
Supplementary1

A Details of sampling process2

The sampling process with ProG is shown below. The correctness is shown in the section I. All3

hyperparameters are in Table 14.

Algorithm 1 DDPM denoising process with ProG guidance
Input: class labels y, classification scale s
xT ∼ N (0, I)
sT ← initialized via semantic correlations in section 3.1
for t = T, ..., 1 do
z ∼ N (0, I), g ← w

∑C
i si,t∇xt

log pϕ(y|xt)

xt−1 ← 1√
αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t)) + σ2

t g + σtz

∆si,t =

{
−γ ∗ (1− si,t), if i = c

−∆sc ∗ si,t∑C
j=1,j ̸=c sj,t

, if i ̸= c ,

si,t−1 ← si,t −∆si,t,∀1 ≤ i ≤ C
end for

4 B Diversity analysis5

B.1 Qualitative analysis6

over-exploits Front-face features 

over-exploits Front stretching pose
 ProG (ours)w/o ProG covers different angles of faces and different positions of the dog

Figure 5: Brittany Spaniel condition. The left figure shows the first and the second type of diversity
suppression of vanilla classifier guidance where only front-face features and front-stretching pose
features are exploited. The right figure is the diversity improvement using our proposed ProG. ProG
can helps to cover a wide range of features in the class.

This section will extend the analysis of Remark 3.1 and section 4. More examples and patterns of7

avoiding a lack of diversity are presented. All the analyses are visualized on ImageNet 256x256 with8

three breeds Brittany Spaniel, English Springer and Welsh Springer Spaniel.9

As stated in the main paper, the absence of diversity stems from suppressing shared features among10

classes. These features are challenging to classify because multiple classes possess them, resulting11

in diminished significance in discriminative tasks like classification. This leads to the ignorance12

of common features. The main paper’s Figure 2 and 1(b) provide visual insights into this notion.13

Consequently, we have discovered that various classes exhibit distinct patterns of diversity suppression14

based on their shared feature pool with others. Through observations across different breeds, we have15

identified three primary instances of feature collapse resulting from the suppression of other features:16

1. Collapse into front-face features17

2. Collapse into a single pose18

3. Collapse into one type of background.19

Most of the breeds will have the first type of collapse as in Figure 5, 6, and 7. Figure 5, 6 shows the20

improvement over front-face features collapse and single pose collapse using ProG. Figure 5 and 721

shows the improvement of ProG on front-face collapse and background collapse.22
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Figure 7 shows the 1st and 3rd types of collapse into front-face features and one type of background.

w/o ProG over-exploits Front-face features   ProG (ours) covers a wide range of features 

Figure 6: English Springer condition. The left figure shows a clear collapse into front-face features
by using vanilla classifier guidance. The right figure shows our improvement where different poses,
backgrounds and angles of faces are recovered.

w/o ProG
over-exploits Front-face features 

over-exploits Green grass background
 ProG (ours) covers different angles of faces and

different types of backgrounds of the dog

Figure 7: Welsh Springer Spaniel. (left-figure) Similar to other breeds, the vanilla guidance also
over-exploits the front-face features, and it also over-exploited the green grass background features.
The right figure shows the improvement using ProG, where different backgrounds are recovered.

23

Background correction: We also provide more evidences on improving the background collapse24

case by our proposed method. We analyze on the class Briard, where the background collapse25

happens very strongly. Figure 8 shows the correction case-by-case using ProG.26

w/o ProG  ProG (ours) w/o ProG  ProG (ours)

Background collapse Recover background Recover backgroundBackground collapse

Figure 8: Briard condition. On vanilla guidance (w/o ProG), most of the images fall into white/green
simple background. We leverage ProG to improve the background as well as the details of the dog.
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B.2 Quantitative analysis27

We also extend the results from section 6.1 at Figure 4 and the two figures in Table 4 in main paper.28
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Figure 9: FID and Recall trend of guidance sampling with (left) ImageNet128x128 conditional ADM
(right) ImageNet128x128 conditional ADM with EDS. Opposite to the degeneration of diversity in
vanilla guidance, our method sustains a stable trend associated with w increase.
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Figure 10: FID and Recall trend of guidance sampling with ImageNet 256x256 with conditional
diffusion models. We see a clear improvement in trend over vanilla guidance when increasing w

