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ABSTRACT

We study the phase transition phenomenon inherent in the shuffled (permuted)
regression problem, which has found numerous applications in databases, privacy,
data analysis, etc. For the permuted regression task: Y = II°XBY, the goal is to
recover the permutation matrix I1° as well as the coefficient matrix BY. It has been
empirically observed in prior studies that when recovering IT?, there exists a phase
transition phenomenon: the error rate drops to zero rapidly once the parameters
reach certain thresholds. In this study, we aim to precisely identify the locations of
the phase transition points by leveraging techniques from message passing (MP).

In our analysis, we first transform the permutation recovery problem into a prob-
abilistic graphical model. Then, we leverage the analytical tools rooted in the
message passing (MP) algorithm and derive an equation to track the convergence
of the MP algorithm. By linking this equation to the branching random walk
process, we are able to characterize the impact of the signal-to-noise-ratio (snr)
on the permutation recovery. Depending on whether the signal is given or not, we
separately investigate the oracle case and the non-oracle case. The bottleneck in
identifying the phase transition regimes lies in deriving closed-form formulas for
the corresponding critical points, but only in rare scenarios can one obtain such pre-
cise expressions. To tackle this challenge, we propose the Gaussian approximation
method, which allows us to obtain the closed-form formulas in almost all scenarios.
In the oracle case, our method can fairly accurately predict the phase transition snr.
In the non-oracle case, our proposed algorithm can predict the maximum allowed
number of permuted rows and uncover its dependency on the sample number.

Numerical experiments reveal that the observed phase transition points are well
aligned with our theoretical predictions. Our study will motivate exploiting MP al-
gorithms (and related techniques) as an effective tool for permuted regression prob-
lems, which have found applications in machine learning, privacy, and databases.

I INTRODUCTION
In this paper, we consider the following permuted (shuffled) linear regression problem:
Y = II*XB’ 4+ oW, 1)

where Y € R™*™ denotes the matrix of observations, IT* € {0,1}™*™ is the permutation matrix,
X € R™¥? is the design matrix, B¥ € RP*™ is the matrix of signals (regressors), W € R™*™
denotes the additive noise matrix (with unit variance), and o2 is the noise variance. The task
is to recover both the signal matrix B? and the permutation matrix IT°. The research on this
challenging permuted regression problem dates back at least to 1970s under the name “broken sample
problem” (DeGroot et al.|, [1971; |Goell, (1975 [DeGroot & Goell 1976} 1980; [Bai & Hsingl [2005)).
Recent years have witnessed a revival of this problem due to its broad spectrum of applications in
(e.g.,) privacy protection, data integration, etc. (Unnikrishnan et al.,[2015; |Pananjady et al., 2018}
Slawski & Ben-David, 2019} Pananjady et al., 2017} [Slawski et al., 2020} Zhang & Lil 2020).

Specifically, this paper will focus on studying the “phase transition” phenomenon in recovering the
whole permutation matrix TI%: the error rate for the permutation recovery sharply drops to zero once
the parameters reach certain thresholds. In particular, we leverage techniques in the message passing
(MP) algorithm literature to identify the precise positions of the phase transition thresholds. The
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bottleneck in identifying the phase transition regimes lies in deriving closed-form formulas for the
corresponding critical points. This is a highly challenging task because only in rare scenarios can
one obtain such precise expressions. To tackle the difficulty, we propose the Gaussian approximation
method which allows us to obtain the closed-form formula in almost all scenarios. We should mention
that, in previous studies (Slawski et al., 2020} [Slawski & Ben-David, [2019; [Pananjady et al.,[2017}
Zhang et al., |2022; |Zhang & Li, |2020), this phase transition phenomenon was empirically observed.

