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A MORE EXPERIMENT DETAILS

Table 2: Experimental details

Ideal spring mass Chemical kinematics Kepler system Heat equation
Dimension 2 2 101
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3] =55
i) = -5
) z[3]% +x[4]? _ 1 _ Cl
Conservations 12+ 222 =C z[l]+z[2] =C 2 [1]2+2[2]? JUdz=C
z[1]x[4] — z[2]z[3] = Cs
Learning rate le-3 le-3 le-3 le-3
Training traj. length (s) 3 7 25 10
# of points in training traj. 30 70 250 100
Eval. traj. length (s) 100 10 10 1
# of points in eval. traj. 1000 1000 1000 1000
# of traj. 50 50 200 200
Const;;stlve ‘Leamlng 10 10 10 10
atch size
CO"“raE“"e Learning 1000 1000 1500 2000
pochs
Dy“‘;gm‘cs Learning 100 100 100 100
atch size
Dy“a“é‘“ Learning 1000 1000 1000 1000
pochs
All the dynamical modeling and contrastive learning neural networks mentioned in the paper are
fully connected neural network, with 1 hidden layer of 100 neurons and tanh activations. The au-
toencoder used for the heat equation is also fully connected, both encoder and decoder use 2 hidden
layers (32,16 neurons) and tanh activations. We conduct all the experiments on a single 2080Ti
GPU.
Table 3: Simulation error (log scale) over the tasks
Task Mean square error Violation of conservation laws
Baseline NN ConCerNet Baseline NN ConCerNet
Ideal spring mass system | -0.823 +0.479 -1.126 + 0.414 -1.250 £0.795 -3.213 + 1.041
Chemical kinematics -1.182 £0.039 -1.924 + 0.967 -1.626+ 0.200 -2.584 + 0.227
Kepler system -0.071 £0.055 -0.485+0.035 -1.2244+0.075 -2.297 + 0.599
Heat equation -0.905 £0.210 -1.090 =0.316  0.255 +0.340 -0.759 £+ 0.111
Table [3] shows the same result of Table [T]in log scale. As the system error exponentially grows
with time during the prediction simulation, results under log scale better illustrate the consistent
performance improvement with our method.
Table 4: Simulation error comparison with previous work (HNN (Greydanus et al.| 2019))
Task Mean square error Violation of conservation laws
) Baseline NN ConCerNet HNN Baseline NN ConCerNet HNN
Ideal spring mass | 0.209 = 0.172  0.076 = 0.063  0.110£0.099  0.096 £+ 0.080  2.1e-3 £ 1.9e-3  2.7e-3 £ 3.4e-3
Kepler system 0.854 £0.103 0.328 £0.026 0.194 = 0.085 0.060 =0.011 9.5e-3 4+ 1.22¢e-2  8.7e-3 + 1.41e-2
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Table [] shows the results comparison between our proposed method and HNN
2019) on the two examples. In general, the two methods show similar performance (each method

wins one experiment), and their conservation and coordinate errors are much smaller than the vanilla
NN. HNN is not appliable to the other two experiments as they are not Hamiltonian systems.

Table 5: Hyper-parameter study in heat equation experiment

dim(z) =8 dim(z) =9 dim(z) = 10
MSE Vio. of Cons. MSE Vio. of Cons. MSE Vio. of Cons.
dim(H) =1 | 0.091 £0.081 0.051 £0.014 0.098 +0.073 0.178 £0.045 0.096 £ 0.046 0.107 £ 0.038
dim(H) =2 | 0.105 £0.062 0.082 +0.028 0.063 + 0.018 0.071 +0.014 0.070 £ 0.057 0.065 £ 0.012
dim(H) =3 | 0.607 £0.328 0.467 +0.234 0.505+0.369 0.597 +0.329 0.210 £0.146 0.163 £ 0.061

Dimensions

Table [5] shows the hyper-parameter study for the heat equation problem. We play with three au-
toencoder latent space dimensions (dim(z) = 8,9,10) and three conservation space dimensions
(dim(H) = 1,9,10). We found the model performance is less affected by the autoencoder space
dimension. However, both coordinate and conservation errors grow significantly when using 3 as
the conservation function output dimension. This can be explained by the over-parameterization of
the conservation space. If we use more conservation dimensions than the actual number of conserva-
tion laws, the extra dimension constraint limits the flexibility of the dynamical model representation
power. When dim(H (z)) = 3, we also notice the performance decreasing trend when using a
smaller latent space dimension, this indicates the dynamical prediction model is under heavy con-
straint and needs extra space to learn the data.
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Figure 7: Learned spring-mass system conservation function vs ground truth, left: on [—1,1] x
[—1, 1], right: on [—2, 2] x [-2, 2]

Figure [7] shows the conservation learning model performance on out-of-distribution data for the

spring-mass system. During training, the norm of the system state (\/:c[12 + [2]?)is randomly
sampled from [0.3, 1.2]. Therefore, the model shows relatively good performance for states within
the unit circle and cannot capture the square function for states with a norm greater than 1.5. Similar
to many data-driven methods, this is expected as the model has never been exposed to the testing
distribution before.

