
Context-aware Biases for Length Extrapolation

Anonymous EMNLP submission

Abstract

Transformers often struggle to generalize to001
longer sequences than those seen during train-002
ing—a limitation known as length extrapola-003
tion. Most existing Relative Positional Encod-004
ing (RPE) methods attempt to address this by005
introducing either fixed linear biases or globally006
learned biases, which lack the capacity to adapt007
to different input contexts. In this work, we pro-008
pose an additive RPE, Context-Aware Biases009
for Length Extrapolation (CABLE), a method010
that learns token-specific, context-aware biases011
for each attention head in transformers. By012
dynamically adjusting positional biases based013
on the input sequence, CABLE overcomes the014
rigidity of fixed RPEs. When evaluated on015
sequences longer than originally trained with,016
GPT-2 Medium (334M parameters) with CA-017
BLE achieves lower perplexity than counter-018
parts using other widely adopted positional en-019
coding methods. Additionally, by applying CA-020
BLE to the BERT base model we improved per-021
formance in long-context retrieval tasks. Our022
method significantly enhances the extrapolation023
performance of existing RPE methods tested024
on the FineWeb-Edu-10B and WikiText-103025
datasets.026

1 Introduction027

Transformer based language models (Vaswani,028

2017) have achieved state-of-the-art performance029

in many Natural Lnaguge Processing (NLP) tasks030

(Devlin et al., 2019; Liu, 2019; Chowdhery et al.,031

2023; Team et al., 2023; Touvron et al., 2023;032

Achiam et al., 2023). This is related to its attention033

mechanism that captures contextual information by034

considering inter-token interactions. However, in035

contrast to Convolutional Neural Networks (CNNs)036

(Gehring et al., 2017) and Recurrent Neural Net-037

works (RNNs) (Sherstinsky, 2020), which implic-038

itly consider positional information, transformers039

are shown to be position-agnostic and need po-040

sition information (Yun et al., 2019). However,041
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Figure 1: Next-token prediction perplexity on
FineWeb-Edu-10B eval set with varying inference se-
quence lengths. The models are GPT-Medium trained
on a sequence length of 1024 on FineWeb-Edu-10B
train set.

even by incorporating positional information, trans- 042

former models often experience a sharp decline in 043

accuracy when processing inputs longer than those 044

seen during training (Press et al., 2021; Anil et al., 045

2022). This limitation arises because training is 046

typically performed on short sequences to mitigate 047

the quadratic cost of attention. As a result, there is 048

increasing interest in the length extrapolation prob- 049

lem—namely, a model’s ability to generalize to 050

and accurately predict sequences longer than those 051

encountered during training (Press et al., 2021). 052

Many commonly used positional encoding meth- 053

ods, such as Absolute Positional Encoding (APE) 054

(Vaswani, 2017), fail to generalize effectively to 055

sequence lengths beyond those seen during training 056

(Kazemnejad et al., 2024). To address the length 057

extrapolation challenge in transformers, various 058

strategies have been proposed, including context 059

window extension (Beltagy et al., 2020; Chen et al., 060

2023b; Peng et al., 2023; Zhu et al., 2023), memory 061

mechanisms (Dai, 2019; Bulatov et al., 2022; Wu 062

et al., 2022; Tworkowski et al., 2024), context com- 063

pression (Mu et al., 2024; Tan et al., 2024), data for- 064

matting techniques (Shen et al., 2023; Zhou et al., 065
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2023), and Relative Positional Encodings (RPE)066