Related work. The problem we study simultaneously touches two distinct areas of research: (A)
permutation recovery, and (B) message passing (MP). In the literature of permuted linear regression,
essentially all existing works used the same setting (I)). [Pananjady et al| (2018));[SIlawski & Ben-David
(2019)) consider the single observation model (i.e., m = 1) and prove that the signal-to-noise-ratio
(snr) for the correct permutation recovery is Qp (n¢), where ¢ > 0 is some positive constant. Slawski
et al.| (2020); Zhang & Li|(2020); |Zhang et al.| (2022) investigate the multiple observations model
(i.e., m > 1) and suggest that the snr requirement can be significantly decreased, from Qp (n°)
to Op (nc/ m). In particular, Zhang & Li| (2020) develop an estimator which we will leverage and
analyze for studying the phase transition phenomenon. Compared with the above work, our analysis
can identify the precise locations of the phase transition thresholds. In this February, there comes
a paper (Lufkin et al.| [2024) considering the same problem as ours but in a much simpler setting
(single measurement with m = 1). Compared with their work, our framework can easily reproduce
their predicted phase transition points, answer the questions they treat as open, and predict the phase
transition points in a unified framework. A detailed discussion can be found in the main context.

Another line of related research comes from the field of statistical physics. For example, using
the replica method, Mézard & Parisi| (1985;|1986)) study the linear assignment problem (LAP), i.e.,
mingg y J IL,;; E;; where II denotes a permutation matrix and E;; is i.i.d random variable uniformly

distributed in [0, 1]. [Martin et al.| (2005) then generalize LAP to multi-index matching and presented
an investigation based on MP algorithm. Recently, (Caracciolo et al.| (2017); Malatesta et al.|(2019))
extend the distribution of E;; to a broader class. However, all the above works exhibit no phase
transition. (Chertkov et al.| (2010) extend it to the particle tracking problem and observe a phase
transition phenomenon. Later, [Semerjian et al.| (2020) modify it to fit the graph matching problem,
which paves way for our work in studying the permuted linear regression problem.

Our contributions. We propose the first framework to identify the precise locations of phase
transition thresholds associated with permuted linear regression. In the oracle case where BY is
known, our scheme is able to determine the phase transition snr. In the non-oracle case where B is
not given, our method will predict the maximum allowed number of permuted rows and uncover its
dependence on the ratio p/n. In our analysis, we identify the precise positions of the phase transition
points in the large-system limit, e.g., n, m, p all approach to infinity with m/n — 7, p/n — 7.
Interestingly, numerical results well match predictions even when n, m, p are in the hundreds.

Here, we would also like to briefly mention the technical challenges. Compared with the previous
works (Mezard & Montanari, 2009; Talagrand, 2010; Linusson & Wastlund, 2004; Mézard & Parisi,
1987 [1986; Parisi & Ratiéville, [2002; Semerjian et al.,|2020), where the edge weights are relatively
simple, our edge weights usually involve high-order interactions across Gaussian random variables
and are densely correlated. To tackle this issue, our proposed approximation method to compute
the phase transition thresholds consists of three parts: 1) performing Gaussian approximation; 2)
modifying the leave-one-out technique; and 3) performing size correction. A detailed explanation
can be found in Sectiond Hopefully, our approximation method will serve independent technical
interests for researchers in the machine learning community.

Notations. In this paper, a ~ b denotes a converges almost surely to b. We denote f(n) ~ g(n)
when lim,, o f(n)/g(n) = 1, and f(n) = Op (g(n)) if the sequence f(n)/g(n) is bounded in
probability, and f(n) = op (g(n)) if f(n)/g(n) converges to zero in probability. The inner product
between two vectors (resp. matrices) are denoted as (-, -). For two distributions d; and do, we write
dy = dy if they are equal up to normalization. Moreover, P,, denotes the set of all possible permu-
tation matrices: P, = {IT € {0,1}"*" > . II,;; = 1,>°; IL;; = 1}. The signal-to-noise-ratio is

B!
snr = mmamj , where |||z is the Frobenius norm and o is the variance of the sensing noise.
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2 PERMUTATION RECOVERY USING THE MESSAGE PASSING ALGORITHM

Inspired by Mezard & Montanari| (2009); (Chertkov et al.|(2010); |Semerjian et al.|(2020), we leverage
tools from the statistical physics to identify the locations of the phase transition threshold. We start
this section with a brief review of the linear assignment problem (LAP), which reads as

~

Il = argmingy . (I, E), )

where E € R™*" is a fixed matrix and P,, denotes the set of all possible permutation matrices.