Figure 9 and 10 show a clear improvement in keeping diversity when increasing guidance scale29

w. Given a very large weight for classifier gradients, it is not necessary to trade off the diversity to30

achieve clearer examples following the main condition.31

C Robustness analysis32

We also show that by avoiding pushing toward one condition so aggressively, we can avoid non-robust33

features that can be used to attack the classifier models. The non-robust feature images are the images34

with very high confidence to belong to a class but have suspicious features toward that class.35

In Figure 1(a) (main paper), a number of images with very high confidence belong to the condition36

but have very poor features. Figure 11 shows that those cases can be overcome by using the proposed37

ProG. We further evaluate the robustness feature constructions on ImageNet 256x256. Examples38

from this dataset are given in Figure 12 as the Brittany Spaniel class, 13 as Briard class and 14 as39

the Leopard class. The values under the images are the confidence of that image belonging to a class.40

This confidence is measured by the classifier used for guidance.41

The results are consistent with the robustness score recored in Table 2 and 4 in the main paper.42

D Experimental details43

This section will provide information about the settings of every experiment in the main paper and44

the Appendix. All the hyperparameters are shown in Table 14. γ is selected as the best value by45

running on two values, 0.04 and 0.06. w is selected based on similar scheme of the paper [1].46

D.1 Settings47

All the experiments are executed on HPC clusters with 8 A100-40GB GPUs with Ubuntu 20.0448

operating system. The total RAM for each node is 400GB.49

Robustness metric: The issue of quantifying the adversarial effects caused by the classifier guidance50

method has not been adequately addressed in previous works [2, 3] since it is challenging due to the51

trade-off between diversity, feature quality, and robustness. We propose to leverage a bank of off-the-52

shelf pretrained classification models to evaluate the robustness features based on the assumption that53

it is much more difficult for the non-robust image to trick a set of separately pretrained classifiers than54

only a single guidance classifier. Specifically, the robustness features are quantified by averaging Top-155
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Figure 11: We show the non-robustness avoidance using our proposed ProG compared to the examples
show in Figure 1(a) in the main paper.

accuracy using pretrained models ResNet34, ResNet50, ResNet151 [4], DenseNet169, DenseNet20156

[5], SqueezeNet, SqueezeNet [6]. To ensure a fair comparison between the two generative schemes,57

it is crucial to establish a comparable level of quality and diversity in the synthetic data generated58

by both models. This is essential because if one model generates inferior features compared to the59

others but repetitively produces only a few easily distinguishable features across the entire dataset, it60

could achieve a higher robustness score than the others. To address this, we adjust the guidance scale61

to attain similar diversity and feature quality between the two schemes, as assessed by the Fréchet62

Inception Distance (FID) metric. The selection of FID is based on its ability to strike a balance63

between sample diversity and sample quality, whereas other metrics like Recall tend to bias towards64

diversity and place less emphasis on image quality.65

Due to the pretrained ResNet34, ResNet50, ResNet151, DenseNet169, DenseNet201, and SqueezeNet66

only having available pretrained models on ImageNet 224x224, it is more reliable to evaluate the67

robustness on synthetic ImageNet 256x256. For other resolutions, we might need to retrain the68

off-the-shelf classifiers resulting in uncertainty in hyper-parameters and the training process.69

D.2 Details setup for each experiment in section 670

Classifier guidance improvement: Section 6.1 shows improved classifier guidance using ProG.71

All the pretrained diffusion and noise-aware classification models are taken from https://github.72

com/openai/guided-diffusion/blob/main/README.md. CADM is the conditional diffusion73

ADM. We cannot obtain results for ADM-G and ADM-G + ProG on ImageNet128x128 due to the74

unavailability of the unconditional diffusion model on this resolution (not provided by the guided-75

diffusion GitHub folder). Table 1 shows the superiority over original classifier guidance on image76

generation task, and Table 2 shows the better robustness score compared to conventional classifier77

guidance. Figure 4 shows better diversity trend when increasing classifier guidance scale w.78

4
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Brittany Spaniel
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Figure 12: Brittany Spaniel condition. Vanilla classifier guidance (blue pads) often achieves high
confidence regarding the conditions but obtains weird features. Using ProG can help to avoid the
non-robust features which result in much more realistic images.

