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ABSTRACT

Low-rank adaptation, also known as LoRA, has emerged as a prominent method
for parameter-efficient fine-tuning of foundation models. Despite its computa-
tional efficiency, LoRA still yields inferior performance compared to full fine-
tuning. In this paper, we first uncover a fundamental connection between the
optimization processes of LoRA and full fine-tuning: using LoRA for optimiza-
tion is mathematically equivalent to full fine-tuning using a low-rank gradient for
parameter updates. And this low-rank gradient can be expressed in terms of the
gradients of the two low-rank matrices in LoRA. Leveraging this insight, we in-
troduce LoRA-Pro, a method that enhances LoRA’s performance by strategically
adjusting the gradients of these low-rank matrices. This adjustment allows the
low-rank gradient to more accurately approximate the full fine-tuning gradient,
thereby narrowing the performance gap between LoRA and full fine-tuning. Fur-
thermore, we theoretically derive the optimal solutions for adjusting the gradients
of the low-rank matrices, applying them during fine-tuning in LoRA-Pro. We con-
duct extensive experiments across natural language understanding, dialogue gen-
eration, mathematical reasoning, code generation, and image classification tasks,
demonstrating that LoRA-Pro substantially improves LoRA’s performance, effec-
tively narrowing the gap with full fine-tuning. Our code is publicly available at
https://github.com/mrflogs/LoRA-Pro.

1 INTRODUCTION

Foundational models (Radford et al., 2021; Brown et al., 2020; Achiam et al., 2023; Kirillov et al.,
2023; Rombach et al., 2022; Touvron et al., 2023) have become the cornerstone of modern deep
learning. By undergoing pre-training on massive datasets, these models typically exhibit excellent
generalization and versatility. Remarkably, some foundation models even demonstrate emergent
properties (Hoffmann et al., 2022; Kaplan et al., 2020). Due to these advantages, foundational
models have been widely applied to various downstream applications.

Nevertheless, it still requires additional fine-tuning when applied to downstream tasks, where the
huge parameter size of foundation models result in high cost in this stage. To address this issue,
recent research has focused on parameter-efficient fine-tuning (PEFT) methods (Hu et al., 2022;
Houlsby et al., 2019; Lester et al., 2021). PEFT methods reduce the fine-tuning cost by keeping
the foundation models frozen and only fine-tuning small, additional lightweight adapters. With the
majority of parameters frozen, PEFT enables faster fine-tuning and requires fewer resources.

Low-rank adaptation (Hu et al., 2022), also known as LoRA, is one of the most famous PEFT meth-
ods, which has been widely adopted across various domains. Inspired by previous works (Agha-
janyan et al., 2021; Li et al., 2018), LoRA hypothesizes that the changes in weights during model
adaptation exhibit a low-rank structure. To capture this, LoRA re-parameterizes these changes by
expressing them as the product of two low-rank matrices: W = W0 +∆W ≈W0 + sBA, where s
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is a scaling factor, and A ∈ Rr×n and B ∈ Rm×r are low-rank matrices with rank r ≪ min(m,n).
LoRA reduces the number of trainable parameters from m× n to r × (m+ n), thereby decreasing
the cost of fine-tuning. However, despite its efficiency, LoRA’s fine-tuning performance often falls
short compared to full fine-tuning (Hu et al., 2022; Liu et al., 2024; Ding et al., 2023).

In this paper, we propose a novel PEFT method, LoRA-Pro, aimed at bridging the gap between
LoRA and full fine-tuning. To begin with, we uncover a crucial connection between the optimization
processes of LoRA and full fine-tuning: using LoRA for optimization is equivalent to full fine-tuning
using a low-rank gradient for parameter updates. In LoRA, we discover that the change in weight
W is connected to the changes in matrices A and B, expressed as dW = ∂W

∂A dA + ∂W
∂B dB. This

relationship implies that updating matrices A and B with gradients gA and gB is equivalent to
updating W with a low-rank equivalent gradient g̃ in full fine-tuning, where:

g̃ =
∂W

∂A
gA +

∂W

∂B
gB = sBgA + sgBA. (1)

Leveraging this insight, our goal is to bridge LoRA’s gap with full fine-tuning by minimizing the
discrepancy between the low-rank equivalent gradient g̃ and the full fine-tuning gradient g, by ad-
justing the gradients of matrices A and B, i.e., mingA,gB ∥g̃ − g∥2F . Furthermore, we theoretically
demonstrate that this optimization problem admits an optimal closed-form solution, as shown in
Theorem 2.1. Notably, the optimal gradients for the low-rank matrices do not explicitly de-
pend on the full fine-tuning gradient.

Our main contributions are summarized as follows:

• We first uncover a crucial connection between LoRA and full fine-tuning in optimization
process: optimizing with LoRA is mathematically equivalent to full fine-tuning using a
low-rank gradient for updating.

• We propose a novel PEFT method called LoRA-Pro. Our approach minimizes the distance
between the true gradient and the low-rank gradient by adjusting the gradients of matrices
A and B. We theoretically prove the optimal gradients and optimize using these gradients.

• Extensive experiments across tasks in natural language understanding, dialogue genera-
tion, mathematical reasoning, code generation, and image classification demonstrate the
effectiveness of our method.

2 METHOD

In this section, we begin by revisiting LoRA (Hu et al., 2022) in Section 2.1. Following this, we
conduct a comparison between LoRA and full fine-tuning, and point out their connection in the
optimization process in Section 2.2. Finally, in Section 2.3, we introduce LoRA-Pro as a solution to
bridge the gap between LoRA and full fine-tuning.

2.1 REVISITING LOW-RANK ADAPTATION

First of all, let’s dive back into Low-Rank Adaptation (LoRA) (Hu et al., 2022). LoRA’s core idea
revolves around recognizing the low-rank structure of the change matrix ∆W in the standard fine-
tuning process. This insight allows LoRA (Hu et al., 2022) to re-parameterize the change matrix
into the product of two low-rank matrices,

W = W0 +∆W ≈W0 + sBA. (2)

Here, W0 ∈ Rm×n represents the pre-trained weight matrix, B ∈ Rm×r and A ∈ Rr×n are
the low-rank matrices, and s is a scaling factor. For LoRA (Hu et al., 2022), s = α

r , while for
rsLoRA (Kalajdzievski, 2023), s = α√

r
. Here, α is the hyper-parameter and r ≪ min(m,n)

denotes the rank. Consequently, LoRA significantly reduces the number of fine-tuning parameters
from m× n to r × (m+ n), thereby decreasing the computational cost of fine-tuning.

2.2 LORA V.S. FULL FINE-TUNING

Despite its widespread applications across various domains, LoRA’s performance still falls short
when compared to full fine-tuning. In this part, we compare LoRA and full fine-tuning in the op-
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timization process. Then, we demonstrate that optimizing using LoRA is equivalent to using a
low-rank gradient in full fine-tuning for updating the parameters.