In our work, we first establish the link between the LAP and the permuted linear recovery, to be more
specific, formulating the permutation recovery of (I in the form of (). Next, we predict the phase
transition points by studying the matrix E, which is our major contribution.

We follow the approach in Mezard & Montanari (2009); |Semerjian et al.|(2020) and introduce a
probability measure over the permutation matrix I, which is written as

) = (Y2) H 1(1- Znn) H 1(1- Z_Hﬁ) X exp (— ﬂZHijEn), 3)

where 1(+) is the indicator function, Z is the normalization constant of the probability measure 1(IT),
and $ > 0 is an auxiliary parameter. It is easy to verify the following two properties, e.g., 1) ML

estimator in (2) can be rewritten as I = argmaxyy p4( H)I and 2) the probability measure (IT)
concentrates on IT when letting 5 — oo.

Then, we study the impact of {E;;} on the reconstructed permutation IT with the message passing
(MP) algorithm. First, we associate a probabilistic graphical model with the probability measure
defined in (3). Then, we rewrite the solution in (Z)) in the language of the MP algorithm. Finally, we
derive an equation (/) to track the convergence of the MP algorithm. By exploiting relation of (7)) to
the branching random walk (BRW) process, we can identify the phase transition points corresponding
to the LAP in (2).

2.1 CONSTRUCTION OF THE GRAPHICAL MODEL

First, we construct the factor graph associated with the probability measure in (3). Adopting the same
strategy as in Chapter 16 of Mezard & Montanari| (2009), we conduct the following operations, e.g.,
1) associating each variable IT;; a variable node v;;; 2) associating the variable node v;; a function
node representing the term e~#1%5¥:s ; and 3) linking each constraint > H” = 1 to a function node
and similarly for the constraint Z H” = 1. A graphical representation is available in FlgureE}

Now we briefly review the MP algorithm. In-

formally speaking, MP is a local algorithm (Z My e =1
to compute the marginal probabilities over

the graphical model. In each iteration, the
variable node v transmits the message to its
incident function node f by multiplying all
incoming messages except the message along
the edge (v, f). The function node f trans-
mits the message to its incident variable node
v by computing the weighted summary of Figure 1: The constructed graphical model. Circle
all incoming messages except the message icons denote the variable nodes and square icons de-
along the edge (f,v). For a detailed introduc- note the function nodes: blue squares (green squares
tion to MP, we refer readers to [Kschischang| resp.) for the constraints on the rows (columns resp.)
et al.| (2001}, Chapter 16 in [MacKay et al. of II, and red squares for the function e PE:;
(2003)), and Chapter 14 in Mezard & Monta{

nari| (2009).

It is known that MP can obtain the exact marginals (Mezard & Montanari, 2009)) for singly connected
graphical models. For other types of graphs, however, whether MP can obtain the exact solution
still remains an open problem (Cantwell & Newman, [2019; Kirkley et al.,[2021). At the same time,

JR=1

'Notice that the requirement IT € P,, is incorporated in y(TT) implicitly and thus we do not need an explicit
constraint.
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numerical evidences have been witnessed to show that MP can yield meaningful results for graphs
with loops; particular examples include applications in the coding theory (Chung, 2000} |[Richardson
& Urbanke, |2001} [2008)) and the LAP (which happens to be our case) (Mezard & Montanari, 2009;
Chertkov et al.,[2010; (Caracciolo et al., 2017; Malatesta et al.|[2019; |Semerjian et al., 2020).