SOTA comparison: Section 6.2 shows the utilization of ProG to achieve SOTA on image generation79

task. We have the following models BigGAN[7], ADM [1], EDS[8], IDDPM [9], VAQ-VAE-2[10],80

LOGAN [11], DCTransformers [12] and DiT[13] are basline models. Without any notation, the81

pretrained model taken from the main paper is utilized for sampling synthetic data for evaluation. † is82

denoted for the score evaluated by the samples provided by the paper. ‡ means the values are directly83

used from the papers due to the unavailability of the pretrained model.84

CADM+CLS-FREE (classifier-free guidance) [14] is sampled by using separate unconditional and85

conditional diffusion models due to the lack of the pretrained model from the main paper [14]. This86

approach is reasonable since the authors in [14] verify that classifier-free guidance can work on87

separate models.88

DiT [13] is the conditional latent diffusion model, and DiT-G is the classifier-free version of DiT89

(this is the default setup [13]). To apply ProG on this model, we use a noise-aware classifier on latent90

space (keep the same architecture as Classifier ImageNet64x64 [1], only replacing the input layer to91

feed the latent input).92

We are aware that the concurrent work by Kim et al. [15] (Refining Generative Process with93

Discriminator Guidance in Score-based Diffusion Models), currently under review at ICML2023,94

which presents state-of-the-art (SOTA) results on ImageNet 256x256. However, it is essential to95

note that their approach achieves these results by training a discriminator model specifically tailored96

to one diffusion model. While this approach yields impressive outcomes, it significantly limits the97

flexibility of diffusion sampling. In their proposed scheme, three distinct models must be available98
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Figure 13: Briard condition. Vanilla classifier guidance (blue pads) often achieves high confidence
regarding the conditions but obtains weird features. Using ProG can help to avoid the non-robust
features which result in much more realistic images.

simultaneously: the diffusion model, the noise-aware classifier, and the noise-aware discriminator. In99

contrast, our proposed scheme is a plug-and-play scheme with high flexibility.100

Moreover, the training process for their discriminator model necessitates the generation of synthetic101

datasets, adding another computational challenge. It is worth mentioning that this approach allows102

for a more significant amount of training data compared to both conventional guidance diffusion and103

our proposed ProG scheme. Consequently, a direct comparison between our proposed ProG and the104

work by Kim et al. [15] would be inherently unfair due to these substantial disparities in methodology105

and resource requirements.106

Furthermore, it is worth considering that our ProG model can potentially enhance the results achieved107

by the scheme proposed by Kim et al. [15] in certain scenarios. Given that our models effectively108

enhance both the robustness features and diversity of synthetic datasets, there exists an opportunity to109

combine the strengths of our ProG model with the algorithm presented in [15] to address the disparity110

between synthetic and real data. However, we leave exploring this combination for future work.111

E Classifier-free discussion112

Although the classifier-free guidance suffers from high-cost computation and inflexibility due to the113

need for both unconditional and conditional diffusion models simultaneously, this model has gained114

popularity due to concerns about adversarial effects resulting from the shared techniques between115

classifier guidance and adversarial attacks.116
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Figure 14: Leopard condition. Vanilla classifier guidance (blue pads) often achieves high confidence
regarding the conditions but obtains weird features. Using ProG can help to avoid the non-robust
features which result in much more realistic images.