Full fine-tuning. In full fine-tuning, we utilize differential to analyze the relationship between
changes in the loss and changes in the weights:

dL = ⟨ ∂L
∂W

,dW ⟩F , (3)

where dL and dW denotes the changes of the parameter W and the loss L, and ⟨·, ·⟩F is the Frobe-
nius inner product. To minimize the loss function, we typically set dW = − ∂L

∂W ≜ −g (omitting
the learning rate for simplicity), which results in dL = −∥ ∂L

∂W ∥
2
F ≤ 0.

Low-rank adaptation. In LoRA optimization, given that W = W0 + sBA, we compute the
differential using the chain rule:

dL = ⟨ ∂L
∂W

,dW ⟩F

= ⟨ ∂L
∂W

,
∂W

∂A

T

dA+
∂W

∂B

T

dB⟩F

= ⟨ ∂L
∂W

∂W

∂A
,dA⟩F + ⟨ ∂L

∂W

∂W

∂B
,dB⟩F

= ⟨∂L
∂A

,dA⟩F + ⟨ ∂L
∂B

,dB⟩F .

(4)

Similarly, LoRA sets dA = − ∂L
∂A ≜ −gAlora and dB = − ∂L

∂B ≜ −gBlora, and thus dL = −∥ ∂L∂A∥
2
F −

∥ ∂L∂B ∥
2
F ≤ 0. Moreover, employing the chain rule, we derive:

gAlora =
∂L

∂W

∂W

∂A
= sBT g, gBlora =

∂L

∂W

∂W

∂B
= sgAT . (5)

Why LoRA performs worse than full fine-tuning. With Equation (3) and (4), we observe a critical
connection between full fine-tuning and LoRA in the optimization process. In LoRA, changes in
matrices A and B are inherently linked to changes in matrix W , i.e., dW = ∂W

∂A

T
dA + ∂W

∂B

T
dB.

This indicates that updating A and B with gradient gA and gB is equivalent to performing full
fine-tuning on W via the following update:

dW =
∂W

∂A

T

dA+
∂W

∂B

T

dB = −(sBgA + sgBA). (6)

Equation (6) reveals that LoRA optimization is equivalent to full fine-tuning using a low-rank gra-
dient g̃ = sBgA + sgBA (which rank is at most to 2r1) for optimization. Consequently, the per-
formance gap between LoRA and full fine-tuning may stem from differences between g̃ and the
full gradient g. The low-rank gradient g̃ may lose important information contained in g, leading to
distinct optimization trajectories and ultimately causing LoRA to converge to a sub-optimal solution.

2.3 LOW-RANK ADAPTATION WITH EQUIVALENT GRADIENT

Definition 1 (Equivalent Gradient). In the context of LoRA optimization, we define the equiv-
alent gradient as,

g̃ ≜ sBgA + sgBA,

where s is the scaling factor, and gA and gB are gradients with respect to A and B, respec-
tively.

In this part, we introduce our LoRA-Pro method, which bridges the performance gap by minimizing
the discrepancy between the gradients. For convenience, we define the concept of equivalent gradi-
ent in Definition 1. Equivalent gradient describes the virtual low-rank gradient of the matrix W in

1We provide the proof in Appendix B.1
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Figure 1: Illustration of LoRA-Pro. LoRA (Hu et al., 2022) reduces the trainable parameter by re-
parameterizing the weight into the product of two low-rank matrices, i.e., W = W0+sBA. We have
discovered a connection between the optimization processes of full fine-tuning and LoRA. Updating
matrices B and A using gradients gB and gA is equivalent to updating weight W using a virtual
low-rank gradient g̃ = sBgA + sgBA. Therefore, in LoRA-Pro, we aim to adjust gradients gB and
gA to minimize the distance between the equivalent gradient g̃ and the full fine-tuning gradient g,
thereby reducing their performance gap. In Theorem 2.1, we provide the optimal update gradients,
and in Appendix C, we present the pseudo-code for the optimization algorithm.

LoRA optimization process, despite W not being a trainable parameter. To narrow the performance
gap, our goal is to carefully adjust gA and gB of matrices A and B to minimize the distance between
the equivalent gradient g̃ and the full gradient g in full fine-tuning. Hence, our objective is:

min
gA,gB

∥g̃ − g∥2F

s.t. g̃ = sBgA + sgBA,

dL ≤ 0.

(7)

Here, ∥ · ∥F denotes the Frobenius norm, and dL denotes the change in loss when updating with
gradients gA and gB . The objective aims to minimize the distance of the gradients while ensuring a
decrease in loss using the solutions for gA and gB .

Closed-form solution. Fortunately, we prove that the optimization problem (7) admits an optimal
closed-form solution, as stated in Theorem 2.1. Additionally, an interesting observation arises from
Theorem 2.1: while the full gradient g serves as the ground truth in the objective, it does not neces-
sarily explicit appear in the closed-form solution. Instead, the closed-form solution for the optimal
gradients can be expressed in terms of the gradients of LoRA. This allows for an efficient gradient
adjustment process, where we backpropagate using the standard LoRA and adjust the gradients of
matrices A and B based on the closed-form solution presented in Theorem 2.1. 2

Theorem 2.1. Assume matrices B ∈ Rm×r, A ∈ Rr×n are both full rank. For the objective
mingA,gB ∥g̃ − g∥2F , the optimal solutions are given by:

gA =
1

s
(BTB)−1BT g +XA =

1

s2
(BTB)−1gAlora +XA, (8)

gB =
1

s
[I −B(BTB)−1BT ]gAT (AAT )−1 −BX (9)

=
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1 −BX. (10)

Here, X ∈ Rr×r represents an arbitrary matrix.

Proof. See Appendix B.2.

Loss minimization. While Theorem 2.1 offers a closed-form solution to the optimization problem
mingA,gB ∥g̃ − g∥2F , it’s crucial to understand that this solution does not inherently guarantee a

2We provide detailed algorithms in Appendix C.
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decrease in loss when updating the matrices A and B. To address this concern, we introduce The-
orem 2.2. In this theorem, we prove that the change in loss dL can be expressed as a negative sum
of two Frobenius norms, which leads to dL < 0. This result ensures that the optimization process
consistently drives towards a lower loss.

Selection of matrix X. Although the equivalent gradient itself is not directly related to the matrix
X , the presence of X plays a significant role in the updates of matrices A and B. We select an
appropriate X such that gA and gB remain close to gAlora and gBlora respectively. To achieve this,
we minimize their Frobenius norm, as demonstrated in Equation (14). In practical terms, BTB and
−AAT do not share common eigenvalues. Therefore, according to Theorem 2.3, we can determine
a unique optimal X for updating matrices A and B.

Theorem 2.2. When updating matrices A and B using the closed-form solution from Theo-
rem 2.1, we proceed as follows:

A← A− γgA (11)

B ← B − γgB , (12)

where γ ≥ 0 denotes the learning rate. Our method ensures a decrease in the loss, akin to
the standard gradient descent algorithm, expressed by:

dL = −γ{⟨gAlora,
1

s2
(BTB)−1gAlora⟩F+⟨gBlora,

1

s2
[I−B(BTB)−1BT ]gBlora(AAT )−1⟩F } ≤ 0.

(13)

Proof. See Appendix B.3.

