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A PSEUDOCODE DIAGRAM

We show a pseudocode algorithm here so that readers can better understand our process in Figure 2.

Anonymous Authors

Algorithm 1: The algorithm of De-fine

Input: An image x and a query ¢q
Output: The result of the query g about image x
Logic_step = LLM_decompose(q);

o

¥

Abstract_code = sketch(c in codebase if c.comments() relevant to g);
3 AL = Logic_step, Abstract_code;
for i in iteration do
Origin_code = Code_generator(APLAL,q);
Feedback = Feeback_generator(Compilor(Origin_code,x));
Code = Refiner(Origin_code,Feedback);
s end

ST

N

©

result = Compilor(Code,x)

B THE IMPACT OF CAPTION AND INFORMATION

The improvements in performance are not solely due to providing captions or information for images. In the appendix, we conducted
additional ablation experiments on the backbone, where the backbone was only given the captions of images and the textual traces after

code execution. Comparing this data to our results in Table 5, there remains a noticeable difference. This indicates that it is our feedback
mechanism, rather than the addition of information, that contributes to the performance improvements.

Table 8: Evaluation of Caption and Information.

GQA
Backbone 52.6
+ caption 53.7

+ execution trace 52.8
+ compiler output  52.6

C HUMAN EVALUATION

In this section, we explain the sources of error details of our experiments in Figure 5. We manually selected 100 samples from the GQA

dataset, analyzed each program’s errors, and classified them into five categories: 1) Incorrect Program: For those programs that cannot be
compiled, we all classify error codes. 2) Multiple Answer: As the function ’best_text_match’ will return the most relevant string of image
patch, there may be multiple correct results in the result. Therefore, the errors corresponding to this function are classified as Multiple
Answer. 3) VQA: In the method, we have the ’simple_query’ function, the "llm_query’ function and the ’verify_property’ function. These
question-and-answer functions correspond to the Vga function of Visual Programming. The program errors caused by these functions will be
classified as VQA. 4) Location: Positioning is very critical in visual tasks. It is implemented by the ’Loc’ function in Visual Programming and
the 'find’ function in De-fine. 5) Crop: In Visual Programming, there is the ’Crop’ function, while in De-fine it is defined in the ‘ImagePatch’

class. Therefore, incorrect answers due to image cropping will be recorded here.

D PROMPT USED IN THE MODEL.

We used the following prompt during our experiments:
Logical Step Decompose:

1 Given a VQA query, output the decomposed sub-step to how to answer it.
» The output must be brief and short.
5 Query: <QUERY>

Your answer should only start with #stepl:, #step2 etc.:

Code Generation:

You are a helpful assistant.
<API>

3 <AL_PROMPT>

<QUERY>

5 Only answer with a function starting def execute_command(image):

Visual Feedback (Image caption):

Please give me a short caption of <IMAGE2> located in the <BBOX> of <IMAGE1>.
It mainly focuses on the connection between the object itself and the overall picture:
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Visual Feedback (Sub-step verification):

<IMAGE_LIST> Is it possible that these pictures are the output of <substeps>?
Textual Feedback (Text summarization):

<TRACE> Please summarize in natural language what program trace outputs.
Textual Feedback (Logical verification):

<SUB_STEPS> Is it possible that these sub_steps can solve <QUERY>?
If not, please modify it and only start with #stepl:, #step2 etc.

Refiner Prompt:

You are a program optimizer (or corrector).

I will give you some information about how to use an API and a query about a picture.

Your task is to refine (or correct) the code that can answer the query by using API.
Please refine (or correct) the origin code based on feedbacks.

[API manual]: <API_MANUAL>
[Queryl: <QUERY>

[Code]: <ORIGIN_CODE>

[Visual Feedback]: <FEEDBACK_V>
[Textal Feedback]: <FEEDBACK_T>
[Compile Feedback]: <FEEDBACK_C>
Your answer should start with:
def execute_command(image):

E ERROR CASES

Conference’17, July 2017, Washington, DC, USA

1) On the GQA task, for the image named n172618.jpg, with the question “What is the height of the girl that is holding the kite?”, De-fine

generated the following code:

Figure 7: Image n172618.jpg with query “What is the height of the girl that is holding the kite?”

def execute_command(image):
#Stepl1: Find the patch containing the girl
girl_patches = ImagePatch(image).find("girl")
#Step2: Find the girl holding the kite
kite_patches = ImagePatch(image).find("kite")
kite_patch = kite_patches[0]
girl_holding_kite_patches = []
for girl_patch in girl_patches:

if girl_patch.overlaps_with(kite_patch.left, kite_patch.lower, kite_patch.right, kite_patch.upper):

girl_holding_kite_patches.append(girl_patch)
#Step3: Calculate the height of the girl holding the kite
girl_holding_kite_patch = girl_holding_kite_patches[@]
height = girl_holding_kite_patch.upper - girl_holding_kite_patch.lower
return str(height) + "pixels"

Listing 1: Code for image n172618.jpg

Although the code is executed correctly and the logic was sound, the result was incorrect when compared to the expected answer “Tall”.