In this section, we demonstrate how ProG addresses these challenges by improving classifier guidance,117

allowing it to achieve a similar level of robustness as classifier-free guidance while significantly118

reducing computational costs and achieving a high level of flexibility compared to classifier-free119

guidance.120

Regarding the robustness level, ProG can achieve a similar level of robustness compared to classifier-121

free guidance, while classifier-free guidance does not exploit the common technique with adversarial122

attacks as in Table 7.123

Table 7: Robustness score comparison between
classifier-free guidance and ProG

MODEL ROBUSTNESS(↑) FID
IMAGENET 256X256

CADM-G + EDS + PROG 86.60 3.90
CADM + CLS-FREE 87.14 3.95

Table 8: GPU hours to sample 50000 images
between ProG and classifier-free guidance

MODEL GPU HOURS
IMAGENET 256X256

CADM-G + EDS + PROG 341
CADM + CLS-FREE 487

Regarding diversity, we show that we slightly achieve better diversity compared to classifier-free124

guidance as in Figure 15 and significantly better in diversity trend when increasing the guidance scale125

as Figure 15.126

In terms of flexibility, we find out that ProG or classifier guidance has several benefits over classifier-127

free guidance.128

7



Guidance scale

ProG (ours)

Cls-free guidance

Figure 15: When increasing the guidance scale, the classifier-free guidance freezes all the dogs to
open their mouth gradually, showing the collapse into one style. Our proposed methods modify the
generated figures so that it is more realistic without collapsing
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Figure 16: FID and Recall trends when increasing guidance scale (left) for ImageNet 64x64 and
(right) for ImageNet 256x256. ProG achieves better diversity trend when increasing guidance scale
compared to classifier-free guidance

Table 9: Comparison between the most advanced classifier guidance and classifier-free guidance

MODEL IS (↑) FID (↓) SFID (↓) PREC (↑) REC (↑)

IMAGENET 64X64

CADM + CLS-FREE∗ 63.39 1.93 4.49 0.77 0.60
CADM-G + EDS + PROG 65.89 1.77 4.25 0.77 0.61

IMAGENET 256X256

CADM + CLS-FREE 191.31 3.76 4.87 0.80 0.55
CADM + EDS + PROG 232.86 3.84 5.0 0.83 0.51
DIT-G 274.69 2.27 4.58 0.82 0.58
DIT-G + PROG 278.77 2.25 4.56 0.82 0.58

• Training flexibility: Different from classifier-free guidance, noise-aware classifier, used in129

classifier guidance, can be trained separately from diffusion model. This offers the training130

flexibility for conditions. Whenever the conditions are provided or modified, it is not131

necessary to re-train diffusion model. Instead, the noise-aware classifier can be fine-tuned or132

retrained at a much cheaper cost compared to fine-tuning the diffusion models.133

• Sampling flexibility: Classifier-free guidance can only work when we have both conditional134

diffusion model and unconditional diffusion model, or at least a joint training between the135

two models. This reduces the flexibility of the guidance technique when given different136

versions of the diffusion model with updated training images or different training schemes.137

In contrast, given the same latent space with diffusion models, the noise-aware classifier138

imposes no restrictions on the diffusion model. It can be applied to any diffusion model,139

either trained to be conditional or unconditional or even a combination between condition140

and null condition.141
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Training flex. Sampling flex. Low cost Robust Diversity Extend.

Vanilla guidance ✓ ✓ ✓ ✗ ✗ ✓
CLS-free guidance ✗ ✗ ✗ ✓ ✗ ✓
ProG ✓ ✓ ✓ ✓ ✓ ✓

Table 10: As we can see, the main reason for the popularity of classifier-free guidance is its robust
features. However, ProG can combine all the advantages of Vanilla and Classifier-free guidance in
one unified scheme.

• Extendibility: Both the guidance techniques can be extended to various conditions e.g.142

Text-to-image.143

We summarize the benefits of our ProG compared to classifier-free guidance as below:144

Main takeaway: Classifier guidance can outperform classifier-free guidance on low-resolution145

datasets (ImageNet 64x64) but achieves poorer performance on ImageNet 256x256 on FID. However,146

the ProG helps the classifier guidance to achieve a similar level of robustness and better diversity147

compared to classifier-free guidance. It is important to note that classifier guidance offers much more148

flexible guidance with a very lightweight cost than its classifier-free counterpart (lower GPU hours149

than classifier-free guidance as in Table 8).150

F Extension to Text2Image Generation151

Text2Image Generation tasks recently attracted a number of research around the work. As a result,152

this section extends ProG to work on the Text2Image problem.153

In general, [1] has proposed to extend classifier guidance for text-to-image guidance. The sampling154

equation for GLIDE is shown below:155

xt−1 = µt + σt ∗ z+ sσ2
t∇xt

(f(xt).g(c))