(Press et al., 2021; Raffel et al., 2020; Su et al.,067

2024). Among these, RPEs have emerged as one of068

the most prominent and widely adopted solutions069

for improving length extrapolation in transformer070

models.071

Recently, a number of RPE variants have been in-072

troduced. Rotary Positional Encoding (RoPE) (Su073

et al., 2024) encodes token positions by rotating074

query and key vectors, while ALiBi (Press et al.,075

2021) introduces a linear bias to attention scores.076

Many subsequent works have built upon these foun-077

dations, either enhancing RoPE (Xu et al., 2024;078

Peng et al., 2023; Chen et al., 2023a) or refining079

ALiBi-style additive biases (Chi et al., 2022b,a; Li080

et al., 2023; Gao, 2024; Zhu et al., 2025).081

In this work, based on ALiBi, we propose an082

additive RPE method which dynamically learns083

biases for tokens on each head of attention mecha-084

nism in transformers. In contrast to ALiBi that uses085

constant linear biases, our method, Context-aware086

biases for length extrapolation (CABLE), learns087

slopes for each head, enabling the model to create088

dynamic biases for each token. CABLE adds negli-089

gible time and memory burden to the conventional090

transformer (Vaswani, 2017), while achieving bet-091

ter performance. As shown in Figure 1, while the092

performance of existing positional encodings de-093

grades with increasing sequence length, CABLE094

achieves even lower perplexity as sequence length095

increases. Our method is simple and easy to im-096

plement, and can be integrated into any existing097

transformer model easily.098

Contributions of this paper are as follows:099

• We propose CABLE, an additive relative posi-100

tional encoding method that, in contrast to ex-101

isting methods, uses context-aware positional102

information by learning token-specific biases103

in each attention head. CABLE is also sim-104

ple, easy to implement, and have relatively105

fast inference time compared to the previous106

methods.107

• We evaluate our proposed method on several108

benchmark datasets, using GPT-2 variants for109

next-token prediction and BERT models for110

long-context retrieval. Our approach consis-111

tently outperforms existing positional encod-112

ing methods and demonstrates superior gener-113

alization to sequences longer than those seen114

during training.115

2 Related Work 116

The attention mechanism in Transformer models is 117

inherently position-agnostic, necessitating the ex- 118

plicit injection of positional information to enable 119

sequence order awareness. To address this, a range 120

of positional encoding methods have been pro- 121

posed. However, many of these methods face limi- 122

tations when it comes to length extrapolation—the 123

ability to generalize to sequences longer than those 124

encountered during training (Anil et al., 2022). Sev- 125

eral positional encoding strategies have been de- 126

veloped with the goal of improving extrapolation 127

performance (Csordás et al., 2021), with relative 128

positional encodings (RPEs) demonstrating notable 129

effectiveness in enhancing generalization at infer- 130

ence time (Song and Zhong, 2023; Qin et al., 2024; 131

Dong et al., 2024). In this section, we review key 132

approaches to positional encoding, including abso- 133

lute and relative methods, as well as recent work 134

exploring Transformer models without any explicit 135

positional encoding. 136

No Positional Encoding (NoPE). Surprisingly, 137

Haviv et al. (2022) showed that decoder-only Trans- 138

formers with causal attention can implicitly learn 139

positional information without explicit encodings. 140

Kazemnejad et al. (2024) further supported this 141

NoPE approach, especially in out-of-distribution 142

(OOD) settings, suggesting that the causal mecha- 143

nism alone can suffice (Wang et al., 2024). How- 144

ever, Li et al. (2023) found that NoPE generally 145

underperforms compared to models with explicit 146

positional encodings. In a concurrent effort with 147

our work, FoX (Lin et al., 2025) suggested a sim- 148

ilar idea by not using positional encoding and in- 149

stead proposed a forgetting gate. While NoPE is 150

compatible with arbitrary sequence lengths, its per- 151

formance often degrades when extrapolating far 152

beyond training lengths. 153

Absolute Positional Encoding (APE). APE was 154

one of the earliest approaches introduced to incor- 155

porate positional information into Transformers. 156

Vaswani (2017) proposed both fixed (sinusoidal) 157

and learned encodings, while Gehring et al. (2017) 158

applied learnable absolute embeddings in convolu- 159

tional architectures. Later, Devlin et al. (2019) 160

adopted learned absolute embeddings in BERT, 161

adding them to token embeddings. Chen et al. 162

(2021) further refined APE with a decoupled atten- 163

tion mechanism to better separate content and posi- 164

tional signals. In general, APE assigns a fixed or 165

learned vector ei ∈ Rd to each position i, forming 166

2



a matrixE = [e1, e2, ..., et]
T that is added element-167

wise to token embeddings (Vaswani, 2017; Devlin168

et al., 2019; Kiyono et al., 2021; Likhomanenko169

et al., 2021). A key limitation of APE methods170

is their poor generalization to sequence lengths171

