3.5-Turbo (1106) respectively.
In the subsequent exposition, we present a trio of illustrative examples involving multi-step queries and their corresponding responses,
wherein the generation of code was efficaciously accomplished notwithstanding the limitations inherent in the model. Nevertheless, it is
pertinent to acknowledge that the Code-Llama (70B) model exhibits occasional discrepancies in its interpretation of the ‘verify_property’
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function. Concurrently, the Code-Llama (34B) variant demonstrates a partial deficiency in its capacity to decompose the problem at hand,
potentially leading to lapses in logical reasoning.

Query: Does the flag that is to the left of the bucket have large size and blue color?
1 def execute_command(image):

2 #Step1: Find the flag and bucket patches

3 flag_patches = ImagePatch(image).find("flag")

4 bucket_patches = ImagePatch(image).find("bucket")

5 #Step2: Check if there is a flag to the left of the bucket

6 for flag_patch in flag_patches:

7 if flag_patch.horizontal_center < bucket_patches[0].horizontal_center:

8 #Step3: Check if the flag has large size and blue color

9 if flag_patch.verify_property("flag", "large") and flag_patch.verify_property("flag", "blue"):

10 return "yes"

11 #Step4: If no flag to the left of the bucket has large size and blue color, return "no"

12 return "no"

Listing 3: Python program generated by GPT-3.5-Turbo (1106)

1 def execute_command(image):

2 #Step1: Find the bucket and flag patches

3 image_patch = ImagePatch(image)

4 bucket_patches = image_patch.find("bucket")

5 flag_patches = image_patch.find("flag")

6 #Step2: Check if there is a flag to the left of the bucket

7 flag_patches_left = []

8 for flag_patch in flag_patches:

9 for bucket_patch in bucket_patches:

10 #Step3: Check if the flag has large size and blue color

11 if flag_patch.left > bucket_patch.left and flag_patch.right < bucket_patch.right:

12 flag_patches_left.append(flag_patch)

13 if len(flag_patches_left) == 0:

14 return "no"

15 #Step4: Return if flag to the left of the bucket has large size and blue color

16 flag_patch = flag_patches_left[0]

17 return bool_to_yesno(flag_patch.verify_property("flag", "size", "large") and flag_patch.verify_property("flag", "color", "blue"))

Listing 4: Python program generated by Code-Llama (70B)

1 def execute_command(image):

2 #Step1: Find the flag and bucket patches

3 image_patch = ImagePatch(image)

4 flag_patches = image_patch.find("flag")

5 bucket_patches = image_patch.find("bucket")

6 flag_patch = flag_patches[0]

7 bucket_patch = bucket_patches[0]

8 #Step2: Return if flag to the left of the bucket has large size and blue color

9 return bool_to_yesno(flag_patch.verify_property("flag", "large") and flag_patch.verify_property("flag", "blue") and flag_patch.

verify_property("flag", "left", bucket_patch))

Listing 5: Python program generated by Code-Llama (34B)

Query: Of what race is the man the skateboard is to the right of?
1 def execute_command(image):

2 # Step1: Find the man patch

3 image_patch = ImagePatch(image)

4 man_patches = image_patch.find("man")

5 man_patch = man_patches[0]

6 # Step2: Find the skateboard patch to the right of the man

7 skateboard_patches = image_patch.find("skateboard")

8 right_skateboard_patches = []

9 for skateboard_patch in skateboard_patches:

10 if skateboard_patch.left > man_patch.right:

11 right_skateboard_patches.append(skateboard_patch)

12 # Step3: Find the race of the man the skateboard is to the right of

13 race = ""

14 if len(right_skateboard_patches) > 0:

15 race = right_skateboard_patches[0].simple_query("What is the race of the man?")

16 return race

Listing 6: Python program generated by GPT-3.5-Turbo (1106)
Submission ID: 2472. 2024-04-12 09:01. Page 13 of 1–14.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1 def execute_command(image):

2 # Step1: Find the skateboard patch

3 image_patch = ImagePatch(image)

4 skateboard_patches = image_patch.find("skateboard")

5 skateboard_patch = skateboard_patches[0]

6 # Step2: Find the man the skateboard is to the right of

7 man_patches = image_patch.find("man")

8 for man_patch in man_patches:

9 if man_patch.right > skateboard_patch.right:

10 # Step3: Return the race of the man

11 return man_patch.simple_query("What race is this man?")

Listing 7: Python program generated by Code-Llama (70B)

1 def execute_command(image):

2 # Step1: Find the skateboard patch

3 image_patch = ImagePatch(image)

4 skateboard_patches = image_patch.find("skateboard")

5 skateboard_patch = skateboard_patches[0]

6 # Step2: Find the man patch

7 man_patches = image_patch.find("man")

8 man_patch = man_patches[0]

9 # Step3: Return the race of the man the skateboard is to the right of

10 if skateboard_patch.horizontal_center > man_patch.horizontal_center:

11 return man_patch.simple_query("What is the race of the man?")

12 else:

13 return "No man in the image"

Listing 8: Python program generated by Code-Llama (34B)

Query: Is the material of the computer monitor the same as the TV?
1 def execute_command(image):

2 # Step1: Find the patches for the computer monitor and the TV

3 image_patch = ImagePatch(image)

4 monitor_patches = image_patch.find("computer monitor")

5 tv_patches = image_patch.find("TV")

6 # Step2: Check if the material of the computer monitor is the same as the TV

7 monitor_material = monitor_patches[0].simple_query("What is the material?")

8 tv_material = tv_patches[0].simple_query("What is the material?")

9 is_same_material = monitor_material == tv_material

10 # Step3: Return the answer

11 return bool_to_yesno(is_same_material)

Listing 9: Python program generated by GPT-3.5-Turbo (1106)

1 def execute_command(image):

2 # Step1: Find the computer monitor patches

3 image_patch = ImagePatch(image)

4 computer_patches = image_patch.find("computer monitor")

5 # Step2: Check if the material of the computer monitor is the same as the TV

6 tv_patches = image_patch.find("tv")

7 for computer_patch in computer_patches:

8 for tv_patch in tv_patches:

9 if computer_patch.overlaps_with(tv_patch):

10 # Step3: Return the answer

11 return bool_to_yesno(computer_patch.verify_property(tv_patch)

Listing 10: Python program generated by Code-Llama (70B)

1 def execute_command(image):

2 # Step1: Find the computer monitor and TV patches

3 image_patch = ImagePatch(image)

4 computer_monitor_patches = image_patch.find("computer monitor")

5 tv_patches = image_patch.find("TV")

6 # Step2: Check if the material of the TV is the same as the computer monitor

7 tv_patch = tv_patches[0]

8 computer_monitor_patch = computer_monitor_patches[0]

9 return bool_to_yesno(tv_patch.verify_property("TV", "material") == computer_monitor_patch.verify_property("computer monitor", "material"))

Listing 11: Python program generated by Code-Llama (34B)
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