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A STABLE CASCADE: SCALING WÜRSTCHEN FOR STATE-OF-THE-ART
PERFORMANCE

In this Section, we will briefly discuss a larger version of our Würstchen model, which we will refer
to as Würstchen v3 and is publicly released as Stable Cascade. This model is a scaled version of our
original architecture, featuring a 3B parameter Stage B and a 3.6B parameter Stage C. The training
time increased as a result to approximately 64,000 GPU hours for both stages combined, which is
still substantially more compute efficient compared to Stable Diffusion 1.4 and 2.1, as illustrated
earlier in this work. The model was trained on a further cleaned internal dataset. The performance
improved significantly, which we quantified in two comparative preference studies. In this study,
we compared our model against Playground v2 Li et al. (2024), SDXL (Turbo) Sauer et al. (2023),
SDXL Podell et al. (2024) as well as our original Würstchen model.

Experimental setup The user study was conducted with n = 50 participants. We sample 90
prompts from PartiPrompts and 38 additional prompts from JourneyDB Sun et al. (2024), to reflect
prompts in a typical use-case for the models. The prompts were randomly selected. Each participant
was instructed to select a preference between two images based on the same prompt, following a
similar methodology described in Appendix D. The experiment was repeated for SDXL, SDXL
(Turbo), Playground v2 as well as the original Würstchen model. The aforementioned models were
always compared against Würstchen v3. The results of this study can be found in Figure 6 (a). Images
of Würstchen v3 were created with 10 sampling steps in Stabe B and 20 in Stage C. SDXL and
PlaygroundV2 use 50 sampling steps to generate each image. SDXL Turbo used 1 diffusion step.
The experiment was repeated one more time. In this scenario the participants were instructed to select
a preference based on the alignment with the text prompt used for generating the image. The results
of this study are shown in Figure 6 (b).

Results Würstchen v3 outperformed all architectures in terms of prompt alignment except for
Playground V2. In terms of user preference, our larger model was outperforming the original model
as well as both SDXL variants by a significant margin (see Figure 6), while being on-par with
Playground v2. This is especially interesting, since our original model was significantly outperformed
by SDXL, highlighting the dramatic improvement through scale. Based on these results, we conclude
that our model is fully capable of scaling to improve generative qualities of the model to the level of
recent SOTA-models, while maintaining its training efficiency demonstrated in the main part of the
paper.

(a) Image Quality compared other SOTA-models.

(b) Prompt Alignment compared other SOTA-models.

Figure 6: Würstchen v3 outperformed other freely available SOTA-models in image quality, reaching
comparable prompt alignment and image quality to Playground v2. Our model significantly outper-
forms the smaller original version of our model as well as both SDXL variants.
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B EXTENDED EVALUATION METRICS

Table 3: Evaluation of the CLIP score in standard settings of various models. Higher values are better.

dataset Würstchen DF-GAN GALIP LDM SD 1.4 SD 2.1 SD XL
PartiPrompts 26.93 13.52 26.65 23.97 26.91 26.94 27.82

COCO 25.65 19.30 27.01 24.10 26.49 26.29 26.65
COCO (long context) 23.01 19.41 23.83 19.51 22.96 23.04 23.81

C ROBUSTNESS ASSESSMENT OF FRÉCHET INCEPTION DISTANCE

The Fréchet Inception Distance (FID) is commonly used to evaluate the fidelity of text-conditional
image generators. For this, a large quantity (e.g., 30k) of prompts are retrieved from a dataset that was
not used for the training of the system under test. The original images corresponding to those prompts
as well as the generated images are then fed to an independent model (typically Inception V3) that
was trained on another independent dataset (typically ImageNet). As this model was typically trained
on a reduced input resolution (e.g., 299x299 in the case of Inception v3), resampling of the input
images is necessary. The FID is calculated from the first and second order statistics of the features
found as output of the feature extractor of that model.

Usage of a metric, however, also implies knowledge of eventual misbehaviors of said metric, hence
we compare in this section the reaction of the FID towards manipulations that we assumed could be
assumed not to be linked towards strong changes in image fidelity. In particular, we stored the images
using various quality settings for JPEG compression, used different methods for resampling of the
images and performed mild changes in image color, brightness and contrast.