Theorem 2.3. Consider the optimization problem,

min
X
∥gA − gAlora∥2F + ∥gB − gBlora∥2F , (14)

where gA and gB are the optimal solutions as stated in Theorem 2.1. The optimal X can be
determined by solving the Sylvester equation:

BTBX +XAAT = − 1

s2
(BTB)−1gAloraA

T , (15)

which has a unique solution X provided that BTB and −AAT do not have any shared
eigenvalues.

Proof. See Appendix B.4.

3 EXPERIMENTAL RESULTS

In this section, we present extensive experiments to evaluate the effectiveness of LoRA-Pro across
various tasks and models. First, we assess natural language understanding capabilities using the
GLUE benchmark by fine-tuning the T5-base (Raffel et al., 2020) model in Section 3.1. Next, we
evaluate its capabilities in dialogue generation, mathematical reasoning, and code generation using
the Llama-2-7B model (Touvron et al., 2023), covered in Section 3.2. We then examine LoRA-Pro’s
effectiveness on image classification tasks using the CLIP-ViT-B/16 (Radford et al., 2021) model in
Section 3.3. Finally, we conduct an ablation study of LoRA-Pro in Section 3.4.

Training details. To ensure a fair comparison, we align our experimental setup with that of
LoRA-GA (Wang et al., 2024a). By default, we fine-tune the model using the AdamW optimizer
(Loshchilov & Hutter, 2019) with hyper-parameters β1 = 0.9, β2 = 0.999, and weight decay set to
0. We implement a cosine learning rate schedule with a warmup ratio of 0.03. LoRA is applied to
all linear modules, excluding the embedding layer, normalization layer, and classification head. By
default, we set the rank r = 8 and α = 16.
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For natural language understanding tasks, we fine-tune T5-base (Raffel et al., 2020) model with
learning rate 1e-4. The sequence length is set to 128, and the training batch size is 32. For dialogue
generation, mathematical reasoning and code generation tasks, we fine-tune the Llama-2-7B (Tou-
vron et al., 2023) model with a learning rate of 2e-5. We set the sequence length to 1024 and the
macro batch size to 32. For image classification tasks, we fine-tune the CLIP-ViT-B/16 (Radford
et al., 2021) model with learning rate 1e-4. The classifier is obtained using prompts such as “a photo
of a {class}” and kept frozen during fine-tuning. And the training batch size is set to 64.

All experiments are conducted on NVIDIA RTX A6000 GPUs. To obtain a reliable estimate of
model performance, we perform three runs with different random seeds and report the average and
standard deviation of the results.

3.1 RESULTS ON NATURAL LANGUAGE UNDERSTANDING TASKS

Table 1: Results of fine-tuning T5-base using full fine-tuning and various LoRA variants on a subset
of the GLUE datasets. The LoRA rank is set to 8 by default. Bold and underline indicate the highest
and second-highest scores, respectively.

Method MNLI SST2 CoLA QNLI MRPC Average
Full FT 86.33±0.00 94.75±0.21 80.70±0.24 93.19±0.22 84.56±0.73 87.91
LoRA 85.30±0.04 94.04±0.11 69.35±0.05 92.96±0.09 68.38±0.01 82.08

PiSSA 85.75±0.07 94.07±0.06 74.27±0.39 93.15±0.14 76.31±0.51 84.71
rsLoRA 85.73±0.10 94.19±0.23 72.32±1.12 93.12±0.09 52.86±2.27 79.64
LoRA+ 85.81±0.09 93.85±0.24 77.53±0.20 93.14±0.03 74.43±1.39 84.95
LoRA-GA 85.70±0.09 94.11±0.18 80.57±0.20 93.18±0.06 85.29±0.24 87.77

DoRA 85.67±0.09 94.04±0.53 72.04±0.94 93.04±0.06 68.08±0.51 82.57
AdaLoRA 85.45±0.11 93.69±0.20 69.16±0.24 91.66±0.05 68.14±0.28 81.62

LoRA-Pro 86.03±0.19 94.19±0.13 81.94±0.24 93.42±0.05 86.60±0.14 88.44

In this section, we evaluate our LoRA-Pro across various natural language understanding datasets.
To provide a comprehensive comparison, we include several baseline methods: 1) full fine-tuning
and the standard LoRA (Hu et al., 2022). 2) LoRA variants maintaining the original structure, such
as rsLoRA (Kalajdzievski, 2023), LoRA+ (Hayou et al., 2024), PiSSA (Meng et al., 2024), and
LoRA-GA (Wang et al., 2024a), 3) LoRA variants with modified structures, including DoRA (Liu
et al., 2024) and AdaLoRA (Zhang et al., 2023).

The results are presented in Table 1. We fine-tune the T5-base model (Raffel et al., 2020) with
the baseline methods on a subset of GLUE datasets: MNLI, SST2, CoLA, QNLI, and MRPC. As
shown in Table 1, we observe that LoRA-Pro achieves the highest scores on 3 out of 5 datasets and
the highest average score across all 5 datasets, and achieves the highest accuracy on average over
the 5 datasets. Specifically, on average over 5 datasets, LoRA-Pro surpasses standard LoRA (Hu
et al., 2022) with a margin of 6.36. And LoRA-Pro even achieve higher than full fine-tuning. This
superior performance may be attributed to overfitting in full fine-tuning, where optimizing all model
parameters can lead to overfitting on the training data, thus reducing the model’s generalization to
the test set. This effect is particularly pronounced on small datasets, such as MRPC, which contains
only 3.7k training data. These results validate the effectiveness of our methods.

3.2 RESULTS ON LARGE LANGUAGE MODELS

In this section, we evaluate the performance of LoRA-Pro on large language models, focusing on
dialogue generation, mathematical reasoning, and code generation capabilities. Our experimental
setup follows the configuration used in LoRA-GA (Wang et al., 2024a).

• For the dialogue generation task, we fine-tune the Llama-2-7B (Touvron et al., 2023) model
on a 52k subset of the WizardLM dataset (Xu et al., 2024) and evaluate it using the MT-
Bench dataset (Zheng et al., 2024a). GPT-4 is used to assess the quality of the model’s
responses, and we report the first-turn score as the metric.
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Table 2: Fine-tuning results of Llama-2-7B model. We fine-tune the Llama-2-7B model using full
fine-tuning and LoRA variants on subsets of the WizardLM (Xu et al., 2024), MetaMathQA (Yu
et al., 2024), and CodeFeedback (Zheng et al., 2024b) datasets, respectively. And we assess dialogue
generation, mathematical reasoning, and coding abilities on MT-Bench, GSM8K, and HumanEval
datasets. Bold and underline indicate the highest and second-highest scores, respectively.