beyond those seen during training, making them172

unsuitable for length extrapolation.173

Relative Positional Encoding (RPE). RPE is174

an increasingly popular way to encode positional175

information for Transformers. (Shaw et al., 2018)176

was the first to propose learning relative positional177

information within a clipping distance. Among the178

most popular methods in RPEs, is rotary positional179

embedding (RoPE) (Su et al., 2024). RoPE rotates180

a query and key pair vectors with an angle pro-181

portional to their relative positions before the dot182

product attention, which results in attention being a183

function of the relative distance between the tokens,184

capturing the relative positional information. One185

of the primary arguments for the effectiveness of186

RoPE—and a key reason it is widely adopted in187

modern LLMs—was put forth by Su et al. (2024),188

who claimed that RoPE enables attention scores189

to decay as the relative distance between tokens190

increases. However, Barbero et al. (2024) later pro-191

vided a mathematical analysis showing that this192

claim is flawed: attention weights under RoPE do193

not necessarily decay proportionally with relative194

query-key distances. This insight offers a possi-195

ble explanation for RoPE’s limitations in length196

extrapolation. In RoPE-based methods, Yarn (Peng197

et al., 2023) modifies RoPE by integrating atten-198

tion scaling and Neural Tangent Kernel (NTK) in-199

terpolation (Jacot et al., 2018), and (Chen et al.,200

2023a) extends the context window size of RoPE201

by interpolating positions in the range seen during202

training. However, recent studies have shown that203

RoPE-based language models perform poorly on204

sequences longer than those seen during training205

(Press et al., 2021; Kazemnejad et al., 2024). To206

address this limitation, several positional encod-207

ing methods with better length extrapolation ca-208

pabilities have been proposed (Chen et al., 2023a).209

Among these, additive approaches have gained pop-210

ularity—where a bias matrix is directly added to211

the pre-softmax attention logits. This design is212

typically intended to enforce a decay in attention213

weights proportional to the relative distance be-214

tween query-key pairs, as shown in the following215

formula:216

ARPE(X) = XWQ(XWK)T +B (1)217

The bias matrix for an input sequence with t tokens 218

is B ∈ Rt×t, generated by a positional encoding 219

function b : N2 → R, where the (i, j)-th entry of 220

B is given by b(i, j). Naturally, different formula- 221

tions of the function b lead to different variants of 222

Relative Positional Encodings (RPEs). Below are 223

a few examples of additive RPEs that are capable 224

of extrapolating: 225

ALiBi (Press et al., 2021). The kernel function is 226

defined as b(i, j) = −r|i− j|, where r > 0 is a hy- 227

perparameter. ALiBi incorporates bias based on the 228

pairwise distances into the pre-softmax attention 229

scores. However, the function rapidly approaches 230

the zero point (Chi et al., 2022a), hence may not 231

be a realistic assumption. 232

T5-bias (Raffel et al., 2020). The kernel func- 233

tion is defined as b(i, j) = rmin{i−j,K}, whereK is 234

a hyperparameter and {ri}Ki=0 are learnable scalars. 235

For positions beyond the training sequence length, 236

the model reuses the maximum learned relative 237

bias. While this approach allows some extrapola- 238

tion, it suffers from latency issues on modern ac- 239

celerators due to inefficient vectorized operations 240

with long sequences. 241

Kerple (Chi et al., 2022a). The kernel function 242

is defined as b(i, j) = −r1 log(1 + r2|i − j|) in 243

its logarithmic form and −r1|i− j|r2 in its power 244

form, where r1, r2 > 0 are learnable scalars. This 245

approach employs a shift-invariant kernel for the 246

bias terms. 247

Fire (Li et al., 2023). The kernel function 248

is defined as fθ
(

ψ(i−j)
ψ(max{L,i})

)
, where ψ : x 7→ 249

log(cx+ 1) is a monotonically increasing function 250

and L > 0 is a learnable scaler. This formula- 251

tion allows Fire to assign more attention to distant 252

query-key pairs—contrary to methods like ALiBi, 253

and Kerple, which tend to focus on nearby tokens. 254

However, as our experiments demonstrate, this be- 255

havior was not beneficial in our settings, leading 256

to inferior performance compared to ALiBi and 257

Kerple. 258

Examining existing additive RPEs, we observe 259

that their bias functions are static—dependent only 260

on token positions and entirely independent of the 261

input context. Once trained, these biases remain 262

fixed across all sequences, limiting their adapt- 263

ability. This rigidity can hurt performance, es- 264

pecially in long-context generation. To address 265

this, we introduce CABLE, a context-aware ad- 266

ditive RPE designed for better length extrapola- 267

tion in transformer-based language models. Unlike 268

3



-3 -2 -1 0

0-1-2

-1 0

0

0

0

0

⊙ ⊙

Pre-softmax Attention Logits

0

ALiBi Positional biases CABLE Positional biases

Figure 2: Comparison of how ALiBi and CABLE compute final attention scores per head. Left: ALiBi adds
constant linear biases with head-specific slopes, fixed across tokens. Right: CABLE adds learned, token-specific
context-aware biases and weights to the scores.