Where f(xt) is the image embedding vector and g(c) is the text or description embedding vector.156

Equation (1) is mostly similar to equation (3) in the main paper, the only difference is the gradient157

term resulted from the similarity between two embedding vectors instead of the classification gradient158

as in the main paper.159

Our proposed ProG is applied to GLIDE in equation (1) in the following two scenarios:160

• Given one caption, we will utilize a set of 1000, 5000, or 10000 captions to act as relevant
information to input during the sampling process. we have:

g(c) =

i=N+1∑
i=0

sig(ci)

with i = 0 is the index of the primary caption, and i ̸= 0 is the index of other captions. We
set the initial values of si as:

si =
g(c0).g(ci)∑N+1

j=0 g(c0).g(cj)

The value of si is progressively updated throughout the sampling process as in section 3.2161

in the main paper. This scheme is named as GLIDE-ProG162

• Given one caption, we use 4 other captions that have the same meaning as the original
caption but different words. Since four other captions all have the same meaning, we have
different strategies to set the si values:

si =

{
a, if i = 0
a
4 , otherwise

, with a is hyperparameter, we try with a = 0.3. This method is named as GLIDE-ProGsim163
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zero-shot FID (↓) GPU hours

GLIDE 24.80 34.27
GLIDE-ProG w N=1k (ours) 23.47 34.66
GLIDE-ProG w N=5k (ours) 23.50 34.83
GLIDE-ProG w N=10k (ours) 23.31 34.83
GLIDE-ProGsim(ours) 23.87 34.84

Table 11: The improvement is significant in all the scenarios (around 6%), with N is the number of
additional captions we used. Dataset: MSCoco64x64

zero-shot FID (↓) GPU hours

GLIDE 34.80 38.45
GLIDE-ProG w N=1k (ours) 32.55 45.50
GLIDE-ProG w N=5k (ours) 32.37 45.80
GLIDE-ProG w N=10k (ours) 32.28 46.10

GLIDE-ProGsim(ours) 31.91 46.23
Table 12: The improvement is significant in all the scenarios (around 8%), with N is the number of
additional captions we used. Dataset: MSCoco256x256.

We set up the evaluation precisely the same as GLIDE [1] to evaluate zero-shot FID on MS-CoCo.164

Note: 4 additional captions of GLIDE-ProGsim are taken from MS-Coco captions. 1k, 5k, and165

10k captions are randomly sampled from the MSCoco training set. Table 1 and Table 2 shows the166

evaluation results:167

Main takeaway: From Table 11 and Table 12, the ProG scheme helps significantly improve the168

performance of text-to-image guidance on different scenarios.169

G Classifier performance sensitivity170

The classifier’s performance during sampling is one of the important indicators of the content in the171

image. In this section, we explore the correlation between classifier performance sensitivity regarding172

γ in Algorithm 1. As we can observe in Table 13, FID is very sensitive with γ, which means the173

generated image quality is heavily affected by γ. However, the classifier performance at different174

noise levels has little sensitivity regarding γ and has little correlation with the image quality.175

H ChatGPT prompt discussion176

Since ChatGPT is used for replacing human efforts in collecting data, we do not focus much on177

investigating the performance affected by different ChatGPT prompts. We believe that the research178

related to the prompts to achieve better performance could result in a more complicated work and179

leave for the future work. In this paper, we use the prompt that has the format:180

Add text description. For example, "Tench" will turn into "Characterized by its distinctive olive-green181

to golden-brown coloration, the tench has a robust and slightly elongated body with a rounded tail182

fin. It inhabits slow-moving or still waters such as lakes, ponds, and slow rivers across Europe183

γ FID Acc@25 Acc@75 Acc@150 Acc@200 Acc@250

0.04 5.16 00.00 0.31 20.00 78.42 100
0.06 5.4 00.00 0.31 20.31 79.06 100
0.1 7.28 00.00 0.31 21.87 78.75 99.68
0.2 8.67 00.00 0.31 20.62 79.37 100