Method MT-Bench GSM8K HumanEval

Full FT 5.30±0.11 59.36±0.85 35.31±2.13
LoRA 5.61±0.10 42.08±0.04 14.76±0.17

PiSSA 5.30±0.02 44.54±0.27 16.02±0.78
rsLoRA 5.25±0.03 45.62±0.10 16.01±0.79
LoRA+ 5.71±0.08 52.11±0.62 18.17±0.52

DoRA 5.97±0.02 53.07±0.75 19.75±0.41
AdaLoRA 5.57±0.05 50.72±1.39 17.80±0.44

LoRA-GA 5.95±0.16 53.60±0.30 19.81±1.46
LoRA-GA (rank=32) 5.79±0.09 55.12±0.30 20.18±0.19
LoRA-GA (rank=128) 6.13±0.07 55.07±0.18 23.05±0.37

LoRA-Pro 5.72±0.03 57.57±0.50 22.97±0.35
LoRA-Pro (rank=32) 5.57±0.51 57.97±0.50 26.63±0.35
LoRA-Pro (rank=128) 5.67±0.11 61.08±0.19 30.28±0.93

• For the math task, we fine-tune the Llama-2-7B (Touvron et al., 2023) model on a 100k
sample from the MetaMathQA dataset (Yu et al., 2024). The model is then evaluated on
the GSM8K test set (Cobbe et al., 2021), and we report the accuracy as the metric.

• For the coding task, we fine-tune the Llama-2-7B (Touvron et al., 2023) model on a 100k
subset of the CodeFeedback dataset (Zheng et al., 2024b) and test it on the HumanEval
dataset (Chen et al., 2021), reporting the PASS@1 metric.

We compare LoRA-Pro with several baselines, including full fine-tuning, LoRA (Hu et al., 2022),
PiSSA (Meng et al., 2024), rsLoRA (Kalajdzievski, 2023), LoRA+ (Hayou et al., 2024), DoRA (Liu
et al., 2024), AdaLoRA (Zhang et al., 2023), and LoRA-GA (Wang et al., 2024a). By default, we
set the rank to 8 and α = 16. Following LoRA-GA (Wang et al., 2024a), we initialize the scaling
factor as in rsLoRA (Kalajdzievski, 2023), i.e., s = α√

r
.

Table 2 presents our experimental results, which demonstrate LoRA-Pro’s superior performance.
With a rank of 8, LoRA-Pro achieves notable improvements over the original LoRA: 0.11 on MT-
Bench, 15.49 on GSM8K, and 8.21 on HumanEval. When compared to the second-best PEFT
method, LoRA-GA, LoRA-Pro shows consistent gains: 3.97 on GSM8K and a substantial 3.16 on
HumanEval. These results validate the effectiveness of our LoRA-Pro method.

Interestingly, we observe that full fine-tuning unexpectedly underperforms on MT-Bench. We at-
tribute this to potential discrepancies between the WizardLM training data distribution and the MT-
Bench evaluation set. The extensive learning capacity of full fine-tuning may lead to overfitting on
the training distribution, compromising generalization to MT-Bench. Since LoRA-Pro aligns more
closely with full fine-tuning during optimization, its relatively poor performance on MT-Bench may
also be attributed to overfitting.

To further explore the scalability of our method, we increase the rank in LoRA-Pro from 8 to 128.
Our observations reveal a clear trend: as the rank increases, the performance gap between LoRA-
Pro and full fine-tuning narrows rapidly. Notably, LoRA-Pro consistently outperforms LoRA-GA at
the same ranks on both GSM8K and HumanEval datasets. At rank 32, LoRA-Pro surpasses LoRA-
GA by 2.85 on GSM8K and 6.45 on HumanEval. This performance disparity becomes even more
pronounced at rank 128, where LoRA-Pro outperforms LoRA-GA by 6.01 on GSM8K and 7.23
on HumanEval. These results demonstrate the superior scalability and effectiveness of LoRA-Pro
across various rank settings.
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3.3 RESULTS ON IMAGE CLASSIFICATION TASKS

Table 3: Fine-tuning results of CLIP-ViT-B/16 on image classification tasks. We fine-tune CLIP-
ViT-B/16 using full fine-tuning and LoRA variants across StanfordCars, DTD, EuroSAT, GTSRB,
RESISC45, SUN397, and SVHN datasets. Bold indicates the highest results, while underline rep-
resents the second-highest results.

Method Cars DTD EuroSAT GTSRB RESISC45 SUN397 SVHN Average
Zero-shot 63.75 44.39 42.22 35.22 56.46 62.56 15.53 45.73
Full FT 84.23±0.06 77.44±0.19 98.09±0.03 94.31±0.28 93.95±0.0 75.35±0.10 93.04±0.18 88.06

LoRA 72.81±0.13 73.92±0.38 96.93±0.07 92.40±0.10 90.03±0.14 70.12±0.18 88.02±0.07 83.46
rsLoRA 82.38±0.20 78.03±0.76 98.06±0.08 95.04±0.11 93.96±0.18 75.38±0.24 92.74±0.18 87.94
LoRA+ 72.87±0.18 74.07±0.45 97.01±0.02 92.42±0.18 89.96±0.11 70.17±0.15 88.08±0.05 83.51
DoRA 73.72±0.06 73.72±0.33 96.95±0.01 92.38±0.17 90.03±0.08 70.20±0.19 88.23±0.05 83.48
LoRA-GA 85.18±0.41 77.50±0.12 98.05±0.27 95.28±0.10 94.43±0.19 75.44±0.06 93.68±0.35 88.51

LoRA-Pro 85.87±0.08 78.64±0.25 98.46±0.03 95.66±0.05 94.75±0.21 76.42±0.14 94.63±0.20 89.20

In this section, we assess the performance of LoRA-Pro on image classification tasks. To pro-
vide a comprehensive comparison, we compare it with several baselines: zero-shot CLIP (Rad-
ford et al., 2021), full fine-tuning, vanilla LoRA (Hu et al., 2022), rsLoRA (Kalajdzievski, 2023),
LoRA+ (Hayou et al., 2024), DoRA (Liu et al., 2024), and LoRA-GA (Wang et al., 2024a).

We fine-tune the CLIP-ViT-B/16 (Radford et al., 2021) model on various datasets, including Stan-
fordCars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), GT-
SRB (Houben et al., 2013), RESISC45 (Cheng et al., 2017), SUN397 (Xiao et al., 2010), and
SVHN (Netzer et al., 2011). Accuracy is used as the evaluation metric. During fine-tuning, only the
visual backbone of the CLIP-ViT-B/16 model is updated, while the classifier, derived from prompts
such as “a photo of a {class}”, remains frozen.

The results are presented on Table 3. LoRA-Pro achieves the highest accuracy across all seven
datasets. Specifically, on average, LoRA-Pro surpasses zero-shot classification by 43.47, outper-
forms LoRA (Hu et al., 2022) by 5.74, and exceeds rsLoRA (Kalajdzievski, 2023) by 1.26. These
results validate the effectiveness of our LoRA-Pro method.

3.4 ABLATION STUDY

Ablation study on the full-rank assumption.
In Theorem 2.1, we assume that the matrices
A ∈ Rr×n and B ∈ Rm×r are full-rank dur-
ing training. Our goal here is to verify whether
this assumption holds in practice. We track the
rank changes of all A and B matrices during the
fine-tuning process of Llama-2-7B on the Meta-
MathQA (Yu et al., 2024) dataset.
In Figure 2, we illustrate the rank changes of ma-
trices A and B from the q projection of layer 9
during the training process, with rank set to 8 and
32, respectively. We observed that, although A
and B do not initially satisfy the full rank assump-
tion (with matrix B initialized as a zero matrix),
both matrices achieve full rank after the first up-
date step. The rank behavior of A and B in other
layers also exhibits similar results.
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Figure 2: Visualization of matrix ranks of A and
B during training, with ranks set to 8 and 32,
respectively.