methods such as ALiBi that use fixed linear biases,269

CABLE learns dynamic, token-specific biases con-270

ditioned on the input, enabling more flexible and271

effective positional encoding.272

3 Proposed Method273

In this section, we formally introduce CABLE274

(Context-Aware Biases for Length Extrapolation),275

a novel additive relative positional encoding (RPE)276

approach designed to enhance the length general-277

ization capabilities of Transformer models.278

CABLE computes context-aware positional bias279

scores for each attention head and adds them to the280

pre-softmax attention logits. Unlike existing RPE281

methods, which are typically static and indepen-282

dent of the input sequence, our proposed biases are283

dynamically conditioned on the input context. Sim-284

ilar to the ALiBi method, we incorporate relative285

positional biases at the attention score level. How-286

ever, CABLE introduces two key modifications: (1)287

the biases are learned and explicitly dependent on288

the input context, and (2) we learn distinct scalar289

weights for these biases. To implement this, we290

employ two separate linear layers—one to generate291

the context-aware biases and another to compute292

their associated weights.293

Let t and d be the sequence length and the dimen-294

sion of embeddings on each head, respectively. The295

learned bias for each token in the input sequence296

X ∈ Rt×d is as follows:297

fθ(X) = ReLU(Xwc) (2)298

Where fθ : Rt×d −→ Rt+, and θ = {wc ∈ Rd}.299

Hence, we obtain context dependent biases for each300

token. Here ReLU ensures the biases are positive. 301

Then, by taking a cumlative sum of these biases we 302

inherently make these biases aware of how much 303

positional bias should be incorporated until their 304

position and obtain S(X) ∈ Rt+. 305

S(X) = Lfθ(X), (3) 306

Li,j =

{
1 if j ≤ i

0 otherwise
(4) 307

Where L ∈ Rt×t is a lower triangular matrix of 308

ones. Therefore, the relative biases B(X) ∈ Rt×t 309

for each pair of tokens in the input sequence is 310

calculated by: 311

B(X)i,j = S(X)i − S(X)j (5) 312

At this stage, we have obtained context-aware bi- 313

ases that can be directly added to the pre-softmax 314

attention logits. In our experiments, we refer to 315

this version—without any additional learnable pa- 316

rameters for the biases—as CABLENW. To further 317

enhance flexibility, we introduce a linear layer that 318

learns a bias weight vector gθ(X) for each token, al- 319

lowing the model to modulate (dampen or amplify) 320

the positional biases based on the input context. 321

gθ(X) = Softplus(Xws) (6) 322

Where gθ : Rt×d −→ Rt+, and θ = {ws ∈ Rd}. 323

Finally, we multiply each relative bias by its corre- 324

sponding weight to produce the final CABLE bias 325

for each attention head, as follows: 326

B(X)i,j = gθ(X)i(S(X)i − S(X)j) (7) 327
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FineWeb-Edu-10B

Sequence Length CABLE CABLENW ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal

512 17.00 17.22 17.30 17.60 17.79 17.22 17.39 17.99 17.98
1024 16.52 16.73 16.79 17.11 17.26 16.70 16.89 17.47 17.48
2048 15.97 16.24 16.56 19.60 38.32 16.28 38.95 — 219.80
4096 15.34 15.79 16.67 101.98 243.69 16.78 146.72 — 1058.84
8192 15.41 15.97 17.23 383.08 799.53 20.32 361.26 — 2485.84
15360 15.41 16.03 17.46 835.92 1450.83 26.13 691.90 — 3355.86

WikiText-103

Sequence Length CABLE CABLENW ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal

512 23.70 24.32 24.09 24.34 25.06 23.95 23.66 24.94 25.18
1024 22.32 23.01 22.74 22.90 23.60 22.56 22.26 23.53 23.73
2048 21.48 22.19 22.05 22.68 27.64 21.72 41.40 — 172.33
4096 20.94 21.70 21.73 29.57 73.99 21.32 114.77 — 607.48
8192 20.65 21.46 21.58 54.89 198.64 21.33 220.56 — 1348.23
15360 20.33 21.13 21.30 104.79 411.09 21.58 375.62 — 2017.42

Table 1: Perplexity comparison on the FineWeb-Edu-10B and WikiText-103 evaluation sets. The models in the
upper table are GPT-Medium variants trained on the FineWeb-Edu-10B training set for 19k steps with a sequence
length of 1024. The models in the lower table are GPT-Tiny variants trained on the WikiText-103 training set for 9k
steps, also with a sequence length of 1024.