As shown in Table 4, while changes that are part of standard image augmentation like mild changes
in brightness and contrast do not impact the FID significantly, a moderate JPEG compression as well
as just a change of resampling do impact the metric strongly. In particular, a JPEG compression with
70% quality, which impedes the image quality only to a small degree, yields an FID score in the
range of our results, without involving any image generation.

Table 4: Assessment of Fréchet Inception Distance (FID) following minor image manipulations that
are not expected to significantly alter the fidelity and composition of the images.

Manipulation Configuration FID @ COCO 30k FID @ CelebA-HQ

JPEG compression

quality=95% 0.268 0.560
quality=90% 1.713 2.381
quality=80% 6.658 6.291
quality=70% 10.469 9.156
quality=60% 13.274 11.617
quality=50% 15.129 13.519

Resampling NN interpolation 5.239 3.705
bilinear interpolation 0.330 0.569

Color change

8-bit color palette 27.989 31.289
brightness +10% 0.085 0.112
brightness -10% 0.054 0.101
contrast +10% 0.051 0.077
contrast -10% 0.072 0.098
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D METHDOLOGY OF THE HUMAN PREFERENCE EXPERIMENTS

Used Models: The studies were conducted with images generated with SD 2.1 and Würstchen.

Data Displayed to User: We generated 30,000 images based on the COCO-validation set prompts
for each model for the first study and 1,633 images each based on Partiprompts for the second study.
All images were scanned manually for harmful and graphic and pornographic content.

Setup: Both studies are conducted online. Participants are presented an image generated from
both models using the same prompt. The prompt is also displayed. Neither the model that generated
the images nor the number of models used for the image generation as a whole is known and never
displayed to the participants. The displayed images are randomly chosen every time and displayed in
a random order.

Figure 7: A screenshot from the human preference study. Users can click on either image or the
button below to select a preference.

Participants can answer that they prefer the left, right image or perceive both as equal. participants
are not paid and are only given the instruction to select images based on the prompt and their personal
taste. The second study, which was conducted on Parti-prompts, also urged the participants to
annotate 50 pairs to avoid a long-tailed turnout, which happened in the first study. For gamification
reasons, a leaderboard was added which allows users which achieved a high number of votes to enter
a personal alias.

Participation: Based on the randomly generated pseudonyms, in total of 90 unique users partici-
pated in both studies combined, 33 of which participated exclusively in the first study using images
generated from COCO-prompts, 58 participated exclusively in the second study, which used images
generated from Parti-prompts, 3 users participated in both studies.

Over both datasets, a total of 4026 comparisons were evaluated. 2490 comparison were done on
MS-COCO generated images and 1604 on images generated from Parti-prompt captions.

Participants received no compensation of any form. Participation was pseudonymous.
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E HOW ARE STAGE B AND C SHARING THEIR WORKLOAD?

In our work we view Stage C as the primary component of the model, when it comes to generating
images from text. However, this is not immediately clear from the architecture as Stage B and C
are both diffusion models and thus have similar capacities. In this section, we are going to briefly
explore how Stage B and Stage C interact to produce a human-readable image. By doing so, we
demonstrate that Stage C is responsible for the content of the image, while Stage B acts functionally
as a super-resolution model, adding details and increasing the resolution of the latents, but ultimately
not changing the image in a semantically meaningful way. To investigate, we trained a small (3.9M
parameter) decoder to reconstruct the images from the latents produced by Stage C and compared the
reconstructions with reconstructions from Stage B conditioned on Stage C. Since the conditioning on
the Semantic Compressor is randomly dropped during Stage B training, we also evaluate Stage B
without the image condition of Stage C. This also allows us asses the generative qualities of Stage
B independently of Stage C. The results in Figures 8, 9, 10 and 11 show that the images generated
by Stage C are very similar to the images generated from Stage B and C combined. From the
visual inspection we can observe that the main difference are minor details as well as a reduction in
blurriness. On the other hand, Stage B without Stage C conditioning fails to generate recognizable
images. Most importantly, Stage B tends to generate mostly texture patterns and high-frequency
features. From this, we confirm that Stage C is acting as the image generator, while Stage B takes the
role of a latent-diffusion-based super-resolution model. This is further supported by the fact that short
experiments conducted on alternative training regimes suggest that the text conditioning on Stage B
does not enhance the quality of the images and could be dropped in future generations of our model.