This is because the question could not be adequately transformed into a classification problem of tall or short.
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2) On the OK-VQA task, regarding the image COCO_val2014_000000029393.jpg with the question, “What type of dog is this?”, De-
fine produced the following code:

Figure 8: Image COCO_val2014_000000029393.jpg with query “What type of dog is this?”

def execute_command(image):
#Stepl: Create an ImagePatch object from the image
image_patch = ImagePatch(image)
#Step2: Use simple_query method to get the answer
dog_breed = image_patch.simple_query("What type of dog is this?")
#Step3: Return the answer
return dog_breed

Listing 2: Code for image COCO_val2014_000000029393.jpg

The error in this instance was related to the use of the Blip tool in the simple_query function, which returned the answer "a dachshund".
However, when we replaced the function called by simple_query with GPT-4V, "Rhodesian Ridgeback" was obtained. Although the label is
"hound".

F FEEDBACK GENERATOR OUTPUT EXAMPLE

Our feedback is multifaceted. We will showcase some examples from the experimental process and include them in the appendix:
1) On the GQA task, for the image named n172618.jpg, with the question “What is the height of the girl that is holding the kite?”, De-fine
generated the following feedback:

Visual Feeback: The young girl on the right in vibrant outdoor clothing holds onto a colorful kite, preparing to catch the wind on a
lively day in the field. The young adventurer on the left in a pink sweater encounters the wonders of nature and the images you’ve provided
do seem like they could be the result of an operation that extracts a specific area or "patch” from a larger image

Textual Feeback: There is a kite. There is a child holding the kite in her hand. The height of the child holding the kite is 355 pixels.
Those sub-steps could be part of a process to estimate the height of the girl holding the kite.

Compile Feeback: Execution succeed!

2) On the OK-VQA task, regarding the image COCO_val2014_000000029393.jpg with the question, “What type of dog is this?”, De-fine
generated the following feedback:

Visual Feeback: A vigilant dog stands guard on a sunlit garden deck, with a lemon tree backdrop. From the context provided, it seems
like these images could indeed be part of such a picture.

Textual Feeback: The breed of the dog is dachshund. But those steps alone are insufficient to determine the breed of a dog from an
image. A specialized image recognition model would be required.

Compile Feeback: Execution succeed!

G CODE GENERATED BY DIFFERENT ENGINES

In this section, we show the program output by different code generation engines and try to analyze them. Specifically, we take the same
prompt as input and generate the corresponding codes by Code-Llama (34B), Code-Llama (70B), and GPT-3.5-Turbo (1106) respectively.
In the subsequent exposition, we present a trio of illustrative examples involving multi-step queries and their corresponding responses,
wherein the generation of code was efficaciously accomplished notwithstanding the limitations inherent in the model. Nevertheless, it is
pertinent to acknowledge that the Code-Llama (70B) model exhibits occasional discrepancies in its interpretation of the ‘verify_property’
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1393 function. Concurrently, the Code-Llama (34B) variant demonstrates a partial deficiency in its capacity to decompose the problem at hand, 1451
1304 potentially leading to lapses in logical reasoning. 1452
1395 Query: Does the flag that is to the left of the bucket have large size and blue color? 1453
139 | def execute_command(image) : 1454
1397 #Step1: Find the flag and bucket patches 1455
1398 3 flag_patches = ImagePatch(image).find("flag") 1456
1399 ¢ bucket_patches = ImagePatch(image).find("bucket") 1457
5 #Step2: Check if there is a flag to the left of the bucket
1400 for flag_patch in flag_patches: 1458
1401 4 if flag_patch.horizontal_center < bucket_patches[@].horizontal_center: 1459
1402 38 #Step3: Check if the flag has large size and blue color 1460
1403 ° if flag_patch.verify_property("flag", "large") and flag_patch.verify_property("flag", "blue"): 1461
a0a P return "yes" 1462
11 #Step4: If no flag to the left of the bucket has large size and blue color, return "no"
1405, return "no" 1463
1406 e - 1464
. Listing 3: Python program generated by GPT-3.5-Turbo (1106) s
1408 def execute_command(image) : 1466
1409 2 #Stepl: Find the bucket and flag patches 1467
1410 3 image_patch = ImagePatch(image) 1468
1411 4 bucket_patches = image_patch.find("bucket") 1469
5 flag_patches = image_patch.find("flag")
mz #Step2: Check if there is a flag to the left of the bucket 1470
1413, flag_patches_left = [] 1471
1414 8 for flag_patch in flag_patches: 1472
1415 9 for bucket_patch in bucket_patches: 1473
a6 #Step3: Check if the flag has large size and blue color 1474
11 if flag_patch.left > bucket_patch.left and flag_patch.right < bucket_patch.right:
417, flag_patches_left.append(flag_patch) 1475
1418 13 if len(flag_patches_left) == 0: 1476
1419 14 return "no" 1477
1420 #Step4: Return if flag to the left of the bucket has large size and blue color 1478
16 flag_patch = flag_patches_left[0]
ua return bool_to_yesno(flag_patch.verify_property("flag", "size", "large") and flag_patch.verify_property("flag", "color", "blue")) 1479
1422 .. 1480
s Listing 4: Python program generated by Code-Llama (70B) s
24 gef execute_command(image) : 1482
1425, #Stepl: Find the flag and bucket patches 1483
1426 3 image_patch = ImagePatch(image) 1484
1407 4 flag_patches = image_patch.find("flag") 1485
1428 5 bucket_patches = image_patch.find("bucket") 1486
6 flag_patch = flag_patches[0]
1429 bucket_patch = bucket_patches[0] 1487
1430 3 #Step2: Return if flag to the left of the bucket has large size and blue color 1488
1431 9 return bool_to_yesno(flag_patch.verify_property("flag", "large") and flag_patch.verify_property("flag", "blue") and flag_patch. 1489
1432 verify_property("flag", "left", bucket_patch)) 1490
1433 Listing 5: Python program generated by Code-Llama (34B) 1491
13 Query: Of what race is the man the skateboard is to the right of? 1492
1 1 def execute_command(image): e
1436 . 1494
2 # Stepl: Find the man patch
1437 4 image_patch = ImagePatch(image) 1495
1438 4 man_patches = image_patch.find("man") 1496
1439 5 man_patch = man_patches[0] 1497
1440 ¢ # Step2: Find the skateboard patch to the right of the man 1498
’ skateboard_patches = image_patch.find("skateboard")
a4 right_skateboard_patches = [] 1499
1442 for skateboard_patch in skateboard_patches: 1500
1443 10 if skateboard_patch.left > man_patch.right: 1501
1444 U right_skateboard_patches.append(skateboard_patch) 1502
1445 12 # Step3: Find the race of the man the skateboard is to the right of 1503
13 race = ""
1446, if len(right_skateboard_patches) > 0: 1504
1447 15 race = right_skateboard_patches[0].simple_query("What is the race of the man?") 1505
1448 16 return race 1506
1449 Listing 6: Python program generated by GPT-3.5-Turbo (1106) 1507
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def