Table 13: Sensitivity of γ regarding FID and the noise-aware classifier accuracy. Acc@25 means the
classifier’s accuracy at the 25th timestep.
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and parts of Asia. Renowned for its adaptability to varying water conditions, the tench can thrive184

in environments with low oxygen levels due to its unique respiratory adaptations.". Apply for the185

following fields:186

• Goldfish, Carassius auratus187

• Great white shark, white shark, man-eater, man-eating shark, Carharodon Zacharias188

189

The primary motivation is hinting at the type of description we want. Suppose we use different types190

of prompts that do not have a hint. The output is a lengthy paragraph that includes information191

unrelated to the description, such as its origination place or history, which is harder to do text192

preprocessing and less relevant to generate image features.193

I Formulations discussion194

The optimization problem, as in Eq. 7, is fully shown as below:195

min
st

−
C∑
i=1

st,i log st,i (8)

s.t sc,t > si,t, ∀i ̸= c, 1 ≤ i ≤ C (9)
C∑
i=1

si,t = 1, (10)

0 ≤ si,,t < 1, ∀1 ≤ i ≤ C (11)

st ∈ argmin
st

DKL(st||pϕ(y|xt)) (12)

Since the simultaneous optimization of Eq. 8 and Eq. 12 is difficult, we reduce the problem as:196

min
st

−
C∑
i=1

si,t log si,t (13)

s.t sc,t > si,t, ∀i ̸= c, 1 ≤ i ≤ C (14)
C∑
i=1

si,t = 1, (15)

0 ≤ si,t < 1, ∀1 ≤ i ≤ C (16)
|s∗i,t − si,t| ≤ l, ∀1 ≤ i ≤ C (17)

The Eq. 17 is utilized to replace the Eq.12 with the assumption that DKL(st||pϕ(y|xt)) ∼ 0 after xt197

is optimized via Eq. 6 as copy as below:198

xt−1 = µt + σt ∗ z− wσ2
t∇xt

DKL(st||pϕ(y|xt)). (18)

Reverse entropy regularization: As we can see, the problem now turns into the distribution matching199

between pϕ(y|xt) and st at each time step. Since we initialize sT very chaotic when the sampling200

process starts, it is not difficult for updating xt to match with the distribution of sT . We regularize the201

st at each timestep to avoid overfitting similar to [16, 17]. Although there are many possible ways202

to move the st ahead, we have to satisfy the condition of sc,t > si,t at every timestep. Otherwise,203

the condition of the generation process can not be reached. As a result, we move the st toward the204

direction that reduces the entropy leading to the reverse entropy regularization problem.205

Correctness of the algorithm: Our proposed schedule ProG can satisfy as a solution to the optimiza-206

tion problem Eq. 8. We have:207

∆si,t =

{
−γ ∗ (1− si,t), if i = c

−∆sc,t ∗ si,t∑C
j=1,j ̸=c sj,t

, if i ̸= c , (19)
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and st−1 = st −∆st.208

Since sc,t monotonically increase every timestep and si,t monotonically reduces every timestep, we209

always satisfy sc,t > si,t∀0 ≤ i ≤ c.210

After the update st to achieve st−1, we have:211

C∑
i=1

si,t−1 = sc,t−1 +

C∑
i=1,i̸=c

si,t−1 (20)

= sc,t + γ(1− sc,t) +

C∑
i=1,i̸=c

si,t − γ ∗ (1− sc,t)
si,t∑C

j=1,j ̸=c sj,t
(21)

= sc,t + γ(1− sc,t)−
C∑

i=1,i̸=c

γ ∗ (1− sc,t)
si,t∑C

j=1,j ̸=c sj,t
+

C∑
i=1,i̸=c

si,t (22)

= sc,t + γ(1− sc,t)− γ ∗ (1− sc,t) +

C∑
j=1,j ̸=c

sj,t =

C∑
i=1

si,t (23)

Given the sT is initialized following information degree as in section 3.1 in the main paper, the212 ∑C
i=1 si,T = 1 leads to the