This observation provides practical evidence that the assumption in Theorem 2.1 is reasonable and
supports the validity of the proposed solutions.

Memory footprint and training time. Here, we evaluate the additional costs associated with using
LoRA-Pro compared to LoRA. We primarily focus on comparing the differences in memory cost
and training time between LoRA-Pro, LoRA, and full fine-tuning. The results of the experiments
are presented in Table 4. We measure memory cost using 8 A6000 GPUs with a batch size of 1.
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Table 4: We compare LoRA, LoRA-Pro, and Full Fine-Tuning in terms of memory cost, train-
ing time, and performance on the MT-Bench, GSM8K, and HumanEval datasets. Memory cost is
measured using a single A6000 GPU with a batch size of 1. Training time is recorded on the Meta-
MathQA dataset using 8 A100 GPUs with DeepSpeed ZeRO-2 stage optimization.

Method Memory Cost Training Time MT-Bench GSM8K HumanEval

Full FT ∼ 8× 40 GB 4h 20min 5.30±0.11 59.36±0.85 35.31±2.13
LoRA ∼ 8× 17 GB 1h 30min 5.61±0.10 42.08±0.04 14.76±0.17
LoRA-GA ∼ 8× 17 GB 1h 31min 5.95±0.16 53.60±0.30 19.81±1.46
LoRA-Pro ∼ 8× 21 GB 1h 41min 5.72±0.03 57.57±0.50 22.97±0.35

Training time is recorded on the WizardLM dataset using 8 A100 GPUs with DeepSpeed (Rasley
et al., 2020) ZeRO-2 stage optimization.

The results are shown in Table 4. From the table, we observe the following: 1) LoRA-Pro requires
approximately 4GB more GPU memory compared to LoRA. This difference likely stems from the
need to compute BTB, AAT , and their inverses during the calculation of the optimal gradients. 2)
Surprisingly, the training time for LoRA-Pro is nearly identical to that of LoRA, with only about
10 minutes increase in additional training time. We attribute this to the fact that the matrices A and
B in LoRA are low-rank. Consequently, the extra computations required by LoRA-Pro (such as
matrix inversion and the calculation of X) are performed on small r × r matrices, making the extra
computational overhead manageable.

Considering that LoRA-Pro uses less memory and trains faster than full fine-tuning, while also pro-
viding performance improvements over LoRA, we believe that the additional memory and training
time costs are acceptable.
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Figure 3: Training loss curves of LoRA, LoRA-GA, LoRA-Pro, and Full Fine-tuning on WizardLM,
MetaMathQA, and CodeFeedback.

Training curves of LoRA-Pro. In this part, we present the training loss curves for LoRA, LoRA-
GA, LoRA-Pro, and Full Fine-tuning across WizardLM, MetaMathQA, and CodeFeedback datasets.
As illustrated in Figure 3, LoRA-Pro demonstrates a faster convergence speed compared to LoRA
and LoRA-GA. Furthermore, LoRA-Pro achieves a lower final loss value upon convergence, indi-
cating its improved efficiency and effectiveness.

4 RELATED WORK

Parameter-Efficient Fine-Tuning. Given the huge size of foundation models, recent research has
focused on developing parameter-efficient fine-tuning methods (Hu et al., 2022; Liu et al., 2024;
Ding et al., 2023; Houlsby et al., 2019; Liu et al., 2023; Lester et al., 2021; Wang et al., 2024c).
These methods aim to reduce the cost of fine-tuning by adjusting only a small portion of the model’s
parameters. Generally, these methods fall into two main categories. The first category is adapter
tuning (Houlsby et al., 2019; Sung et al., 2022; He et al., 2021; Zhang et al., 2024; Bapna & Firat,
2019; Hu et al., 2022), which involves inserting small neural network modules, called adapters,
into specific layers of the model. During fine-tuning, we keep the model frozen and only fine-tune
the lightweight adapter modules, significantly reducing the memory footprint for fine-tuning. The
second category is prompt tuning (Lester et al., 2021; Zhou et al., 2022; Li & Liang, 2021; Liu et al.,
2022; Wang et al., 2023; 2024b; Liang et al., 2024). Prompt tuning adapts the models to specific
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tasks by adding specially designed prompts or learnable tokens to the input data, rather than directly
modifying the internal parameters of foundation models. In this paper, we focus on LoRA (Hu et al.,
2022), a prominent method within the realm of adapter tuning.

Low-Rank Adaptation. Low-rank adaptation, initially referred to as LoRA (Hu et al., 2022), has
evolved into a broad category encompassing parameter-efficient fine-tuning methods based on low-
rank approximations (Hu et al., 2022; Liu et al., 2024; Hayou et al., 2024; Kalajdzievski, 2023;
Zhang et al., 2023; Kopiczko et al., 2024; Hyeon-Woo et al., 2022; Zhang & Pilanci, 2024; Wang
et al., 2024a; Zhao et al., 2024; Wang et al., 2024a). LoRA (Hu et al., 2022) assumes that the changes
in the weights of pre-trained models exhibit a low-rank structure. Consequently, it re-parameterizes
these changes as the product of low-rank matrices, thereby reducing the cost during fine-tuning.

Several variants of LoRA have been proposed to address different aspects of this approach. For
example, DoRA (Liu et al., 2024) improves LoRA (Hu et al., 2022) by incorporating a learn-
able magnitude vector to re-scale the normalized product of low-rank matrices. Another variant,
rsLoRA (Kalajdzievski, 2023), introduces a new scaling factor to stabilize training in high-rank sce-
narios. LoRA+ (Hayou et al., 2024) improves upon LoRA by applying different learning rates to
the two low-rank matrices. Additionally, Galore (Zhao et al., 2024) employs SVD to project the
gradients and its first and second momentum of full training into a low-rank space, thereby reducing
the memory footprint during pre-training and fine-tuning.

5 CONCLUSION

In this paper, we introduce LoRA-Pro, a novel approach designed to bridge the performance gap
between LoRA and full fine-tuning. We have discovered that using LoRA for fine-tuning is equiv-
alent to fine-tuning the original weights with a virtual equivalent low-rank gradient. Based on this
insight, we propose adjusting the gradients of matrices A and B to make the equivalent gradient
match the true full fine-tuning gradient, thereby reducing their performance gap. Fortunately, we
theoretically prove that there exists an optimal closed-form solution for updating matrices A and
B, which are applied during fine-tuning in LoRA-Pro. To validate the effectiveness of our method,
we conduct extensive experiments across various domains, including natural language understand-
ing, dialogue generation, mathematical reasoning, code generation, and image classification tasks.
The results demonstrate that LoRA-Pro significantly improves LoRA performance and narrows the
performance gap with full fine-tuning.

Limitations. LoRA-Pro still have some limitations: (1) LoRA-Pro still adheres to LoRA’s assump-
tion that ∆W is of low rank. However, this assumption may break down in cases of pre-training or
when there is a large amount of fine-tuning data, potentially leading to suboptimal results. (2) So far,
we have only applied LoRA-Pro to variants that have a structure similar to LoRA. It currently cannot
be applied to structurally different LoRA models, such as DoRA (Liu et al., 2024) or FLoRA (Wen
& Chaudhuri, 2024). We plan to explore these directions in future research.
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LoRA-Pro: Are Low-Rank Adapters Properly
Optimized?