2.2 THE MESSAGE PASSING (MP) ALGORITHM

Next, we perform permutation recovery via MP. The following derivation follows the standard
procedure, which can be found in the previous works (Mezard & Montanari, 2009; [Semerjian et al.|
2020). We denote the message flow from the node " to the variable node (i", j¥) as mu_, ;1 =) (-)

and that from the edge (-, j®) to node i* as m ;. jr)_,;(-). Similarly, we define 77z _, (i jr(-) and

;77 (+) as the message flow transmitted between the functional node j R and the variable

node (-, jR). Here the superscripts L and R are used to indicate the positions of the node (left and
right, respectively). Roughly speaking, these transmitted messages can be viewed as (unnormalized)
conditional probability P(II; ; = {0, 1}|(-)) with the joint PDF being defined in (3). The message
transmission process is to iteratively compute these conditional probabilities.

m,

First, we consider the message flows transmitted between the functional node - and the variable
node (i, jR), which are written as

m(iLJR)_,iL (7(') = 'f’fljR_,(l'L’jR) (’/T)

miL‘)(iL’jR)(ﬂ-) = Z H mkR*}(iL’kR)(WiL’kR) X e_BﬂikaREikaRﬂ(ﬂ + ZﬂiL’kR =1), @&
7L kR KRR k

e*BWE,;LJ»R’

where 7 € {0, 1} is a binary value. Similarly, we can write the message flows between the functional
node jR and the variable node (i*, j®), which are denoted as m . jr)_,;=(7) and Mz, 1 ) (7),
respectively. With the parametrization approach, we define

1 fl\’LiLﬁ(iL -R)(l) 1 m iR (it -R)(l)
hiL iL 4R £ 710g ,\7J7 h.r iL 4R /\177]
~ (7Y B miL—>(iL,jR)(0) e B TR (3L ,4R) (0)
Following the routine derivations in MP, we get the edge selection criteria, i.e., we pick 7 (i%) = jR if
hiL—)(iL,jR) + th—)(iL,jR) > EiL)]‘R; (5)

otherwise, we have 7(i') # jR. Due to the fact that (IT) concentrates on II when 3 is sufficiently
large, we can thus rewrite the MP update equation as

hiLA)(iL’jR) = kr'gl;i?R EiL’kR - hkRﬁ(iL’kR), thA)(iL’jR) = g;ﬁ EkLij - hkL*)(kL’jR)7 (6)
which is attained by letting § — oco.

2.3 IDENTIFICATION OF THE PHASE TRANSITION THRESHOLD

To identify the phase transition phenomenon inherent in the MP update equation (6], we follow the
strategy in Semerjian et al.| (2020) and divide all edges (i, jR) into two categories according to
whether the edge (i, jR) corresponds to the ground-truth permutation matrix IT° or not. Within each
category, we assume the edges’ weights and the message flows along them can be represented by
independently identically distributed random variables.

For the edge (i-, 7%(i%)) for the ground-truth correspondence, we represent the random variable
associated with the weight E;; as Q. The random variable for the message flow along this edge
is denoted H (for both A _,(x jry and hjr_, i j=)). For the rest of edges (it, j®) (jR # 74(i%)),
we define the corresponding random variables for the edge weight and message flow as Qand H,
respectively. Then, we can rewrite (6) as

HY —min (Q - HO,H'®), HED = min O, — HY, @)

1<i<n—1

where (-)() denotes the update in the ¢-th iteration, H "is an independent copy of H, {Hi(t)}lgign_l

and {ﬁi}lgign,l denote the i.i.d. copies of random variables H ((.t)) and SA)(.). This equation (7) can
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be viewed as the analogous version of the density evolution and state evolution, which are used
to analyze the convergence of the message passing and approximate message passing algorithm,
respectively (Chung, 2000; Richardson & Urbanke, [2001} [2008; |Donoho et al., [2009; [Maleki, |2010j
Bayati & Montanaril 2011} |Rangan| 201 IJ).