The Decoder Architecture: This decoder is very simple, to mitigate the influence on the latents as
little as possible, consisting of 4 stages, composed of 2 convolutional layers. the first downsampling
layer is 2⇥2 convolution with stride size 2. The second convolution is a 3⇥3 convolution with stride
size 1 and GELU-activation function and batch norm. The first stage has 512 channels, consecutive
stages half the channel width. A final 1⇥ 1 convolution squeezes the channels to 3 color channels.
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(a) Only Stage B (b) Only Stage C (c) Stage B and C

Figure 8: Caption: Macro photography of a tiny businessman.

(a) Only Stage B (b) Only Stage C (c) Stage B and C

Figure 9: Caption: Dramatic photography of a frog evolving into a crab, crab legs, macro photography.

(a) Only Stage B (b) Only Stage C (c) Stage B and C

Figure 10: Caption: Cute woman smiling wearing a Sailor Moon cosplay.

(a) Only Stage B (b) Only Stage C (c) Stage B and C

Figure 11: Caption: a black man with a t-shirt with the letter W

(a) Only Stage B (b) Only Stage C (c) Stage B and C

Figure 12: Caption: Cute cat, big eyes pixar style.
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F A DETAILED LOOK AT THE NEURAL ARCHITECTURES

F.1 STAGE A

Neural Architecture: The VQGAN is composed of an encoder and decoder with 2 stages each,
separated with a downsampling or upsampling layer with a 4 ⇥ 4-kernel and stride size 2. The
encoder starts, and the decoder ends with a pixel shuffle operation with a scale factor of 2. In the
encoder, each stage consists of a single ConvNeXt blocks (Liu et al., 2022b) with 384 input channels
and 1536 embedding channels. the final layer of the encoders is a 1⇥ 1 convolution followed by a
BatchNorm-layer, reducing the number of channels to the dimensionality of the encoding layer (4).
The decoder reverses this operation with a similar combination of layers. The decoding layer uses 16
blocks in the first stage and 1 block in the second stage. All blocks have 384 input channels and 1536
embedding channels.

Training Details: The model is trained in a single run with 500,000 iterations using the AdamW
optimizer with a learning rate of 1e� 4 and a batch size of 256. The model is fed with 256⇥ 256
pixel crops from images taken from the deduplicated subsets of the improved-aesthetic LAION-5B
(Schuhmann et al., 2022) dataset, which were previously resized to 512 ⇥ 512 images. As we
anticipate the removal of the quantization, we randomly drop the quantization during training with a
drop-chance 10%. For training we use three distinct losses. Mean Squared Error (MSE), Adverserial
Loss (AL) and Perceptual Loss (PL). for the first 10.000 iterations we use the loss weights of (1.0, 0.0,
0.1) ofr MSE, AL and PL respectively. We activate the AL after 10,000 training steps by increasing
the weight to 0.01.

F.2 STAGE B

Neural Architecture: Stage B is a U-Net architecture with 4 stages in the encoder and decoder
on the latents of the (unquantized) latent of the Stage A VQGAN. The stages have a channel width
of 320, 640, 1280 and 1280 respectively. Each stage starts with a single convolutional layer with a
2 ⇥ 2 kernel and a stride size of 2 acting as downsampling layer. The stages consist of a number
of building blocks. Except for the first stage, a building block consists of a ConvNeXt block (Liu
et al., 2022b), a time-step block, applying a linear conditioning (Rombach et al., 2022) on the latents
and a cross-attention block for conditioning on text-embeddings and image-embeddings. The first
stage omits the cross-attention for conditioning on text and images. GlobalResponseNorm and
GELU activation functions are used for normalization and as activation functions respectively. The
cross-attention mechanisms of each stage have a different number of attention-heads: -, 10, 20, 20 (as
the first stage is only conditioned on time). For all stages with cross-attention, the latents of Semantic
Compressor are also concatenated to each residual block before the channelwise-convolution is
applied. To fit the respective feature-map size, bicubic interpolation is used to resize the latent of the
Semantic Compressor. The encoder and decoder stages have 4, 4, 14 and 4 blocks respectively. The
clip-embeddings have a dimensionality of 1024. The Semantic Compressor produces latents with 16
channels.