def

execute_command(image) :
# Stepl: Find the skateboard patch
image_patch = ImagePatch(image)
skateboard_patches = image_patch.find("skateboard")
skateboard_patch = skateboard_patches[0]
# Step2: Find the man the skateboard is to the right of
man_patches = image_patch.find("man")
for man_patch in man_patches:
if man_patch.right > skateboard_patch.right:
# Step3: Return the race of the man
return man_patch.simple_query("What race is this man?")

Listing 7: Python program generated by Code-Llama (70B)

execute_command(image) :
# Stepl: Find the skateboard patch
image_patch = ImagePatch(image)
skateboard_patches = image_patch.find("skateboard")
skateboard_patch = skateboard_patches[0]
# Step2: Find the man patch
man_patches = image_patch.find("man")
man_patch = man_patches[0]
# Step3: Return the race of the man the skateboard is to the right of
if skateboard_patch.horizontal_center > man_patch.horizontal_center
return man_patch.simple_query("What is the race of the man?")
else:
return "No man in the image"

Listing 8: Python program generated by Code-Llama (34B)

Query: Is the material of the computer monitor the same as the TV?

def execute_command(image):

# Stepl: Find the patches for the computer monitor and the TV

image_patch = ImagePatch(image)

monitor_patches = image_patch.find("computer monitor")

tv_patches = image_patch.find("TV")

# Step2: Check if the material of the computer monitor is the same as the TV
monitor_material = monitor_patches[@].simple_query("What is the material?")
tv_material = tv_patches[@].simple_query("What is the material?")
is_same_material = monitor_material == tv_material

# Step3: Return the answer

return bool_to_yesno(is_same_material)

Listing 9: Python program generated by GPT-3.5-Turbo (1106)

def execute_command(image):

# Stepl: Find the computer monitor patches
image_patch = ImagePatch(image)
computer_patches = image_patch.find("computer monitor")
# Step2: Check if the material of the computer monitor is the same as the TV
tv_patches = image_patch.find("tv")
for computer_patch in computer_patches:
for tv_patch in tv_patches:
if computer_patch.overlaps_with(tv_patch):
# Step3: Return the answer
return bool_to_yesno(computer_patch.verify_property(tv_patch)

Listing 10: Python program generated by Code-Llama (70B)

def execute_command(image):

# Stepl: Find the computer monitor and TV patches

image_patch = ImagePatch(image)

computer_monitor_patches = image_patch.find("computer monitor")

tv_patches = image_patch.find("TV")

# Step2: Check if the material of the TV is the same as the computer monitor
tv_patch = tv_patches[0]

computer_monitor_patch = computer_monitor_patches[@]

Anonymous Authors

return bool_to_yesno(tv_patch.verify_property("TV", "material") == computer_monitor_patch.verify_property("computer monitor", "material"))

Listing 11: Python program generated by Code-Llama (34B)
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