
A Proof: Maximizing Transmission Rate is Equivalent to Maximizing HQ1

The rate of transmission is defined according to Shannon’s information theory [8] as:2

R = HQ −H(y|x), (1)
where H(y|x) is the conditional entropy of y given x. This can be defined as:3

H(y|x) = −
∑
i,j

p(xi, yj) log p(yj |xi) (2)

= −
∑
i,j

p(xi)p(yj |xi) log p(yj |xi) (3)

= −
∑
i

[
p(xi)

∑
j

p(yj |xi) log p(yj |xi)
]
, (4)

where p(xi, yj) is the joint probability of x and y and p(yj |xi) is the conditional probability - that is,4

the probability of the output value being yj given that we know the input is xi.5

Now, for a deterministic model where each input xi maps to one and only one output yj , we can have6

p(yj |xi) being 1 for some j and 0 for the others. As a result, the expression p(yj |xi) log p(yj |xi)7

is always 0, whether p(yj |xi) is 0 or 1. Therefore, we have H(y|x) = 0. Consequently, the rate of8

transmission R simplifies to R = HQ. Hence, maximizing the rate of transmission is equivalent to9

maximizing HQ.10

B Proof: Cross-Entropy Hpq is Equivalent to Hq11

Under the condition Eq. (3) and Eq. (4) specified in the main text, we can rewrite the cross-entropy12

Hpq as:13

Hpq = −
∑
x

p(x) log q(x) (5)

= −
N∑
j=1

∑
x∈Gj

p(x) log q(x) (6)

= −
N∑
j=1

∑
x∈Gj

p(x) log
Q(yj)

nj
(7)

= −
N∑
j=1

log
Q(yj)

nj

∑
x∈Gj

p(x) (8)

= −
N∑
j=1

Q(yj) log
Q(yj)

nj
. (9)

Similarly, we can express Hq as:14

Hq = −
∑
x

q(x) log q(x) (10)

= −
N∑
j=1

∑
x∈Gj

q(x) log q(x) (11)

= −
N∑
j=1

∑
x∈Gj

qj log qj (12)

= −
N∑
j=1

Q(yj) log
Q(yj)

nj
. (13)

Comparing the two results, we have15

Hpq = Hq. (14)
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C Proof of Necessary and Sufficient Conditions for Orthogonality of Bases in16

Two-Pixel Case17

We want the outputs of the two MLPs to be independent, meaning we cannot predict the state of the18

second MLP’s output given the first one:19

Q(y2|y1) = Q(y2). (15)

Additionally, we want each MLP to partition the input space evenly. This is represented as:20

Q(y1) =
1

N1
, Q(y2) =

1

N2
, (16)

where N1 and N2 represent the number of output nodes of the two MLPs. Eq. (15) and Eq. (16) leads21

to22

Q(y1, y2) =
1

N1N2
. (17)

Conversely, from Eq. (17), we can derive Eq. (15) and Eq. (16), indicating they are equivalent.23

Therefore, we conclude that the bases are orthogonal if and only if Eq. (17) is satisfied.24

D Experimental Details and Supplementary Results for the Two-Pixel Case25

To ensure that the multi-layer perceptron (MLP) models were versatile enough to approximate26

complex functions [4], we employed relatively large MLPs with two hidden layers of 200 and 10027

nodes, respectively. The Rectified Linear Unit (ReLU) is used as the activation fucntion.28

For training data, we randomly sampled 10 million pairs of horizontally neighboring pixels from the29

COCO dataset [3]. The models were trained for 20 epochs using Adam optimizer with a learning rate30

of 0.001. In the experiments involving two MLPs, we used MLPs of the same size and followed the31

same training procedure as in the single MLP case. For the factor balancing the two terms in the loss32

function in Eq. (11) and Eq. (13) in the main text, we use k = 2/3 in all experiments.33

The partitions were visualized using the tricontour function from matplotlib, which generates contour34

plots of unstructured triangular grids. The two pixel values were input as the x and y coordinates,35

while the outputs of the MLPs were used as the z-values.36

In addition to Fig. 1 in the main text, some interesting results are shown in Fig. 1.37

E Experimental Details for the Image Patches Case38

Two models were discussed in the main text of our study: a model trained on 5 × 5 color image39

patches (the color model), and another trained on 4 × 4 grayscale image patches (the grayscale40

model).41

Grayscale Model: Our training data consisted of roughly 100,000 images from the unlabeled section42

of the COCO 2017 image dataset, converted to grayscale. In each training batch, we randomly43

selected 1,000 images and extracted 1,000 random image patches from each image, leading to a total44

of 1 million image patches per batch. From this batch, a mini-batch of 500 patches was randomly45

chosen to calculate the loss function. To ensure numerical stability, a small value ϵ = 10−38 was46

added when computing the distances between samples. We used the Adam optimizer with a learning47

rate of 1e-3, and the model was trained for a single epoch. The sparsity regularization parameter was48

set to α = 0.05.49

Color Model: Training data for the color model were image patches extracted from 1.2 million50

images in the training portion of ImageNet. Each training batch comprised 500 randomly chosen51

images, with 100 random image patches extracted from each image. From each batch, a mini-52

batch of 500 patches was sequentially selected (i.e., patches within each batch were not shuffled) to53

compute the loss function. To augment the dataset, we randomly flipped images horizontally with54
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(a) (b)