The Semantic Compressor is composed of an EfficientNetV2 S (Tan & Le, 2021) backbone. The
final global-pooling and classification-head is replaced by a 1 ⇥ 1-convolution with stride size 1,
compressing the channels down to 16. It is worth noting that EfficientNetV2 S is dropped after the
training of Stage B and C is complete, as it is replaced by Stage C during inference time.

Training Details: The model is trained using the AdamW optimizer (Loshchilov & Hutter, 2019)
with a learning rate of 1e�4 using a linear warm-up schedule for 10k steps. In total, the model is
trained for 457,000 iterations with an input resolution of 512 ⇥ 512 and a batch size of 512. The
model is trained for an additional 300,000 iterations with an input resolution of 1024⇥ 1024 and a
batch size of 128. The resolutions described in this work are the image sizes fed into the VQGAN for
encoding. The Semantic Compressor is fed an input resolution of 384⇥ 384 pixels and 768⇥ 768
during these two phases of training respectively. The training time and compute budget listed in
the paper reflects this entire training process. All images fed into the semantic compressor are
normalized using µ = (0.485, 0.456, 0.406) and � = (0.229, 0.224, 0.225). The model is trained on
a deduplicated subsets of the improved-aesthetic LAION-5B (Schuhmann et al., 2022) dataset.
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F.3 STAGE C

Neural Architecture: Stage C consists of a sequence of 16 building blocks. Each building block is
composed of ConvNeXt block (Liu et al., 2022b) a time-conditioning block and a cross-attention
block for text-conditioning, similar to Stage B. Text-Conditioning is applied from an unpooled
CLIP-H model. Text-embedding has a dimensionality of 1024, each cross-attention block has 16
heads. The width of the network is 1280 channels.

The Semantic Compressor is composed of an EfficientNetV2 S (Tan & Le, 2021) backbone trained
during Stage B training and otherwise unchanged. It is worth noting that EfficientNetV2 S is dropped
after the training of Stage B and C is complete. During inference time, the output of Stage C instead
used to condition Stage B, replacing the Semantic Compressor entirely. The Semantic Compressor is
not trained during Stage B training.

Training Details: The model is trained a total of 4 consecutive times using the AdamW optimizer
with a learning rate of 1e� 4. The first three consecutive trainings are conducted on a deduplicated
subsets of the improved-aesthetic LAION-5B (Schuhmann et al., 2022) dataset. The final training
is conducted on the dataset but further filtered by aesthetical artworks. The images are fed into the
frozen Semantic Compressor to produce latents of a specific resolution. We provide the resolution of
the latents alongside the resolution fed into the Semantic Compressor. The preprocessing done on
images of the compressor is identical to Stage B.

The first training is conducted for 500,000 iterations on 12 ⇥ 12 latents, which corresponds to an
384 ⇥ 384 input resolution for the semantic compressor using a batch size of 1536. The second
training is conducted for an additional 364,000 iterations on 24 ⇥ 24 latents, corresponding to
768 ⇥ 768 images being fed into the Semantic Compressor, using a batch size of 1536. The third
training is run for only 4,000 steps and is done to adapt the model to various aspect ratios. The aspect
ratio is randomized uniformly for each batch of 768 images to one of the three following values:
768 ⇥ 1280, 1280 ⇥ 768 and 768 ⇥ 768. The fourth and final training is designed to improve the
aesthetical quality of images and is conducted for another 50,000 iterations using a batch size of 384
and a resolution of 768⇥ 768 (24⇥ 24 latents).

The final model is a 50:50 interpolation between the weights after the 3rd training and the final
training run. This allows the model to generate a blend of aesthetic/artistic and realistic images.
However, we open source the two models this interpolation is based on besides this final model.