∑C
i=1 si,t = 1,∀t satisfying the constraint Eq. 15. Since the deduction213

to the si,t follows the distribution of si,t∀1 ≤ i ≤ C, i ≤ c, we have si,t ≥ 0∀i, t satisfying all the214

constraints in the problem in Eq. 8.215

Since the sc,t will move to 1, other si,t will also gradually move to 0. The process will reduce the216

entropy as Eq. 8 close to 0, satisfying the entropy minimization.217

As
∑C

i=1 si,t = 1,∀t and sc,t > si,t,∀i ̸= c, we have sc,t >
1
C . Upper bound l = γ ∗ (1 − 1

C ) =218

γ ∗ C−1
C

Figure 17: Images generated by classifier guidance with ProG

219
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Table 14: All hyper-parameters required for reproducing the results.

MODEL DATASET γ w TIME-STEPS

TABLE 1

ADM, IDDPM IMAGENET 64X64, 128X128 256X256 0.0 0.0 250
ADM, IDDPM CIFAR 32X32 0.0 0.0 250
CADM IMAGENET 64X64, 128X128, 256X256 0.0 0.0 250
ADM-G IMAGENET 64X64 0.0 4.0 250
ADM-G + PROG IMAGENET 64X64 0.04 8.0 250
IDDPM-G IMAGENET 64X64 0.0 2.0 250
IDDPM-G + PROG IMAGENET64X64 0.06 4.0 250
CADM-G IMAGENET64X64 0.0 0.5 250
CADM-G + PROG IMAGENET 64X64 0.06 0.5 250
CADM-G IMAGENET128X128 0.0 0.5 250
CADM-G + PROG IMAGENET 128X128 0.06 0.7 250
ADM-G IMAGENET 256X256 0.0 10.0 250
ADM-G + PROG IMAGENET 256X256 0.06 14.0 250
CADM-G IMAGENET 256X256 0.0 1.0 250
CADM-G + PROG IMAGENET 256X256 0.04 2.0 250
ADM-G CIFAR 32X32 0.0 0.3 250
ADM-G + PROG CIFAR 32X32 0.04 0.3 250

TABLE 2

CADM-G IMAGENET 256X256 0.0 1.0 250
CADM-G + PROG IMAGENET 256X256 0.04 2.3 250

TABLE 3

CADM-G + EDS IMAGENET64X64 0.0 0.2 250
CADM-G + EDS + PROG IMAGENET64X64 0.04 0.2 250
CADM-G + EDS IMAGENET128X128 0.0 0.5 250
CADM-G + EDS + PROG IMAGENET128X128 0.06 0.5 250
CADM-G + EDS IMAGENET 256X256 0.0 1.0 250
CADM-G + EDS + PROG IMAGENET256X256 0.04 1.0 250
DIT IMAGENET256X256 0.0 0.0 250
DIT-G IMAGENET256X256 0.0 1.5 250
DIT-G + PROG IMAGENET256X256 0.03 1.5 250

TABLE 4 (INC. FIGURES)

CADM-G + EDS IMAGENET 256X256 0.0 1.0 ∼ 10.0 250
CADM-G + EDS + PROG IMAGENET256X256 0.06 1.0 ∼ 10.0 250

FIGURE 2

ADM-G IMAGENET 64X64 0.0 10.0 250
ADM-G + PROG IMAGENET 64X64 0.06 10.0 250

FIGURE 3 (SELECT LOW γ FOR BETTER OBSERVATION)

ADM-G IMAGENET 64X64 0.0 10.0 250
ADM-G + PROG IMAGENET 64X64 0.001 10.0 250

FIGURE 5, 6, 7 AND 8

ADM-G IMAGENET 256X256 0.0 14.0 250
ADM-G + PROG IMAGENET 256X256 0.04 14.0 250

FIGURE 12, 13 AND 14

ADM-G IMAGENET 256X256 0.0 10.0 250
ADM-G +PROG IMAGENET 256X256 0.04 10.0 250

FIGURE 11

ADM-G IMAGENET 64X64 0.0 10.0 250
ADM-G +PROG IMAGENET 64X64 0.04 10.0 250
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