
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A PSEUDOCODE DIAGRAM
We show a pseudocode algorithm here so that readers can better understand our process in Figure 2.
Algorithm 1: The algorithm of De-fine
Input: An image 𝑥 and a query 𝑞
Output: The 𝑟𝑒𝑠𝑢𝑙𝑡 of the query 𝑞 about image 𝑥

1 Logic_step = LLM_decompose(𝑞);
2 Abstract_code = sketch(𝑐 in 𝑐𝑜𝑑𝑒𝑏𝑎𝑠𝑒 if 𝑐 .comments() relevant to 𝑞);
3 AL = Logic_step, Abstract_code;
4 for 𝑖 in 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
5 Origin_code = Code_generator(API,AL,𝑞);
6 Feedback = Feeback_generator(Compilor(Origin_code,𝑥 ));
7 Code = Refiner(Origin_code,Feedback);
8 end
9 result = Compilor(Code,x)

B THE IMPACT OF CAPTION AND INFORMATION
The improvements in performance are not solely due to providing captions or information for images. In the appendix, we conducted
additional ablation experiments on the backbone, where the backbone was only given the captions of images and the textual traces after
code execution. Comparing this data to our results in Table 5, there remains a noticeable difference. This indicates that it is our feedback
mechanism, rather than the addition of information, that contributes to the performance improvements.

Table 8: Evaluation of Caption and Information.

GQA
Backbone 52.6
+ caption 53.7
+ execution trace 52.8
+ compiler output 52.6

C HUMAN EVALUATION
In this section, we explain the sources of error details of our experiments in Figure 5. We manually selected 100 samples from the GQA
dataset, analyzed each program’s errors, and classified them into five categories: 1) Incorrect Program: For those programs that cannot be
compiled, we all classify error codes. 2) Multiple Answer: As the function ’best_text_match’ will return the most relevant string of image
patch, there may be multiple correct results in the result. Therefore, the errors corresponding to this function are classified as Multiple
Answer. 3) VQA: In the method, we have the ’simple_query’ function, the ’llm_query’ function and the ’verify_property’ function. These
question-and-answer functions correspond to the Vqa function of Visual Programming. The program errors caused by these functions will be
classified as VQA. 4) Location: Positioning is very critical in visual tasks. It is implemented by the ’Loc’ function in Visual Programming and
the ’find’ function in De-fine. 5) Crop: In Visual Programming, there is the ’Crop’ function, while in De-fine it is defined in the ’ImagePatch’
class. Therefore, incorrect answers due to image cropping will be recorded here.

D PROMPT USED IN THE MODEL.
We used the following prompt during our experiments:
Logical Step Decompose:

1 Given a VQA query, output the decomposed sub-step to how to answer it.

2 The output must be brief and short.

3 Query: <QUERY>

4 Your answer should only start with #step1:, #step2 etc.:

Code Generation:
1 You are a helpful assistant.

2 <API>

3 <AL_PROMPT>

4 <QUERY>

5 Only answer with a function starting def execute_command(image):

Visual Feedback (Image caption):
1 Please give me a short caption of <IMAGE2> located in the <BBOX> of <IMAGE1>.

2 It mainly focuses on the connection between the object itself and the overall picture:

Submission ID: 2472. 2024-04-12 09:01. Page 10 of 1–14.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

De-fine: Decomposing and Refining Visual Programs with Auto-Feedback Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Visual Feedback (Sub-step verification):
1 <IMAGE_LIST> Is it possible that these pictures are the output of <substeps>?

Textual Feedback (Text summarization):
1 <TRACE> Please summarize in natural language what program trace outputs.

Textual Feedback (Logical verification):
1 <SUB_STEPS> Is it possible that these sub_steps can solve <QUERY>?

2 If not, please modify it and only start with #step1:, #step2 etc.:

Refiner Prompt:
1 You are a program optimizer (or corrector).