F.4 BASELINE LDM

Neural Architecture: The LDM is a U-Net architecture with 4 stages in the encoder and decoder
on the latents of the VAE used by Stable-Diffusion 1.4. The stages have a channel width of 320, 640,
1280 and 1280 respectively. Each stage starts with a single convolutional layer with a 2⇥ 2 kernel
and a stride size of 2 acting as downsampling layer. The stages consist of a number of building blocks.
A building block consists of a ConvNeXt block (He et al., 2016) and two cross attention blocks
for conditioning on time and text-embeddings, using GlobalResponseNorm and GELU activation
functions. The first cross-attention in a building block conditions on the time step t, while the second
one on the text embeddings ctext. The cross-attention mechanisms of each stage have a different
number of attention-heads: 5, 10, 20, 20. The encoder stages have 2, 4, 14 and 4 blocks respectively,
while the corresponding decoder stages have 5, 15, 5 and 3 blocks. Like for the other models, the
clip-embeddings have a dimensionality of 768. Dropout is applied with a probability of 10% on a
features of the text and image embeddings as well as the 3⇥ 3-convolution in the ConvNeXt-block.

Training Setup: The model is trained using the AdamW optimizer (Loshchilov & Hutter, 2019)
with a learning rate of 1e�4 using a linear warm-up schedule for 10k steps and a batch size of 1280.
The training is conducted for approximatly 25,000 GPU hours, which roughly corresponds to 1.5
million training steps.

The model is trained on subsets of the improved-aesthetic LAION-5B (Schuhmann et al., 2022)
dataset. We use a dropout of 5% on the CLIP-H-text embeddings.
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G CLEANING PROCEDURES FOR THE LAION-5B DATASET

While the LAION-family of datasets by Schuhmann et al. (2022) have established themselves as
the largest publicly available training dataset for large multimodal models, it has been criticized for
containing potentially harmful and problematic content Gokaslan et al. (2023). For this reason, we
will elaborate in greater detail on the dataset that was available to us and how we applied aggressive
filtering to improve the overall dataset quality.

The version of LAION-5B available to the authors was vigorously de-duplicated and pre-filtered
for harmful, NSFW (porn and violence) and watermarked content using binary image-classifiers
(watermark filtering), CLIP models (NSFW, aesthetic properties) and black-lists for URLs and words,
reducing the raw dataset down to 699M images (12.05% of the original dataset). While significantly
reduced it is beyond our capacity to clean this quantity of images manually. To further improve the
quality of the dataset, we lowered the filter thresholds of the classifier and additionally removed all
images below a resolution of 512⇥ 512, as higher resolution images are often associated with higher
quality. This second filtering leaves a dataset of 103 million images. While still significantly larger
than datasets like ImageNet1k Russakovsky et al. (2015), we effectively reduced the dataset to 1.78%
of the original 5.8 billion image-text pairs of LAION-5B (see Table 5).

Table 5: To ensure the high data quality, we conducted an extensive filtration process on the LAION-
5B dataset. Our preprocessed dataset already contained only 12.06% of the total data of LAION5B.
From these remaining 699M images points only 103M remain after aggresive filtering.

dataset filter image-text pairs % of total data
LAION-5B (unprocessed) 5.8B 100.00%
LAION-5B (ours, preprocessed) 699M 12.06%

aesthetics 372M 6.41%
image size 511M 8.81%
NSFW 1.5M 0.025%
total filtered 596M 10.28%

LAION-5B (ours, filtered, used for training) 103M 1.78%

We acknowledge that this filtering is based on automated algorithms and due to the size of the dataset,
we cannot guarantee the absence of false negatives. However, given the aggressive filtering, we are
confident that the recall of our filter is high enough to substantially reduce the problematic content
present in the data.
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H SUBGROUP ANALYSIS ON HUMAN PREFERENCE IN PARTIPROMPTS

To further analyze the generative quality of our model, we grouped the data gathered from the
experiments on Partiprimpts described in Appendix D and discussed in Section 4.2. Partiprompt’s
captions can be grouped by their challenge and category, allowing for a more detailed analysis of
Würstchen capabilities compared to Stable Diffusion 2.1

The results in Figures 13 and 14 indicate that Würstchen matches or outperforms Stable Diffusion
2.1 in most types of challenges and categories. Exception to this are indoor scenes, produce and
plants (Figure 13 g and j) as well as captions containing symbols or requesting specific quantities of
objects (Figure 14 h and k). We hypothesize that this is due to the specific challenges in fine-grained
compositionality. While composition of objects and scenes is a known challenge for text-to-image
models, Würstchen seems to struggle more under such circumstances. Our assumptionxs is based on
the low-resolution on which Stage C operates, which does not allow for highly detailed composition
of objects. Since Stage B acts effectively as a latent super resolution model (see Appendix E) this
is not corrected when latents are upsampled and hence results in significantly more artifacts when
detailed composition is required.
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(a) Abstract (b) Animals (c) Artifacts