————Appendix————
The structure of Appendix is as follows,

• Appendix A contains the notation usage in our paper.

• Appendix B contains the proofs of the theorems in the main manuscript.

• Appendix C details the optimization algorithms of the proposed method.

• Appendix D presents additional experimental results.

A NOTATION

In Table 5, we detail the notations utilized in our paper.

Table 5: Description of notations used in the paper.

Notation Description
s scaling factor in LoRA
B ∈ Rm×r, A ∈ Rr×n low rank matrices in LoRA
g = ∂L

∂W ∈ Rm×n gradients of full fine-tuning
gAlora = ∂L

∂A = sBT g ∈ Rr×n gradients of matrix A in LoRA
gBlora = ∂L

∂B = sgAT ∈ Rm×r gradients of matrix B in LoRA
dL differential of the loss function
dA differential of the matrix A
dB differential of the matrix B
∥ · ∥F Frobenius Norm
⟨·, ·⟩F Frobenius inner product

B PROOF OF THEORETICAL RESULTS

B.1 PROOF THAT THE EQUIVALENT GRADIENT IS LOW-RANK

Lemma. Assume B ∈ Rm×r, A ∈ Rr×n and gB ∈ Rm×r, gA ∈ Rr×n represent matrices
and their corresponding gradients in LoRA optimization. We demonstrate that the equivalent
gradient:

g̃ = sgBA+ sBgA, (16)
where s > 0 is the scaling factor, has matrix rank at most 2r.

Proof. Since matrix rank satisfies the property of subadditivity, we have:

rank(g̃) = rank(sgBA+ sBgA) ≤ rank(gBA) + rank(BgA). (17)

Furthermore, for any matrices A and B, rank(AB) ≤ min(rank(A), rank(B)). Therefore, we
can bound the ranks as follows:

rank(gBA) ≤ min(rank(gB), rank(A)) ≤ r (18)

rank(BgA) ≤ min(rank(B), rank(gA)) ≤ r (19)
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Thus, in conclusion, the equivalent gradient has a rank of at most 2r:

rank(g̃) ≤ rank(gBA) + rank(BgA) (20)

≤ min(rank(gB), rank(A)) + min(rank(B), rank(gA)) (21)
≤ 2r. (22)

B.2 PROOF OF THEOREM 2.1

Theorem. Assume matrices B ∈ Rm×r, A ∈ Rr×n are both full rank. For the objective
mingA,gB ∥g̃ − g∥2F , the solutions are given by:

gA =
1

s
(BTB)−1BT g +XA =

1

s2
(BTB)−1gAlora +XA (23)

gB =
1

s
[I −B(BTB)−1BT ]gAT (AAT )−1 −BX (24)

=
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1 −BX. (25)

Here, X ∈ Rr×r represents an arbitrary matrix.

Proof. For simplicity, we denote L = ∥sBgA + sgBA − g∥2F . To solve the optimization problem,
we need to satisfy the following conditions:

∂L

∂gA
= 2sBT (sBgA + sgBA− g) = 0 (26)

∂L

∂gB
= 2(sBgA + sgBA− g)sAT = 0 (27)

Given that matrices A and B are full-rank, AAT and BTB are invertible. And from Equation (27),
we derive:

gB =
1

s
gAT (AAT )−1 −BgAAT (AAT )−1. (28)

Substituting this into Equation (26), we obtain the following linear equation:

gA[I −AT (AAT )−1A] =
1

s
(BTB)−1BT g[I −AT (AAT )−1A]. (29)

Here, we notice that the matrix P = I −AT (AAT )−1A is a projection matrix with rank n− r. The
solution to the linear equation (29) is:

gA =
1

s
(BTB)−1BT g +XA, (30)

where X ∈ Rr×r represents an arbitrary matrix. We take the solution (30) into Equation (28), we
derive:

gB =
1

s
[I −B(BTB)−1BT ]gAT (AAT )−1 −BX (31)

While we have obtained closed-form solutions for gA and gB , these solutions explicitly depend on
the gradient of the matrix W , i.e., g, which is undesirable since g is unknown during LoRA opti-
mization. Fortunately, the solutions can be transformed into the forms of the gradients of standard
LoRA, where the gradients are:

gAlora = sBT g, gBlora = sgAT . (32)
Therefore, the solutions to the optimization problem can be written as:

gA =
1

s2
(BTB)−1gAlora +XA, (33)

gB =
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1 −BX. (34)

In our method, we perform the standard forward and backward passes of LoRA, then adjust the
gradients of A and B using Solutions (33) and (34), and subsequently update them.
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B.3 PROOF OF THEOREM 2.2

Theorem. When updating matrices A and B using the closed-form solution from Theo-
rem 2.1, we proceed as follows:

A← A− γgA, (35)

B ← B − γgB , (36)

where γ ≥ 0 denotes the learning rate. Our method ensures a decrease in the loss, akin to
the standard gradient descent algorithm, expressed by:

dL = −γ{⟨gAlora,
1

s2
(BTB)−1gAlora⟩F+⟨gBlora,

1

s2
[I−B(BTB)−1BT ]gBlora(AAT )−1⟩F } ≤ 0

(37)

Proof. In summary, the proof of Theorem 2.2 is divided into two distinct parts. To begin with, we
demonstrate that dL can be expressed in the following form:

dL = −γ{⟨gAlora,
1

s2
(BTB)−1gAlora⟩F + ⟨gBlora,

1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F }. (38)

In the second part, we prove that this expression for dL is always less than or equal to zero: dL ≤ 0.

Part I. Therefore, in this part, we first prove Equation (38). During the optimization process, the
differential change in the loss function, dL, can be expressed in terms of the differentials dA and
dB as follows:

dL = ⟨∂L
∂A

,dA⟩F + ⟨ ∂L
∂B

,dB⟩F . (39)

From Equation (35) and (36), we can derive that:

dA = −γgA, dB = −γgB . (40)

Given that ∂L
∂A = gAlora and ∂L

∂B = gBlora, it follows that:

dL = −γ(⟨gAlora, gA⟩F + ⟨gBlora, gB⟩F )

= −γ(⟨gAlora,
1

s2
(BTB)−1gAlora⟩F + ⟨gBlora,

1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F

+ ⟨gAlora, XA⟩F − ⟨gBlora, BX⟩F ).

(41)

And we have the following equation:

⟨gAlora, XA⟩F − ⟨gBlora, BX⟩F
=⟨gAloraAT , X⟩F − ⟨BT gBlora, X⟩F
=⟨gAloraAT −BT gBlora, X⟩F
=⟨(sBT g)AT −BT (sgAT ), X⟩F
=0.