2

3 I will give you some information about how to use an API and a query about a picture.

4 Your task is to refine (or correct) the code that can answer the query by using API.

5 Please refine (or correct) the origin code based on feedbacks.

6

7 [API manual]: <API_MANUAL>

8 [Query]: <QUERY>

9 [Code]: <ORIGIN_CODE>

10 [Visual Feedback]: <FEEDBACK_V>

11 [Textal Feedback]: <FEEDBACK_T>

12 [Compile Feedback]: <FEEDBACK_C>

13 Your answer should start with:

14 def execute_command(image):

E ERROR CASES
1) On the GQA task, for the image named n172618.jpg, with the question “What is the height of the girl that is holding the kite?”, De-fine
generated the following code:

Figure 7: Image n172618.jpg with query “What is the height of the girl that is holding the kite?”

1 def execute_command(image):

2 #Step1: Find the patch containing the girl

3 girl_patches = ImagePatch(image).find("girl")

4 #Step2: Find the girl holding the kite

5 kite_patches = ImagePatch(image).find("kite")

6 kite_patch = kite_patches[0]

7 girl_holding_kite_patches = []

8 for girl_patch in girl_patches:

9 if girl_patch.overlaps_with(kite_patch.left, kite_patch.lower, kite_patch.right, kite_patch.upper):

10 girl_holding_kite_patches.append(girl_patch)

11 #Step3: Calculate the height of the girl holding the kite

12 girl_holding_kite_patch = girl_holding_kite_patches[0]

13 height = girl_holding_kite_patch.upper - girl_holding_kite_patch.lower

14 return str(height) + "pixels"

Listing 1: Code for image n172618.jpg

Although the code is executed correctly and the logic was sound, the result was incorrect when compared to the expected answer “Tall”.
This is because the question could not be adequately transformed into a classification problem of tall or short.

Submission ID: 2472. 2024-04-12 09:01. Page 11 of 1–14.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

2) On the OK-VQA task, regarding the image COCO_val2014_000000029393.jpg with the question, “What type of dog is this?”, De-
fine produced the following code:

Figure 8: Image COCO_val2014_000000029393.jpg with query “What type of dog is this?”

1 def execute_command(image):

2 #Step1: Create an ImagePatch object from the image

3 image_patch = ImagePatch(image)

4 #Step2: Use simple_query method to get the answer

5 dog_breed = image_patch.simple_query("What type of dog is this?")

6 #Step3: Return the answer

7 return dog_breed

Listing 2: Code for image COCO_val2014_000000029393.jpg

The error in this instance was related to the use of the Blip tool in the simple_query function, which returned the answer "a dachshund".
However, when we replaced the function called by simple_query with GPT-4V, "Rhodesian Ridgeback" was obtained. Although the label is
"hound".

F FEEDBACK GENERATOR OUTPUT EXAMPLE
Our feedback is multifaceted. We will showcase some examples from the experimental process and include them in the appendix:
1) On the GQA task, for the image named n172618.jpg, with the question “What is the height of the girl that is holding the kite?”, De-fine
generated the following feedback:

Visual Feeback: The young girl on the right in vibrant outdoor clothing holds onto a colorful kite, preparing to catch the wind on a
lively day in the field. The young adventurer on the left in a pink sweater encounters the wonders of nature and the images you’ve provided
do seem like they could be the result of an operation that extracts a specific area or "patch" from a larger image

Textual Feeback: There is a kite. There is a child holding the kite in her hand. The height of the child holding the kite is 355 pixels.
Those sub-steps could be part of a process to estimate the height of the girl holding the kite.

Compile Feeback: Execution succeed!
2) On the OK-VQA task, regarding the image COCO_val2014_000000029393.jpg with the question, “What type of dog is this?”, De-fine
generated the following feedback:

Visual Feeback: A vigilant dog stands guard on a sunlit garden deck, with a lemon tree backdrop. From the context provided, it seems
like these images could indeed be part of such a picture.

Textual Feeback: The breed of the dog is dachshund. But those steps alone are insufficient to determine the breed of a dog from an
image. A specialized image recognition model would be required.

Compile Feeback: Execution succeed!