B ENCOURAGE “CORRECT” SIGN OF THE LEARNED INVARIANT FUNCTION
TO THE EXACT CONSERVATION LAW

For a conserved system, the observation lacks the directional information of conservation function,
making it impossible for the neural network to figure out the correct sign. However, such information
can be extracted from a dissipative system. For a slightly “leaky” system, we propose the following

14



Under review as a conference paper at ICLR 2023

ranking loss function to encourage the right order in learned invariants by utilizing the directional
information:

N T T
Liank = ﬁ Z Z Z ¢(H9(3322) - Hg(l'il)) (12)

i=1t1=1ta=t1+1

where ¢ is an elementwise clip function ¢(z) = clip(1 + z, 1, 2) and the loss function penalizes the
model if the learned quantity of later time steps are great than earlier steps. To bypass the tuning of
hyperparameter, we simply use the overall loss augmented by multiplication instead of summation:
Liotal = Lrank * Leon, then practice the loss function on a Real spring mass system with friction
terms

z[1] = z[2]
z[2] = —z[1] — 0.02z[2]

and fit the learned function to the exact conservation law by an affine function. We conducted the
experiments over 10 different seeds and record the coefficients of the optimal fitting function

IBO,Opta Bl,opt = arg minEwawD [”BIHQC (37) + BO - COHSV(CL‘)HQ} (13)

Bo,B1

With the ranking loss, the neural network is capable to “recognize” the correct sign of the conserva-
tion function with minor influence on fitting error.

Table 6: Relative coefficient between learned invariants and exact conservation function

# of positive 81 opt B1,0pt Bo,0pt fitting error
w/o ranking loss 6/10 6.95+£33.11 -631£33.21 0.283 £ 0.057
w/ ranking loss 10/10 3176+ 3.52 -22.14+5.70 0.2314 0.052

C ADDITIONAL NUMERICAL EXAMPLES

C.1 QUADRATIC g(z)
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Figure 8: Right: hg(x) = ax? + bz + c on different parameterization. Left: Contrastive loss on 1D
continuous label space as function of (a,b) € [—10,10]%, ¢ = 0.05.

We consider another numerical experiment with scalar function g(z) = 2?2 and all other setup
being same as the example in the main paper (Section [5.2). We found the optimal solutions over
(a,b) € [~10,10]? are h(z) = 1022/ — 1022, when hy(z) is a linear function to g(z).

C.2 g(x) WITH TWO PEAKS
To show the model capability for learning more complex conservation function terrains (i.e. energy

functions with multiple peaks), we design g(x) = — cos(2mx) with two different peaks at x =
—0.5 and 2 = 0.5. We use a 4th order polynomial (hg(z) = az* + baz? + c) to parameterize
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Figure 9: Right: hy(z) = ax* + bx? + c on different parameterization. Left: Contrastive loss on 1D
continuous label space as function of (a,b) € [—10,10]%, ¢ = 0.05.

the conservation function. The optimal solution lies at @ = 7.3 and b = —5.6 in our numerical
experiment. This is close to the 4th order polynomial fitting on g(z) = — cos(2nz) on z € [—1,1]:
—7.3004z* + 5.691522 — 0.4366.

D CONTRASTIVE LEARNING HYPERPARAMETER SELECTION

To evaluate how “good” the learned model is, we introduce two metrics here and conduct experi-
ments on the Ideal spring mass system. First, we use the fitting error from Equation (T3), revealing
how well the model approximate the exact physics law under linear fitting.

fitting error = lgmél Eocnp [1B1Ho, (z) + By — consv(z)||”] (14)
0,71

The second metric is the contrastive classification accuracy, where a state point xil is correctly
classified if the probability drawn from Equation (3)) is greater than 0.5, s.t.

Sr, 1 exp(— | Ho, (x},) — Hp, (2},)[1*)1(t1 # t2)
S Sor_yexp(— || Ho, (w},) — Ho, (x],)[I2)1(i # j or t1 # to)

> 0.5 (15)

Table 7: Averaged learned invariant fitting error to exact conservation and classification accuracy
(both x0.01)

# of traj. 10 25 50 200 400
Batch size err./acc. err./acc. | err./acc. | err./acc. | err./acc.
5 8.2/81.3 | 7.4/81.6 | 4.9/85.3 | 2.4/88.3 | 1.7/89.1
10 10.2/60.1 | 8.1/72.0 | 5.6/70.7 | 2.7/75.4 | 1.9/72.4
20 N/A 8.6/68.3 | 6.1/59.3 | 3.0/46.4 | 2.2/45.3
50 N/A N/A 6.8/8.3 3.2/9.1 2.3/9.2

We perform a parametric study for 4 different training batch size and number of trajectories used
and record the averaged results over 5 random seeds in Table [7] Each training lasts 1000 epochs,
which is long enough for loss function to stabilize. As expected, the classification accuracy increases
with more data. Interestingly, we found the fitting error decrease proportionally to the inverse of the
square oot of the trajectory number, s.t. err ~ O(N —1/2). We also notice the performance drop
with larger batch size. For classification accuracy, the drop is significant with Equation (I3) heavily
biased on negative examples. As for the increased error with large batch size, we suspect it is
because large mini batches are more likely to involve “similar” trajectories, making it more difficult
to distinguish the correct one as other close trajectory might have similar conservation values.
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