CABLE exhibits an inductive bias similar to slid-328

ing window attention by penalizing distant query-329

key pairs—penalties that increase with positional330

distance. It can be seen as a generalization of AL-331

iBi. while ALiBi applies fixed linear biases, CA-332

BLE learns context-aware biases for each token.333

Notably, if we set each token’s bias and weight334

to -1 and 1/2h respectively, CABLE reduces to335

ALiBi, with relative biases simply reflecting token336

distances. However, CABLE’s key advantage is its337

ability to adapt these biases based on token context,338

enabling more expressive and flexible positional339

encoding.340

As with most RPE methods, CABLE adds po-341

sitional information only to the queries and keys342

(not the values), a practice shown to enhance length343

extrapolation in methods like ALiBi, T5-bias, and344

RoPE.345

CABLE is simple, lightweight, and easily inte-346

grates into standard attention mechanisms. It re-347

quires only two additional linear layers, minimal348

parameters, and can be implemented in a few lines349

of code. The design involves two unfolding opera-350

tions, a cumulative summation, and bias addition to351

the attention logits. Despite its simplicity, CABLE352

significantly improves extrapolation performance353

with negligible time and memory overhead com-354

pared to the vanilla transformer. Furthermore, it355

offers training time and memory usage on par with356

existing RPE methods, while maintaining low in-357

ference overhead and demonstrating notable gains358

in extrapolation, as shown in Section 5. 359

4 Experiment Setup 360

4.1 Datasets 361

For training, we use the FineWeb dataset (Penedo 362

et al., 2024), a large-scale dataset (15 trillion to- 363

kens) for LLM pretraining, derived from 96 Com- 364

monCrawl snapshots. FineWeb has been shown to 365

produce better-performing LLMs than other open 366

pretraining datasets (Penedo et al., 2024). More 367

specifically, we use a 10B sample of the FineWeb- 368

Edu dataset, which consists of 1.3T tokens from 369

educational web pages filtered from the FineWeb 370

dataset. We allocate 9.9B tokens for training and 371

0.1B for evaluation. Furthermore, we also train the 372

models on WikiText-103 (Merity et al., 2016), a 373

small dataset containing a preprocessed version 374

of Wikipedia, widely used in many NLP tasks. 375

For evaluation, we use the test sets of FineWeb- 376

Edu, WikiText-103, and a 1B-token sample of the 377

FineWeb dataset. 378

4.2 Settings 379

For all next-token prediction tasks, we use the GPT- 380

2 variants (Brown et al., 2020). For the FineWeb- 381

Edu-10B dataset, we use its small version (12 lay- 382

ers, 10 heads, and a hidden dimension of 768) 383

with 124M parameters, and its medium version 384

(24 layers, 16 heads, and a hidden dimension of 385

1024) with 334M parameters. We also incorporate 386

a tiny version of GPT-2 (44M parameters) with 6 387
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layers, 8 heads, and a hidden dimension of 512388