G CODE GENERATED BY DIFFERENT ENGINES
In this section, we show the program output by different code generation engines and try to analyze them. Specifically, we take the same
prompt as input and generate the corresponding codes by Code-Llama (34B), Code-Llama (70B), and GPT-3.5-Turbo (1106) respectively.
In the subsequent exposition, we present a trio of illustrative examples involving multi-step queries and their corresponding responses,
wherein the generation of code was efficaciously accomplished notwithstanding the limitations inherent in the model. Nevertheless, it is
pertinent to acknowledge that the Code-Llama (70B) model exhibits occasional discrepancies in its interpretation of the ‘verify_property’

Submission ID: 2472. 2024-04-12 09:01. Page 12 of 1–14.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

De-fine: Decomposing and Refining Visual Programs with Auto-Feedback Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

function. Concurrently, the Code-Llama (34B) variant demonstrates a partial deficiency in its capacity to decompose the problem at hand,
potentially leading to lapses in logical reasoning.

Query: Does the flag that is to the left of the bucket have large size and blue color?
1 def execute_command(image):

2 #Step1: Find the flag and bucket patches

3 flag_patches = ImagePatch(image).find("flag")

4 bucket_patches = ImagePatch(image).find("bucket")

5 #Step2: Check if there is a flag to the left of the bucket

6 for flag_patch in flag_patches:

7 if flag_patch.horizontal_center < bucket_patches[0].horizontal_center:

8 #Step3: Check if the flag has large size and blue color

9 if flag_patch.verify_property("flag", "large") and flag_patch.verify_property("flag", "blue"):

10 return "yes"

11 #Step4: If no flag to the left of the bucket has large size and blue color, return "no"

12 return "no"

Listing 3: Python program generated by GPT-3.5-Turbo (1106)

1 def execute_command(image):

2 #Step1: Find the bucket and flag patches

3 image_patch = ImagePatch(image)

4 bucket_patches = image_patch.find("bucket")

5 flag_patches = image_patch.find("flag")

6 #Step2: Check if there is a flag to the left of the bucket

7 flag_patches_left = []

8 for flag_patch in flag_patches:

9 for bucket_patch in bucket_patches:

10 #Step3: Check if the flag has large size and blue color

11 if flag_patch.left > bucket_patch.left and flag_patch.right < bucket_patch.right:

12 flag_patches_left.append(flag_patch)

13 if len(flag_patches_left) == 0:

14 return "no"

15 #Step4: Return if flag to the left of the bucket has large size and blue color

16 flag_patch = flag_patches_left[0]

17 return bool_to_yesno(flag_patch.verify_property("flag", "size", "large") and flag_patch.verify_property("flag", "color", "blue"))

Listing 4: Python program generated by Code-Llama (70B)

1 def execute_command(image):

2 #Step1: Find the flag and bucket patches

3 image_patch = ImagePatch(image)

4 flag_patches = image_patch.find("flag")

5 bucket_patches = image_patch.find("bucket")

6 flag_patch = flag_patches[0]

7 bucket_patch = bucket_patches[0]

8 #Step2: Return if flag to the left of the bucket has large size and blue color

9 return bool_to_yesno(flag_patch.verify_property("flag", "large") and flag_patch.verify_property("flag", "blue") and flag_patch.

verify_property("flag", "left", bucket_patch))

Listing 5: Python program generated by Code-Llama (34B)

Query: Of what race is the man the skateboard is to the right of?
1 def execute_command(image):

2 # Step1: Find the man patch

3 image_patch = ImagePatch(image)

4 man_patches = image_patch.find("man")

5 man_patch = man_patches[0]

6 # Step2: Find the skateboard patch to the right of the man

7 skateboard_patches = image_patch.find("skateboard")

8 right_skateboard_patches = []

9 for skateboard_patch in skateboard_patches:

10 if skateboard_patch.left > man_patch.right:

11 right_skateboard_patches.append(skateboard_patch)

12 # Step3: Find the race of the man the skateboard is to the right of

13 race = ""

14 if len(right_skateboard_patches) > 0:

15 race = right_skateboard_patches[0].simple_query("What is the race of the man?")