Remark 1. We conjecture that the distribution difference in the edges’ weights is a necessary
component in capturing the phase transition. On one hand, according to|Mézard & Parisi (1986}
1987); |Parisi & Ratiéville| (2002), |Linusson & Wiistlund, (2004)); \Mezard & Montanari| (2009);
Talagrand, (2010), there is no phase transition phenomenon in LAP if the edges’ weights, i.e., E;;, are
assumed to be i.i.d uniformly distributed in [0, 1]. On the other hand, Semerjian et al.|(2020) show a
phase transition phenomenon when assuming the weights E,; follow different distributions among
the edges associated with the ground-truth correspondence (i"7 h (z")) and the rest edges.

Relation to branching random walk (BRW) process. Conditional on the event that the permutation
can be perfectly reconstructed, i.e., H + H "> Qasin (E]), we can simplify as
HOD = min HY 45, ®)
1<i<n—1 "'
where E is defined as the difference between O and Q, which is written as = £ Q- ), and
{Hi(t)}lgign_l and {E;}1<;<n—1 denote the i.i.d. copies of random variables H((,t)) and = ..

Remark 2. We briefly explain why the phase transition points predicted by (1) correspond to the
full permutation recovery (i.e., evaluating the performance in terms of P(ﬁ #* Hh) ). This is because
that we regard message flows hi_, i jry and hjr_, . jry i.i.d. samples from certain distributions
(represented by the random variable H ) in the derivation. In other words, we track the behaviors of
all message flows when studying the evolution behavior of the random variable H.

Hence, we can claim that all correspondence between all pairs is correct if we find the correct
recovery can be obtained for an arbitrary sample H. On the other hand, we can expect some pairs
with wrong correspondence if H leads to incorrect recovery. |°| Thus, we can predict the phase
transition points based on the convergence of ().

Adopting the same viewpoint of [Semerjian et al.| (2020), we treat (8)) as a branching random walk
(BRW) process, which enjoys the following property.

Theorem 1 (Hammersley| (1974); [Kingman| (1975); [Semerjian et al.[(2020)). Consider the recursive

distributional equation K (*+1) = ming <;<pn K i(t) + =, where K Z-(t) and Z; are i.i.d copies of random
(31
T

variables K((.t)) and =y, we have K 2 infyso % log [Z?Zl EB_HE"}, conditional on the

event that limy_, oo K®) # oco.

With Theorem|[I] we can compute phase transition point for the correct (full) permutation recovery,
ie, H+H > Q, by letting infyo % log [Y-1 | Ee=%%¢] = 0, since otherwise the condition in
(3) will be violated (see a detailed explanation in Appendix). In practice, directly computing the
infimum of infg~o § log [>°1—; Ee~?%] is only possible for limited scenarios. In the next section,
we propose an approximate computation method for the phase transition points, which is capable of
covering a broader class of scenarios.

3 ANALYSIS OF THE PHASE TRANSITION POINTS

Recall that, in this paper, we consider the following linear regression problem with permuted labels

Y = II'XB + oW,

where Y € R™*" represents the matrix of observations, II° € P, denotes the permutation matrix to
be reconstructed, X € R™*? is the sensing matrix with each entry X;; following the i.i.d standard

normal distribution, Bf € RPX™ is the matrix of signals, and W € R™*" represents the additive
noise matrix and its entries W; are i.i.d standard normal random variables. In addition, we denote h

as the number of permuted rows corresponding to the permutation matrix I8,

21t’s noteworthy that the fact H leads to incorrect recovery does not mean the reconstructed correspondences
are simultaneously incorrect. Numerical experiments also confirm this claim.
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In this work, we focus on studying the “phase transition” phenomenon in recovering IT’ from the
pair (Y, X). That is, the error rate for the permutation recovery sharply drops to zero once certain
parameters reach the thresholds. In particular, our analysis will identify the precise positions of the
phase transition points in the large-system limit, i.e., n, m, p, and h all approach to infinity with
m/n — T, p/N — Tp, h/n — 73,. We will separately study the phase transition phenomenon in 1)
the oracle case where B is given as a prior, and 2) the non-oracle case where B is unknown.