(42)

Therefore, we have:

dL = −γ{⟨gAlora,
1

s2
(BTB)−1gAlora⟩F + ⟨gBlora,

1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F }. (43)

Part II. In this part, we aim to prove dL ≤ 0. Given that the learning rate γ > 0, it suffices to show
the following inequalities:

⟨gAlora,
1

s2
(BTB)−1gAlora⟩F ≥ 0, (44)

⟨gBlora,
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F ≥ 0. (45)

By proving these inequalities, we can establish that dL ≤ 0 as derived from Equation (38).
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① Proof of ⟨gAlora, 1
s2 (B

TB)−1gAlora⟩F ≥ 0.

To begin with, we need to show that (BTB)−1 is positive definite. To establish this, it is sufficient
to show that BTB is positive definite, as the inverse of a positive definite matrix is also positive
definite. To achieve this, consider any non-zero vector x, and noting that B is full-rank, we have,

⟨x,BTBx⟩ = ⟨Bx,Bx⟩ = ∥Bx∥2 > 0. (46)
This shows that BTB is positive definite. Consequently, (BTB)−1 is positive definite as well. Since
(BTB)−1 is positive definite, and thus we can apply Cholesky decomposition, and (BTB)−1 =
UUT . With this, we have,

⟨gAlora,
1

s2
(BTB)−1gAlora⟩F =

1

s2
⟨gAlora, UUT gAlora⟩F

=
1

s2
⟨UT gAlora, U

T gAlora⟩F

=
1

s2
∥UT gAlora∥2F ≥ 0

(47)

② Proof of ⟨gBlora, 1
s2 [I −B(BTB)−1BT ]gBlora(AAT )−1⟩F ≥ 0.

Similarly, we can prove that matrix (AAT )−1 is positive-definite. By employing Cholesky decom-
position, we express (AAT )−1 = UUT , where U is a lower-triangle matrix. Subsequently, we
define P = I − B(BTB)−1BT . It can be shown that P 2 = P and P is symmetry, indicating that
P is a projection matrix. Consequently, the eigenvalues of P are either 0 or 1, which implies that P
is positive semi-definite. Utilizing the Cholesky decomposition, we derive that P = V V T , where
V is a lower-triangle matrix. Finally, we have:

⟨gBlora,
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F =

1

s2
⟨gBlora, V V T gBloraUUT ⟩F

=
1

s2
⟨V T gBloraU, V

T gBloraU⟩F

=
1

s2
∥V T gBloraU∥2F ≥ 0

(48)

In summary, based on the above proofs, we have demonstrated that:

dL = −γ{⟨gAlora,
1

s2
(BTB)−1gAlora⟩F︸ ︷︷ ︸

≥ 0 as shown in ①

+ ⟨gBlora,
1

s2
[I −B(BTB)−1BT ]gBlora(AAT )−1⟩F︸ ︷︷ ︸

≥ 0 as shown in ②

} ≤ 0

(49)

B.4 PROOF OF THEOREM 2.3

Theorem. Consider the optimization problem,

min
X
∥gA − gAlora∥2F + ∥gB − gBlora∥2F , (50)

where gA and gB are the optimal solutions as stated in Theorem 2.1. The optimal X can be
determined by solving the Sylvester equation:

BTBX +XAAT = − 1

s2
(BTB)−1gAloraA

T , (51)

which has a unique solution X provided that BTB and −AAT do not have any shared
eigenvalues.

Proof. For simplicity, we denote L = ∥gA − gAlora∥2F + ∥gB − gBlora∥2F . To solve the optimization
problem, we need to satisfy the following conditions:

∂L

∂X
= 0. (52)
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Since gA and gB are solutions in Theorem 2.1 and gAlora = sBT g and gBlora = sgAT , we obtain
that:

2(gA − gAlora)A
T − 2BT (gB − gBlora) = 0,

⇒ gAAT −BT gB = gAloraA
T −BT gBlora,

⇒ BTBX +XAAT = − 1

s2
(BTB)−1gAloraA

T ,

(53)

which is a Sylvester equation. This equation has a unique solution for X if and only if BTB and
−AAT have no shared eigenvalues.

C OPTIMIZATION ALGORITHMS

In this section, we present the pseudo-codes for implementing our LoRA-Pro method using the
SGD (Sutskever et al., 2013) and AdamW (Loshchilov & Hutter, 2019) optimizers. The details are
provided in Algorithm 1 and Algorithm 2, respectively.

LoRA-Pro with SGD optimizer. In the standard SGD algorithm, as illustrated in Algorithm 1, all
we need to do is adjusting the gradients of matrices A and B with the solutions in Theorem 2.1.

Algorithm 1 LoRA-Pro with SGD optimizer

Require: Given initial learning rate γ, scaling factor s.
1: Initialize time step t← 0, low-rank matrices A0 ∈ Rr×n and B0 ∈ Rm×r

2: repeat
3: t← t+ 1
4: gAlora, g

B
lora ← SelectBatch(At−1, Bt−1) ▷ Select batch and return the corresponding

gradients
5: A,B ← At−1, Bt−1 ▷ Obtain the low-rank matrices A and B
6: X ← SolveSylvester(BTBX +XAAT = − 1

s2 (B
TB)−1gAloraA

T ) ▷ Compute X by solving
the sylvester equation

7: gA = 1
s2 (B

TB)−1gAlora +XA ▷ Adjust the gradients of LoRA with Theorem 2.1
8: gB = 1

s2 [I −B(BTB)−1BT ]gBlora(AAT )−1 −BX

9: At ← At−1 − γgA

10: Bt ← Bt−1 − γgB

11: until stopping criterion is met
12: return optimized parameters At and Bt

LoRA-Pro with AdamW optimizer. In AdamW optimizer, the implementation becomes more
complex. We aim to closely approximate full fine-tuning during optimization. Several modifications
are necessary. Firstly, in order to mimic full fine-tuning, after adjusting the gradients of matrices A
and B, we need to compute the equivalent gradient,

g̃ = sgBA+ sBgA. (54)

Subsequently, we calculate the first and second moments of this equivalent gradient to derive the
corresponding AdamW gradient, g̃AdamW . Secondly, we determine the gradients with respect to
matrices A and B as follows:

g̃A = sBT g̃AdamW , g̃B = sg̃AdamWAT . (55)

Thirdly, the weight decay process must be adjusted. In line with full fine-tuning, the weight decay
is given by:

W ← (1− γλ)(W0 + sBA). (56)

This can be decomposed into:

W0 ← (1− γλ)W0, B ←
√

1− γλB, A←
√
1− γλA (57)
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Algorithm 2 LoRA-Pro with AdamW optimizer

Require: Given initial learning rate γ, scaling factor s, original weight matrix W0 ∈ Rm×n, and
β1 = 0.9, β2 = 0.999, ϵ = 10−8, λ ∈ R

1: Initialize time step t ← 0, low-rank matrices A0 ∈ Rr×n and B0 ∈ Rm×r, first momentum
m0 ∈ Rm×n, second momentum vt ∈ Rm×n

2: repeat
3: t← t+ 1
4: gAlora, g

B
lora ← SelectBatch(At−1, Bt−1) ▷ Select batch and return the corresponding

gradients
5: A,B ← At−1, Bt−1 ▷ Obtain the low-rank matrices A and B
6: X ← 0 ▷ X’s value does not affect equivalent gradient
7: gA = 1

s2 (B
TB)−1gAlora +XA ▷ Adjust the gradients of LoRA with Theorem 2.1

8: gB = 1
s2 [I −B(BTB)−1BT ]gBlora(AAT )−1 −BX

9: g̃ ← sgBA+ sBgA ▷ Compute equivalent gradient
10: mt ← β1mt−1 + (1− β1)g̃
11: vt ← β2vt−1 + (1− β2)g̃