Figure 1: Additional results complementing Fig. 1 in the main text. (a) One basis with 64 independent
states. The 2D structure of the even partition is complex, reflecting the high expressiveness of the
MLP in modeling the probability space. (b) Two orthogonal bases, each with 4 independent states.
The second MLP has learned to employ a zigzag partitioning structure, effectively dividing the total
intensity into more sections. This suggests that the model may be compensating for the perceived
insufficiency of the first MLP in partitioning the total intensity with only 4 states.

a probability of 0.5. We adopted the node-wise repel form of the loss function to ensure numerical55

stability (comparable results were achieved with the method used in the grayscale model). The56

model was trained for 10 epochs using the AdamW optimizer, with a learning rate of 2e-4 for the57

first 5 epochs, and 1e-4 for the remaining epochs. The sparsity regularization parameter was set to58

α = 6
96 = 0.0625.59

F Statistical Analysis of Even Code Representation60

In this section, we conduct further statistical analyses on the even code representation using the61

grayscale model described in Appendix E. Fig. 2 (a) illustrates the proportion of samples activating62

each unique binary representation. At the most granular level, the distribution is highly uneven,63

reflecting the image similarity statistics learned by the model, as anticipated. Fig. 2 (b) shows the64

proportion of samples activating a certain number of output nodes, with the majority activating around65

14 out of the 64 total output nodes.66

To confirm that samples also have a relatively even distribution at middle scales, We select 30 random67

occupied positions in the binary representation space and count the total number of samples within68

varying distances to each. If the distribution is relatively even, the 30 curves should be close to69

each other (within the same order of magnitude) and exhibit similar shapes. The result is shown70

in Fig. 2 (c). Most curves are close even at the smallest scale, and they become closer as the scale71

increases In Fig. 2 (d) we plot the occupancy rate of positions in the binary representation space at72

different distances to 30 random occupied positions. The occupancy rate is calculated as the total73

number of samples at a distance d to a random occupied position, divided by the number of all74

possible sites in the binary space with a distance d to the same position, which is the combination75

number
(
64
d

)
. A similar decaying trend is observed for all 30 random sites, except at a small scale or76

at a large d, where the boundary of the subspace is reached.77
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(a) (b)

(c) (d)

Figure 2: Statistical analysis of the learned representation using the loss function Eq. (15) defined in
the main text. (a) Proportion of image patch samples activating each unique representation pattern.
(b) Proportion of image patch samples with representation having different numbers of active nodes.
(c) Proportion of image patch samples within varying distances to 30 random positions in the binary
representation space. (d) Occupancy rate at different distances to 30 random positions in the binary
representation space.

G Decoding Even Code78

To intuitively understand how well the binary representation preserves information, we can decode79

the binary representations and compare them to the original image patches. The encoder model and80

its training is the same with the grayscale model described in Appendix E except here we use color81

images and α = 0.03.82

To train the decoder, 10 million random image patches are fed into the encoder to generate corre-83

sponding representations. Since the mapping is many-to-one, we average all image patches with the84

same binary representation as the training target and use the binary vector as the feature. This results85

in approximately half a million feature-target pairs for training the decoder. We use an MLP with the86

same size as the encoder to construct the decoder, which is trained with a batch size of 128 for 10087

epochs, using the Adam optimizer and a learning rate of 0.001.88

Once the decoder is trained, we first use the encoder to encode every non-overlapping image patch of89

an image. Then, the decoder is used to convert the binary representations back into image patches,90

which are then tilted together to get the decoded image. Fig. 3 shows an example of original and91

decoded images. While the even code method does not explicitly optimize for image reconstruction92

performance in the loss function, unlike many previous image patch modeling methods [1, 2, 6, 7, 5],93

it is noteworthy that the binary representation preserves critical information such as luminance, color,94

and boundaries effectively. This retention of key details ensures the accurate comprehension of the95

image in subsequent processing stages.96
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(a) (b)

Figure 3: Demonstration of decoding the binary representation. (a) The original image. (b) The
image reconstructed from decoded image patches, which are titled together. Despite the lack of
explicit optimization for image reconstruction, key details such as luminance, color, and boundaries
are preserved effectively.
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