In this section, we consider the oracle scenario, as a warm-up example. To reconstruct the permutation
matrix IT?, we adopt the following maximum-likelihood (ML) estimator:

~ oracle
II

— argming;_p, <n, —YB“TXT> . )

Denoting the variable E;’J'.ac'e as —X;(i)BhB”TX]- - oW/B X, (1 < i,j < n), we can
transform the objective function in @I) as the canonical form of LAP, i.e., Y i 1I;; E;’;ac'e.
3.1 THE PHASE TRANSITION THRESHOLD FOR THE ORACLE CASE
In the oracle case where B is known, we define the following random variable =:

E=2 BB (x —y) +owB' (z —y), (10)
where @ and y follow the distribution N(0, I, ), and w follows the distribution N(0, L, x,).

Assumption 1. We ignore the weak correlation across the E%’»ac'e and view the corresponding =; as

i.i.d. copies of (10).

Numerical experiments show that we can safely adopt Assumption [T without much sacrifice in the
prediction accuracy, see Table[I|and 2] Recalling Theorem|[I] we predict the critical points by letting

i 1/g . —05; =i 1/6 - _GE) =
;r;% /6 - log (;Ee > égg /o (logn—i—logEe 0. (11)
The computation procedure consists of two stages:

* Stage I. We compute the optimal 6,,, which is written as 0, = argmin9>01/ - (log n + log Ee’eai) .
* Stage II. We plug the optimal 6* into (TT)) and obtain the phase transition snr accordingly.

The following context illustrates the computation details.

Stage I: Determine 6.. The key in determining 6, lies in the computation of Ee~ %=, which is
summarized in the following proposition.
Lemma 1. For the random variable E defined in (I0), we can write its expectation as
rank(Bh)
Ee % = [ [1+20)7 —0°X7 (A} +207)] 7 (12)
i=1
provided that
020%\7 < Lland 0°X7 (A} +20%) <1+ 20X (13)

hold for all singular values \; of B, 1 < i < rank(Bh).
Remark 3. When the conditions in (13) is violated, we have the expectation Ee~%= diverge to
infinity, which suggests the optimal 0, for infgy~ ¢ log(n-Ee’ez)/e cannot be achieved.
. . . . Oftos(nEem%) /o]

With (T2), we can compute the optimal 6, by setting the gradient ————,—— = 0. However, a
closed-form of the exact solution for 6* is out of reach. As a mitigation, we resort to approximating
log Ee~%F by its lower-bound, which reads as

2

)l
F

The corresponding minimum value 0. is thus obtained by minimizing the lower-bound, which is
written as . = 2logn/ (|| BB} + 202 ||BA; ).

— 2 2
log Ee ™= > % (H‘B“TBh + 202H(B“
F

2
F




Under review as a conference paper at ICLR 2025

Stage II: Compute the phase transition snr. We predict the phase transition point snrypce by
letting the lower bound being zero, which can be written as
logn
0*
With standard algebraic manipulations, we have
Proposition 1. The predicted phase transition for the oracle case in ©) can be computed as

2
2(log n)snroracte - ‘HBN/MBNMF ) Bn/lllB”|||FWF + 4108 7/m = snropcle- (14)

2 O* 2 2
— 1Bl + 5 (IHB”TB”HIF +20° IHB”IHF) =0.

To evaluate the accuracy of our predicted phase transition threshold, we compare the predicted values
with the numerical values (c.f. Appendix A). The results are shown in Table[I]} from which we can
conclude the phase transition threshold snr can be predicted to a good extent. In addition, we observe
that the gap between the theoretical values and the numerical values keeps shrinking as m increases.