(d) Arts (e) Food and Beverage (f) Illustrations

(g) Indoor Scenes (h) Outdoor Scenes (i) People

(j) Produce and Plants (k) Vehicles (l) World Knowledge

Figure 13: Human Preference of partiprompt-generated images grouped by Category of the individual
text prompts
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(a) Basic (b) Complex (c) Fine-grained Detail

(d) Imagination (e) Linguistic Structures (f) Perspective

(g) Properties and Positioning (h) Quantity (i) Simple Detail

(j) Style Format (k) Writing and Symbols

Figure 14: Human Preference of partiprompt-generated images grouped by Challange-Class of the
individual text-prompt
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I ABLATION STUDIES ON INFERENCE PARAMETERS

In this section, we explore the impact of two important parameters for generating images, the classifier-
free guidance scale (cfg) and the number of sampling steps of Stage C. Following practices of Podell
et al. (2024) and Nichol et al. (2022), we conduct ablation studies by evaluating the model for a
sequence of values for each parameter. We compute FID score and the CLIP score on 30,000 images
generated from prompts of the MS COCO validation set generated at a resolution of 1024⇥ 1024
pixels. As the FID score on MS COCO is not a very reliable measure of image quality for our model
(see Sections 4 and C), we also provide collages of images from the respective ablation studies.

First, we ablate the number of sampling steps (spl). We evaluate the image quality and text alignment
at 5, 10, 20, 40, 80 and 160 sampling steps. In Figure 15(a) we observe that the FID score improves
notably from 5 to 10 sampling steps, while the CLIP score simultaneously improves. The CLIP score
then further increases with the number of sampling steps, reaches its maximum at 80 steps before
decreasing again for 160 steps. In contrast, the FID score slightly decreases from 10 to 80 sampling
steps. This ablation confirms our subjective observations that best image quality is achieved between
20 and 80 sampling steps (our default number of sampling steps is 30), placing it in a similar range,
like the Stable Diffusion models. An interesting observation from the collages in Figure 32 and 33
is that 5 sampling steps reliably produce stylized images and drawings with less complex textures,
while higher sampling step sizes converge to a more photorealistic and hence more visually complex
style.

(a) sampling steps (spl) (b) classifier-free guidance weight (cfg)

Figure 15: Hyperparameter analysis on number of sampling steps (spl) and classifier-free guidance
weight (cfg) with their effect on the FID and CLIP metrics for Würstchen and SD 2.1.

We move on to evaluate the classifier-free guidance scale (cfg, Ho & Salimans (2021)), weighting
the influence of the text-prompt on the image generation process. We evaluate the values of 1.0, 3.0,
5.0, 7.0 and 9.0. We also evaluate Stable Diffusion 2.1 for comparison. The results in Figure 15(b)
show that the behavior of Würstchen is significantly different from Stable Diffusion 2.1, which seems
to be significantly more reliant on classifier-free-guidance to achieve low FID-values, as indicated
by the minimum FID value for a cfg value of 3.0. For Würstchen, we observe a strong increase in
FID for higher classifier-free guidance weights. Nevertheless, while this is commonly interpreted
as reduced image fidelity, when inspecting the images (see collages in 34 and 35) we find a visual
improvement for increased guidance-scale values. This highlights, yet again, that FID – a metric that
captures distribution similarity to the original images, in our case COCO – is an imperfect metric
to assess image fidelity. Würstchen generates images with smooth textures, especially for images
with higher classifier-free guidance weights. In contrast, for low weight settings, Würstchen tends
to increase texture heterogenetiy, which drives the distribution of the generated images closer to
that of COCO. However, even with disabled classifier-free guidance (cfg=1.0) Würstchen is mostly
producing legible images, indicating that it is significantly less reliant on classifier-free guidance than
Stable Diffusion 2.1.
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J ABLATION STUDY ON TEXT-CONDITIONING IN STAGE B AND C

The Würstchen architecture utilizes text embeddings in Stage B and C. However, since Stage B
essentially acts as a latent super-resolution model, the utility of using text embeddings in Stage
B is uncertain. We ultimately decided to keep text embeddings in Stage B out of precaution, as
multiple full training runs for a comprehensive comparative evaluation on this matter were outside
our available compute-budget.