2

12: m̂t ← mt

1−βt
1

13: v̂t ← vt
1−βt

2

14: g̃AdamW ← m̂t√
v̂t+ϵ

15: g̃Alora ← sBT g̃AdamW

16: g̃Blora ← sg̃AdamWAT

17: X ← SolveSylvester(BTBX +XAAT = − 1
s2 (B

TB)−1g̃AloraA
T ) ▷ Compute X by solving

the sylvester equation
18: g̃A = 1

s2 (B
TB)−1g̃Alora +XA ▷ Adjust the gradients of LoRA with Theorem 2.1

19: g̃B = 1
s2 [I −B(BTB)−1BT ]g̃Blora(AAT )−1 −BX

20: A←
√
1− γλA ▷ Weight Decay

21: B ←
√
1− γλB

22: W0 ← (1− γλ)W0

23: At ← At−1 − γg̃A

24: Bt ← Bt−1 − γg̃B

25: until stopping criterion is met
26: return optimized parameters At and Bt
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D ADDITIONAL EXPERIMENTS

D.1 ABLATION STUDY OF THE SELECTION OF X

Based on Theorem 2.1, in LoRA-Pro, the matrix X can be chosen arbitrarily. While its selection
does not affect the equivalent gradient, it does influence the updates of matrices A and B in LoRA.
Here, we conduct an ablation study on the choice of X .

We compare three possible values for X . 1) Zero solution: In this simplest case, we set X =
0. 2) Sylvester solution: Here, X is obtained by solving the Sylvester equation, as described in
Theorem 2.3. 3) Symmetry solution: This approach aims to balance the contributions of both terms
in the equation g̃ = sgBA + sBgA, enforcing the condition gBA = BgA. For the symmetry
solution, solving for X yields:

X = − 1

2s
(BTB)−1BT gA(ATA)−1 = − 1

2s2
(BTB)−1BT gBlora(A

TA)−1. (58)

The comparison of the selection of X is presented in Table 6. As shown in the table, the choice of X
significantly impacts LoRA-Pro’s performance, particularly evident in the GSM8K dataset. Differ-
ent X selections influence the subspaces of A and B, ultimately affecting the optimization process
described in Theorem 2.1. Our experiments demonstrate that the Sylvester solution consistently
outperforms both the zero and symmetry solutions across all three evaluation tasks. We attribute
the superior performance of the Sylvester solution to its ability to select subspaces for A and B that
enable faster gradient descent (i.e., maximizing the approximation between the modified gradients
gA, gB and the LoRA gradients gAlora, g

B
lorag).

Table 6: Ablation study on the selection of different X in LoRA-Pro.

Choice of X MT-Bench GSM8K HumanEval

Zero 5.58±0.14 31.74±0.69 17.28±0.35
Symmetry (Eq. (58)) 5.71±0.11 42.81±0.62 17.88±0.35
Sylvester (Thm. 2.3) 5.72±0.03 57.57±0.50 22.97±0.35

D.2 VISUALIZATION OF DIFFERENCES BETWEEN EQUIVALENT GRADIENTS AND FULL
GRADIENTS

In this section, we fine-tune Llama-2-7B on the MetaMathQA100k dataset and visualize the dis-
crepancies between the equivalent gradients of LoRA and LoRA-Pro and the full gradients during
training, i.e., the differences before and after gradient adjustments. We present visualizations for
different optimization modules, including the Q, K, V, O, Up, Down, and Gate layers, and provide
results for these modules across the shallow (1), medium (15), and deep (31) layers of Llama-2-7B.

The results are shown in Figure 4. From the figure, we can draw the following conclusions:

• After gradient adjustments in LoRA-Pro, we observe a significant reduction in the distance
between the equivalent gradients and the full gradients.

• In certain layers, the discrepancy between LoRA’s equivalent gradients and the full gradi-
ents continues to increase (e.g., Layer 1 O, Up, Gate projections; Layer 15 Up and Gate
projections; and Layer 31 O projection). However, in these layers, the discrepancy for
LoRA-Pro remains stable, indicating that LoRA-Pro can consistently align with the full
gradients during training, preventing the model from settling into sub-optimal solutions.

• In deep layers, the discrepancy between equivalent gradients and full gradients decreases
as training progresses, whereas in shallow and medium layers, the discrepancy first in-
creases and then stabilizes. The cause of this phenomenon is not yet clear, and we plan to
investigate it further in future research.

These findings highlight that LoRA-Pro effectively reduces the distance between LoRA and full
gradients during training and ensures continuous alignment with full gradients, underscoring the
efficacy of LoRA-Pro.
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Figure 4: Visualization of the differences between the equivalent gradients of LoRA, LoRA-Pro, and
the full-parameter gradients during training, i.e., ∥g̃−g∥F . The rows illustrate the differences across
various modules, including Q, K, V, O, Up, Down, and Gate. The columns show the differences at
different depths, categorized as shallow (1), medium (15), and deep layers (31).
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D.3 EXPERIMENTS RESULTS WITH DIFFERENT LEARNING RATES

To demonstrate the effectiveness of LoRA-Pro, we evaluated its performance on GSM8K under
learning rates of 1e-5 and 5e-5, comparing it with LoRA and LoRA-GA. The results, presented in
Table 7, show that LoRA-Pro maintains its advantages under both learning rates, highlighting its
robustness to variations in learning rate.

Table 7: Performance comparison of LoRA, LoRA-GA, LoRA-Pro on GSM8K with learning rates
1e-5, 2e-5, and 5e-5.

GSM8K LoRA LoRA-GA LoRA-Pro

1e-5 36.65±0.82 50.25±0.62 56.48±0.27
2e-5 42.08±0.04 53.60±0.30 57.57±0.50
5e-5 46.41±0.16 52.89±0.19 58.76±1.86

D.4 ADDITIONAL EXPERIMENTS ON LATEST MODELS

Table 8: Performance comparison of LoRA, LoRA-GA, and LoRA-Pro with Llama-2-7B and
Llama-3.1-8B.

GSM8K LoRA LoRA-GA LoRA-Pro

Llama-2-7B 42.08±0.04 53.60±0.30 54.23±0.79
Llama-3.1-8B 71.04±0.26 72.20±1.15 75.49±0.42

To further demonstrate the effectiveness of LoRA-Pro, we conducted additional experiments using
the latest model, LLaMA-3.1-8B (Dubey et al., 2024). We fine-tuned the model using these three
methods,LoRA, LoRA-GA, and LoRA-Pro,on the MetaMath100k dataset and evaluated its perfor-
mance on the GSM8k dataset. All results are averaged over three different random seeds.

As shown in Table 8, LoRA-Pro demonstrates a clear advantage over both LoRA and LoRA-GA
when applied to the LLaMA-3.1-8B model, further highlighting its effectiveness.
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