for the WikiText-103 dataset, as it is a relatively389

small dataset. The evaluation metric is perplex-390

ity (PPL), and we train the models with sequence391

length of 1024. All the models are trained on eight392

H100 GPUs with 80G GPU RAM. Training set-393

tings are the same as those used for GPT-2 (Rad-394

ford et al., 2019). Gradients are updated after pro-395

cessing 524,288 tokens and vocab size is 50304.396

For training on the FineWeb-Edu-10B dataset, we397

run 19k steps (~1 epoch) with batch sizes of 64,398

32, and 16 for the tiny, small, and medium mod-399

els, respectively. On WikiText-103, the tiny, small,400

and medium variants are trained for 9k, 5k, and 3k401

steps(~10, 5, 3 epochs respectively). The learning402

rate starts at 0.0006, with a linear warmup over 750403

steps, followed by cosine decay to a minimum of404

0.00006.405

4.3 Baselines406

We compare our method against the following po-407

sitional encoding approaches:408

Learnable (Vaswani, 2017): A trainable APE409

where each position is associated with a learned410

embedding. The number of positions is fixed and411

predefined during training.412

Sinusoidal (Vaswani, 2017): A fixed APE413

used in early Transformer models (Vaswani, 2017;414

Baevski and Auli, 2018; Ott et al., 2018; Lewis415

et al., 2021).416

RoPE (Su et al., 2024): A non-learnable RPE417

widely adopted in LLMs such as GPT-2 (Brown418

et al., 2020), LLaMA (Touvron et al., 2023), PaLM419

(Chowdhery et al., 2023), and Gemma (Team et al.,420

2024a,b).421

ALiBi (Press et al., 2021): A non-learnable RPE422

used in models like BLOOM (Le Scao et al., 2023)423

and Falcon (Almazrouei et al., 2023).424

T5-bias (Raffel et al., 2020): A learnable RPE425

used in the T5 model.426

Kerple (Chi et al., 2022a): A learnable RPE427

with logarithmic and power variants; we use the428

logarithmic variant due to its superior performance.429

Fire (Li et al., 2023): A learnable RPE designed430

to give more weight to distant query-key pairs than431

other methods.432

5 Results433

We evaluate the performance of our method across434

multiple scenarios. First, we assess its extrapola-435

tion ability in decoder-only models for next-token436

prediction, comparing it with several existing RPEs 437

and widely used APEs. Then, we demonstrate 438

its effectiveness in encoder-only models on long- 439

context retrieval tasks. We also report runtime and 440

memory usage, followed by ablation studies to fur- 441

ther validate the contributions of our approach. 442

5.1 Length Extrapolation 443

Our method demonstrates strong length extrapola- 444

tion performance on the FineWeb-Edu-10B dataset, 445

when trained with a sequence length of 1024 and 446

evaluated on shorter and longer sequences, as 447

shown in Figure 1. Table 1 further compares the 448

extrapolation capabilities of CABLE against base- 449

line methods on the test sets of FineWeb-Edu-10B 450

and WikiText-103. 1 The sinusoidal method suf- 451

fers a sharp performance drop even with slight in- 452

creases in sequence length. RoPE shows a simi- 453

lar trend—initial improvement followed by a sig- 454

nificant decline at longer lengths. The learnable 455

method performs competitively at 512 and 1024 456

tokens but lacks extrapolation ability beyond the 457

training length. T5-bias follows a similar trend, but 458

its performance degrades more gradually than Si- 459

nusoidal. It initially extrapolates well to sequences 460

slightly longer than those seen during training, 461

thanks to its mechanism of learning relative po- 462

sitional information and reusing the maximum rela- 463

tive distance for unseen positions. ALiBi performs 464

well on longer contexts overall but experiences 465

slightly degradation at extreme lengths. 466

In contrast, our method consistently achieves 467

lower PPL on longer sequences. Specifically, for 468

models trained on sequence length of 1024, our 469

method achieves lower PPL even when extrapolat- 470

ing to sequences 16 times longer. 471

Moreover, on the FineWeb-Edu-10B dataset, 472

which contains far more tokens than WikiText-103, 473

a model trained with ALiBi on T=1024 performs 474

well on T=2048 but begins to degrade with longer 475

sequences. In contrast, CABLE shows consistent 476

improvement, even for T=15360, and achieves a 477

better PPL than it does on T=1024, the sequence 478

length seen during training. 479

Our results demonstrate that the learned biases 480

in CABLE capture contextual information more ef- 481

fectively than ALiBi, leading to superior length ex- 482

trapolation, especially on very long sequences. No- 483

tably, even CABLENW outperforms ALiBi, high- 484

1For the longest sequences tested, we report results for
15,360 tokens instead of 16,384 due to computational con-
straints.
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Figure 3: Comparison of batched training time, memory usage in training, and unbatched inference time among the
Sinusoidal, RoPE, Kerple, Fire, T5-bias, ALiBi, CABLE, and Learnable positional encoding methods.

lighting the strength of our context-aware design.485

Additionally, the improved performance with the486

full CABLE model underscores the benefit of the487

learned weight function gθ(X).488

5.2 Bidirectional Models489

In our second major experiment, we evaluate the490

effectiveness of our proposed additive RPE method491

in learning contextual representations. To do this,492

we replace the original fixed learnable positional493

encodings in BERT (Devlin et al., 2019) with CA-494

BLE during pre-training. We use the 10B-sample495

FineWeb-Edu dataset and train the models using496

only the masked language modeling (MLM) objec-497

tive, following Liu (2019), who showed that remov-498

ing next sentence prediction (NSP) can improve499

performance. Our BERT models are based on the500

bert-base-uncased architecture and are trained on501

four H100 GPUs with a batch size of 32 and a502

maximum sequence length of 512 for 14k steps503

(~1 epoch on FineWeb-Edu-10B). We use Adam504

(Kingma and Ba, 2014) with a learning rate of 1e-4.505

As shown in Figure A, CABLE achieves faster con-506

vergence in MLM loss compared to other positional507

encoding baselines.508

Since RPE methods do not impose strict limi-509

tations on context length, BERT models trained510

with these encodings show improved long-context511

performance compared to most existing encoder-512

only models. However, standardized long-context513

benchmarks for encoder-only architectures remain514

limited. Following Warner et al. (2024), we eval-515

uate long-context performance using the English516

subset of MLDR (Chen et al., 2024), a retrieval517

benchmark consisting of over 200,000 long docu-518

ments.519

To adapt BERT models for this task, we fine-520

tune them on MS-MARCO (Nguyen et al., 2016)521

using mined hard negatives (Xuan et al., 2020),522

with 1.25M samples, a batch size of 128, and a 5% 523

learning rate warmup over one epoch, leveraging 524

the sentence-transformers framework (Reimers and 525

Gurevych, 2019). We then evaluate the fine-tuned 526

models on the MLDR test set using nDCG@10 527

as the evaluation metric. Table 2 presents the re- 528

sults for several competitive positional encoding 529

methods.2 530

At shorter sequence lengths (512 tokens), RoPE 531

performs slightly better than other methods. How- 532

ever, as sequence length increases, CABLE consis- 533

tently outperforms all baselines, showing notable 534

gains beyond 1024 tokens. ALiBi maintains reason- 535

able performance but still trails behind CABLE. In 536

contrast, RoPE’s effectiveness drops sharply after 537

1024 tokens, becoming nearly unusable at longer 538

lengths. Learnable absolute encodings perform not 539

competitively even at 512 tokens and cannot gen- 540

eralize to longer sequences. Sinusoidal encoding 541

is effective at short lengths but fails completely 542

beyond 1024 tokens. Overall, CABLE exhibits 543

the strongest scalability to long sequences, while 544

others either degrade significantly or become unus- 545

able. 546

MLDR – nDCG@10 vs. Sequence Length

Seq. Len. CABLE ALiBi RoPE Learnable Sinusoidal

512 14.96 14.02 15.16 10.42 13.57
1024 15.15 12.88 14.41 — 12.80
2048 16.77 14.30 10.26 — 1.03
4096 21.36 18.71 1.17 — 0.00
8192 24.59 22.86 0.12 — 0.00
16384 25.10 23.44 0.12 — 0.00

Table 2: Retrieval performance (nDCG@10) on the
MLDR test set for BERT models with different posi-
tional encodings, trained at sequence length 512 and
evaluated on longer inputs.