Table 1: Comparison between the predicted value of the phase transition threshold snrypacle in
Proposition [T]and its simulated value when n = 500. P denotes the predicted value while S denotes
the simulated value (i.e., mean =+ std). S corresponds to the snr when the error rate drops below 0.05.
A detailed description of the numerical method can be found in the appendix (code also included).

m | 20 30 40 50 60 70

P 3.283 1.415 0.902 0.662 0.523 0.432

S | 25294+0.079 1.290+£0.054 0.872£0.034 0.649+0.012 0.5154+0.016 0.429+0.015
m | 100 110 120 130 140 150

P 0.284 0.255 0.231 0.211 0.195 0.181

S | 0.282+£0.008 0.256 +0.006 0.232£0.006 0.212+0.004 0.196 +0.006 0.183 £ 0.005

3.2 GAUSSIAN APPROXIMATION OF THE PHASE TRANSITION THRESHOLD

From the above analysis, we can see that deriving a closed-form expression of the infimum value 6 of
log(nEe~"%) /g can be difficult. In fact, in certain scenarios, even obtaining a closed-form expression of
Ee~9% is difficult. To handle such challenge, we propose to approximate random variable = by a
Gaussian N(EZ, Var=Z), namely,

_ 92
Ee % ~ exp (-91@3 + 2VarE> ) (15)

With this approximation, we can express , = inflog(nEe™"%)/p in a closed form, which is

4/ 2log n/VarE.

Theorem 2. For the random variable Z defined in (10), its mean and variance can be computed as

—_ 2 —_ 2 2
== (1Bl Var= = 3||BBT | + 207 | B . (16)

Then, we can predict the phase transition point as follows.
Proposition 2. With Gaussian approximation, we can predict the critical point corresponding to the
phase transition in (1)) as

2(logn) - VarZ = (EE)?, (17)
where EE and VarE can be found in Theorem 2]
Example 1 (Scaled identity matrix). We consider the scenario where B! = AL, «m. Then, we have
BY/ I8, = m~Y/21. The phase transition threshold sntogpce in (T4) is then 41o8n/(m—21ogn), and
the phase transition threshold sntoage in (T7) as 41087/ (m—610g n). This solution is almost identical
to (T4) in the limit as snropacle & SNforacle = 41087/m ~ nm — 1.

Moreover, we should mention that 1) our approximation method applies to a general matrix BF,
not limited to a scaled identity matrix; and 2) our approximation method can also predict the
phase transition thresholds to a good extent when the entries X,;; are sub-Gaussian. The numerical
experiments are given in Table[2] from which we can conclude that the predicted values are well
aligned with the simulation results.
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Remark 4. In addition, we want to discuss one newly-released paper (Lufkin et al., |2024), which
studies the same topic but in a much simpler setting (i.e., single measurement with m = 1). Compared
with their work, our framework can easily produce results that the rigorous method in|Lufkin et al.
(2024) regards as an open problem. For example, the results (on the oracle case) which we treat as
a warm-up example, are unsolved and specifically mentioned in the last paragraph. In particular,
our framework can derive their proposed conjectured phase transition snr = n*/™_ Moreover, our
framework can also tell when the conjecture holds, i.e., BY is an identity matrix, and our predictions’
accuracy has been extensively verified by numerical experiments.

Other advantages of our work include 1) our ability to more accurately pinpoint phase transition
points (their work can only obtain the lower bound of the phase transition point, while our work can
predict the precise location); 2) our applicability to a wider array of cases (we cover the case when
m > 1 while their method only works for m = 1); and 3) our consolidation into a more cohesive
framework to predict the phase transition point.