16 return race

Listing 6: Python program generated by GPT-3.5-Turbo (1106)
Submission ID: 2472. 2024-04-12 09:01. Page 13 of 1–14.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anonymous Authors

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1 def execute_command(image):

2 # Step1: Find the skateboard patch

3 image_patch = ImagePatch(image)

4 skateboard_patches = image_patch.find("skateboard")

5 skateboard_patch = skateboard_patches[0]

6 # Step2: Find the man the skateboard is to the right of

7 man_patches = image_patch.find("man")

8 for man_patch in man_patches:

9 if man_patch.right > skateboard_patch.right:

10 # Step3: Return the race of the man

11 return man_patch.simple_query("What race is this man?")

Listing 7: Python program generated by Code-Llama (70B)

1 def execute_command(image):

2 # Step1: Find the skateboard patch

3 image_patch = ImagePatch(image)

4 skateboard_patches = image_patch.find("skateboard")

5 skateboard_patch = skateboard_patches[0]

6 # Step2: Find the man patch

7 man_patches = image_patch.find("man")

8 man_patch = man_patches[0]

9 # Step3: Return the race of the man the skateboard is to the right of

10 if skateboard_patch.horizontal_center > man_patch.horizontal_center:

11 return man_patch.simple_query("What is the race of the man?")

12 else:

13 return "No man in the image"

Listing 8: Python program generated by Code-Llama (34B)

Query: Is the material of the computer monitor the same as the TV?
1 def execute_command(image):

2 # Step1: Find the patches for the computer monitor and the TV

3 image_patch = ImagePatch(image)

4 monitor_patches = image_patch.find("computer monitor")

5 tv_patches = image_patch.find("TV")

6 # Step2: Check if the material of the computer monitor is the same as the TV

7 monitor_material = monitor_patches[0].simple_query("What is the material?")

8 tv_material = tv_patches[0].simple_query("What is the material?")

9 is_same_material = monitor_material == tv_material

10 # Step3: Return the answer

11 return bool_to_yesno(is_same_material)

Listing 9: Python program generated by GPT-3.5-Turbo (1106)

1 def execute_command(image):

2 # Step1: Find the computer monitor patches

3 image_patch = ImagePatch(image)

4 computer_patches = image_patch.find("computer monitor")

5 # Step2: Check if the material of the computer monitor is the same as the TV

6 tv_patches = image_patch.find("tv")

7 for computer_patch in computer_patches:

8 for tv_patch in tv_patches:

9 if computer_patch.overlaps_with(tv_patch):

10 # Step3: Return the answer

11 return bool_to_yesno(computer_patch.verify_property(tv_patch)

Listing 10: Python program generated by Code-Llama (70B)

1 def execute_command(image):

2 # Step1: Find the computer monitor and TV patches

3 image_patch = ImagePatch(image)

4 computer_monitor_patches = image_patch.find("computer monitor")

5 tv_patches = image_patch.find("TV")

6 # Step2: Check if the material of the TV is the same as the computer monitor

7 tv_patch = tv_patches[0]

8 computer_monitor_patch = computer_monitor_patches[0]

9 return bool_to_yesno(tv_patch.verify_property("TV", "material") == computer_monitor_patch.verify_property("computer monitor", "material"))

Listing 11: Python program generated by Code-Llama (34B)

Submission ID: 2472. 2024-04-12 09:01. Page 14 of 1–14.


	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Abstract Logical Prompt Generation
	3.2 Multifaceted Feedback Generation
	3.3 Automatic Code Refinement
	3.4 Codebase Evolution

	4 Experiments
	4.1 Experimental Setup
	4.2 Visual Grounding
	4.3 Compositional Visual Question Answering
	4.4 Zero-shot Reasoning on Image Pairs
	4.5 In-Depth Analysis

	5 Conclusion
	References
	A Pseudocode diagram
	B The Impact of Caption and Information
	C Human Evaluation
	D Prompt used in the model.
	E Error cases
	F Feedback generator output example
	G Code generated by different engines