2We report only ALiBi among additive RPEs for BERT, as
it outperformed other variants in our experiments.
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5.3 Runtime and Memory Overhead547

We also evaluate our method against existing meth-548

ods in terms of training/inference runtime and mem-549

ory usage. As shown in Figure 3, our method550

achieves the same training Token Per Second (TPS)551

as ALiBi and Kerple. However, both our method552

and ALiBi have slightly higher overhead compared553

to RoPE, Sinusoidal, and Learnable methods, while554

T5-bias exhibits significant overhead. During infer-555

ence, our method achieves faster performance than556

other RPEs. It is the third fastest overall—trailing557

only Sinusoidal and Learnable encodings—while558

outperforming ALiBi in speed. Moreover, CABLE559

uses almost the same GPU memory as other meth-560

ods during training and adds negligible overhead561

compared to methods like ALiBi. It should be562

noted that, due to the extrapolation ability of CA-563

BLE, it can be trained on shorter sequence lengths564

and effectively tested on much longer sequences.565

This approach addresses training overhead by re-566

ducing the sequence length during training, mak-567

ing it feasible on commonly available GPUs. The568

overhead of our method is primarily related to the569

cumulative sum operation in our computations. Im-570

portantly, for inference, we cache the cumulative571

sums, so there is no need to re-calculate them for all572

tokens each time. This optimization helps CABLE573

achieving superior inference time to other methods,574

such as ALiBi.575

Note that training time is measured with batch-576

ing, while inference is measured without batching577

by recording the time to sequentially generate a set578

number of tokens.579

5.4 Ablation Study: Kernelized CABLE580

For models with a low number of layers, we tested581

a kernelized version of our method (K-CABLE).582

In this setting, we use − log (b2 + 1) as a kernel,583

which is applied to the relative biases before adding584

them to the attention scores. Figure 4 shows the585

extrapolation comparison between CABLE and K-586

CABLE. As can be seen, K-CABLE achieves better587

PPL when trained on sequence length of 1024, com-588

pared to original CABLE, demonstrating improved589

extrapolation. This improvement is related to the590

sliding window nature of additive RPEs, where,591

with a low number of layers, they struggle to prop-592

agate information across longer sequences. In con-593

trast, K-CABLE has a slower slope for biases and594

behaves less like a sliding window, making it more595

suitable for networks with fewer layers. More gen-596
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20
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Figure 4: Extrapolation performance of CABLE vs. its
kernelized variant (K-CABLE). Both models are GPT-
Tiny architectures trained on the WikiText-103 training
set with a sequence length of 1024.

erally, different types of kernels can be applied to 597

CABLE based on the network architecture, allow- 598

ing it to achieve optimal performance. 599

6 Conclusion 600

We introduced CABLE, a novel relative positional 601

encoding method that learns context-aware biases 602

for each token. This is done by adding learned 603

biases into the attention matrix at each layer of 604

decoder-based transformers. Unlike existing meth- 605

ods such as ALiBi, which rely on constant lin- 606

ear biases, CABLE adapts biases based on the to- 607

kens’ roles within the sequence. Our experiments 608

demonstrated that CABLE achieves lower perplex- 609

ity compared to existing methods and significantly 610

enhances length extrapolation capabilities. Results 611

on the edu-fineweb10B and wikitext-103 datasets 612

revealed that CABLE effectively extrapolates on 613

sequences longer than those seen during training, 614

consistently outperforming other approaches. Ab- 615

lation studies further validated CABLE’s effective- 616

ness, showing that a model trained with CABLE 617

on sequences of length 1024 can outperform a sinu- 618

soidal method trained and tested on sequences of 619

length 8192. These advancements were achieved 620

with only a minimal increase in training time and 621

memory usage, while the increase in inference time 622

was only negligible. 623

Limitation 624

While CABLE demonstrates strong performance 625

in length extrapolation, it has several limitations. 626

First, it incurs higher training time compared to 627

RoPE due to its dynamic bias computation, though 628

this overhead is negligible in inference. Second, 629

8



CABLE occasionally underperforms RoPE at base630

sequence lengths (e.g., 1024 tokens in our exper-631

iments), particularly in tasks where fixed posi-632

tional patterns suffice, suggesting a trade-off be-633

tween adaptability and consistency for shorter con-634

texts. Additionally, the method’s computational635

overhead, though minimal, may become more pro-636

nounced for extremely long sequences (>100K to-637

kens), and its extrapolation capabilities remain de-638

pendent on the diversity of positional patterns in639

training data. While empirical results are promis-640

ing, theoretical analysis of its attention dynamics at641

arbitrary lengths remains an open question. Future642

work could explore optimizations for training effi-643

ciency and head-specific bias adaptation to further644

enhance flexibility.645
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A Appendix933