In this section, we explore the impact of using text-conditioning for Stage B and C with the trained
model, to assess their respective impact on the inference of the trained model. We compared three
different variants of our model. Our baseline is Würstchen with text-condition in Stage B and C, as
presented and evaluated in the rest of the paper. The other two variants receive text-conditioning only
in either Stage B or Stage C. The respective other stage simply received a zeroed tensor instead of the
expected text-conditioning. All variants were using the same weights, so the modification described
above is purely done at inference time without any retraining, fine-tuning or other types of weight or
architecture adaption.

We evaluated these variants using MS COCO-30K and Partiprompts using various automated metrics
presented in Section 4. The results in Figures 6 and 7 describe a consistent behavior over both
datasets.

Generally, all metrics deviate only minimally from the baseline when only Stage C receives text-
conditioning. In fact, the deviations are so minimal that it is difficult to attribute these changes
to the removed Stage B text-conditioning and not to noise induced by variations in the generated
images. When text-conditioning is only used in Stage B the alignment of prompt and text collapses
catastrophically. This is especially evident when visually inspecting samples in Figures 16 and
17. Considering insights from Appendix E this behavior is expected, as Stage B essentially acts
as a super-resolution model when provided with Stage C conditioning and has otherwise shown
to have poor generative capabilities without Stage C. However, what is more surprising to us is
that dropping Stage B’s text-conditioning on the trained model without adaption is not significantly
impacting generative performance. Essentially, it seems like Stage B has implicitly learned to ignore
text-conditioning as the information is already contained and in the Stage C latents.

We conclude, that a future version of this architecture could probably remove the Stage B’s text-
condition to further boost the efficiency of the training and inference.

Table 6: Evaluating our model on COCO-30K with Stage B or C text-conditioning disabled. Pick-
Score is evaluated against the Würstchen with text-conditioning in Stage B and C.

Text-Conditioning Pick-Score FID IC CLIP-Score
Stage B and Stage C - 23.6 40.9 25.7
Stage C only 49.4% 22.8 41.1 25.6
Stage B only 0.1% 136.3 6.6 8.8

Table 7: Evaluating our model on Partiprompts with Stage B or C text-conditioning disabled. Pick-
Score is evaluated against the Würstchen with text-conditioning in Stage B and C.

Model Pick-Score IC CLIP-Score
Stage B and Stage C - 23.3 26.9
Stage C only 49.6% 24.5 26.8
Stage B only 0.1% 6.2 10.1
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Figure 16: Collage for Würstchen-generated images from partiprompts texts with text-conditioning
enabled on different stages #1.

27



Published as a conference paper at ICLR 2024

Figure 17: Collage for Würstchen-generated images from partiprompts texts with text-conditioning
enabled on different stages #2
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K COMPLEMENTARY COLLAGES FOR APPENDIX A, COMPARING
WÜRSTCHENV3 TO OTHER T2I-MODELS

Figure 18: Würstchen V3 Model Comparison Collage # 1
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Figure 19: Würstchen V3 Model Comparison Collage # 2
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Figure 20: Würstchen V3 Model Comparison Collage # 3
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Figure 21: Würstchen V3 Model Comparison Collage # 4
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L COLLAGES (RANDOMLY CHOSEN FROM PARTI-PROMPTS)

Figure 22: Collage # 1
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Figure 23: Collage # 2
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Figure 24: Collage # 3
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Figure 25: Collage # 4
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Figure 26: Collage # 5
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Figure 27: Collage # 6
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Figure 28: Collage # 7
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Figure 29: Collage # 8
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Figure 30: Collage # 9
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Figure 31: Collage # 10
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M COMPLEMENTARY COLLAGES FOR THE STUDY ON INFERENCE
PARAMETERS IN APPENDIX I

Figure 32: Collage for Würstchen generated images at different number of sampling steps # 1
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Figure 33: Collage for Würstchen generated images at different number of sampling steps # 2
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Figure 34: Collage for Würstchen generated images at different classifier-free guidance values # 1
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Figure 35: Collage for Würstchen generated images at different classifier-free guidance values # 2
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