A.1 Bert Models Training934

Figure 5 shows the masked language modeling loss935

during BERT pre-training with different positional936

encodings. Traditional methods like learnable and937

sinusoidal fail to match the loss achieved by RPEs,938

highlighting the effectiveness of RPEs. CABLE939

also converges faster than other methods.940

Figure 6 shows the contrastive loss during fine-941

tuning BERT models with different positional en-942

coding methods on the MS-MARCO training set.943

Once again, learnable and sinusoidal methods lag944

behind, while CABLE achieves the lowest loss945

among all methods.946
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Figure 5: Masked language modeling (MLM) loss dur-
ing BERT pre-training on FineWeb-Edu-10B with dif-
ferent positional encoding methods. CABLE achieves
the fastest convergence and lowest final loss, demon-
strating superior training efficiency over traditional and
other RPE methods.
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Figure 6: Contrastive fine-tuning loss on the MS-
MARCO dataset for BERT models using different posi-
tional encoding methods. CABLE achieves the lowest
loss, while learnable and sinusoidal encodings underper-
form.

A.2 Results for GPT-Small and Tiny 947

Tables 3 and 4 present the extrapolation results 948

for GPT-Small and GPT-Tiny models evaluated 949

on the FineWeb-Edu-10B dataset. As shown in 950

Table 3, CABLE consistently outperforms other 951

positional encoding methods across all sequence 952

lengths, particularly at extrapolated lengths beyond 953

1024 tokens. Both GPT-Small and GPT-Tiny mod- 954

els trained with CABLE achieve significantly lower 955

perplexity than those using ALiBi, RoPE, T5-bias, 956

and other baselines. Notably, standard methods 957

such as sinusoidal or learnable encodings degrade 958

sharply at longer lengths, whereas CABLE main- 959

tains stable and superior performance. These re- 960

sults further confirm CABLE’s effectiveness in 961

enhancing length extrapolation, even in smaller 962

model regimes. 963
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GPT-Small

Sequence Length CABLE CABLENW ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal

512 21.19 21.42 21.55 21.84 22.17 21.46 21.43 22.16 22.38
1024 20.63 20.89 20.99 21.26 21.57 20.86 20.87 21.56 21.83
2048 20.02 20.34 20.67 22.48 29.37 20.38 58.59 - 207.53
4096 19.24 19.67 21.23 53.25 131.36 21.11 225.78 - 956.41
8192 19.31 19.81 22.42 155.32 405.94 26.59 554.12 - 2376.51
15360 19.28 19.82 22.89 333.91 757.36 34.91 957.87 - 3589.97

GPT-Tiny

Sequence Length CABLE CABLENW ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal

512 29.37 30.12 29.88 30.23 30.78 29.60 29.44 30.73 30.67
1024 28.73 29.57 29.25 29.56 30.08 28.95 28.81 30.11 30.03
2048 27.96 28.88 28.82 29.60 33.81 28.32 76.29 — 275.28
4096 26.90 27.85 28.28 37.86 86.33 28.31 239.95 — 1166.46
8192 26.97 27.92 26.80 70.72 222.60 32.00 452.67 — 2561.54
15360 26.80 27.75 28.52 124.29 448.08 37.67 652.52 — 3679.78

Table 3: Perplexity comparison on the FineWeb-Edu-10B evaluation sets. The upper table shows GPT-Small
variants, and the lower table shows GPT-Tiny variants—both trained on the FineWeb-Edu-10B training set for 19k
steps with a sequence length of 1024.

GPT-Medium

Sequence Length CABLE CABLENW ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal

512 20.33 20.80 20.80 22.18 23.33 20.96 20.81 22.52 24.16
1024 19.12 19.63 19.62 20.89 22.00 19.73 19.60 21.23 22.77
2048 18.36 18.91 19.04 21.86 35.46 19.01 20.78 — 143.58
4096 17.87 18.47 18.91 46.60 124.19 18.63 31.22 — 467.51
8192 17.58 18.23 18.89 106.27 363.59 18.61 51.54 — 1006.37
15360 17.36 17.95 18.60 195.93 726.18 18.79 91.53 — 1516.97

GPT-Small

Sequence Length CABLE CABLENW ALiBi Fire T5-bias Kerple RoPE Learnable Sinusoidal

512 20.93 21.34 21.46 22.03 22.80 21.50 21.38 22.51 23.09
1024 19.71 20.15 20.22 20.74 21.49 20.22 20.13 21.21 21.73
2048 18.95 19.42 19.62 21.28 33.85 19.45 30.14 — 163.49
4096 18.47 18.98 19.39 36.02 123.05 19.04 63.75 — 580.86
8192 18.20 18.75 19.29 81.77 347.22 18.91 117.81 — 1121.08
15360 17.92 18.48 19.06 163.91 659.72 19.00 202.23 — 1652.53

Table 4: Perplexity comparison on the WikiText-103 evaluation set. The upper table shows GPT-Medium variants
trained for 3k steps, and the lower table shows GPT-Small variants trained for 5k steps. All models use a sequence
length of 1024.
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