Table 2: Comparison between the predicted value of the phase transition threshold Snreacie in
Proposition [2| and its simulated value when n = 600. In (Case 1), half of singular values are with
A and the other half are with /2; while in (Case 2), half of the singular values are with A and the
other half are with (3-1)/1. Gauss refers to X;; AN (0, 1) and Unif refers to X;; ES Unif[—-1,1]. P
denotes the predicted value and S denotes the simulated value (i.e., mean = std). S corresponds to the
snr when the error rate drops below 0.05. Averaged over 20 repetitions.

m I 100 110 120 130 140 150

(Casel) P 0.297 0.266 0.241 0.220 0.203 0.188
(Gauss) S || 0.307£0.009 0.27540.005 0.246 £0.006 0.2274+0.007 0.210 £0.005 0.194 % 0.004
(Unif) S || 0.294 £0.008 0.266 +0.005 0.239 £0.008 0.216 £0.004 0.201 +0.005 0.189 £ 0.006

(Case2) P 0.310 0.276 0.249 0.227 0.209 0.193
(Gauss) S || 0.294 £0.008 0.266 +0.006 0.241+0.005 0.220+£0.004 0.204 £0.006 0.190 £ 0.003
(Unif) S || 0.287 £0.007 0.255+.0043 0.234 £0.007 0.213+£0.005 0.197+0.003 0.185 =+ 0.005

4 EXTENSION TO NON-ORACLE CASE

Having analyzed the oracle case in the previous section, we now extend the analysis to the non-oracle
case, where the value of BY is not given. Different from the oracle case, the ML estimator reduces to
a quadratic assignment problem (QAP) as opposed to LAP. As a mitigation, we adopt the estimator
in|Zhang & Li| (2020), which reconstructs the permutation matrix within the LAP framework, i.e.,

~ non-oracle . T T
= argmingp, (TL-YY'XX"). (18)

We expect this estimator can yield good insights of the permuted linear regression since 1) this
estimator can reach the statistical optimality in a broad range of parameters; and 2) estimator exhibits
a phase transition phenomenon, a similar pattern as the oracle case. The technical details of the above
claims can be found in|Zhang & Li|(2020).

Following the same procedure as in Section [3| we identify the phase transition threshold snr with
Theorem 1} First, we rewrite the random variable = as

E2Y,Y X (X - X5) | (19)

where ¢ and j are uniformly distributed among the set {1,2,--- ,n}. Afterwards, we adopt the
Gaussian approximation scheme illustrated in Subsection [3.2] and determine the phase transition
points by first computing E= and VarZ, respectively.

Theorem 3. For the random variable Z defined in (19), its mean E= and variance Var= are
EZ = n (1= 7) [(1+7) [|BYl; + mm0?]
VarZ = (1= 1) 72 [[[BE[J2 +mo?]” + 02 [2m, + 31— 7)?] BB
+ 2 (67, (1= ) + (3 = m) 72] [[BETBE;,
respectively, where the definitions of 7, and T, can be found in Section|B|

The proof of Theorem 3]is quite complicated, involving Wick’s theorem, Stein’s lemma, the condi-
tional technique, and the leave-one-out technique, etc. We defer the technical details to Section
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4.1 AN ILLUSTRATING EXAMPLE

Afterwards, we predict the phase transition points. Unlike the oracle case, we notice the edge weights
E;; are strongly correlated, especially when j = 7%(4), which corresponds to the non-permuted rows.
To factor out these dependencies, we only take the permuted rows into account and correct the sample
size from n to 7, n.

Proposition 3. The predicted snrpon-oracle fOF the non-oracle case in @ can be computed by solving
2log(n7),)VarZ = (EE)?,
where EZ and Var= are in Theorem/[3]
To illustrate the prediction accuracy, we consider the case where B*’s singular values are of the same
. (BH .. . .
order, i.e., ,/\\Jggh; = 0(1), 1 < 4,5 < m, where \;(-) denotes the i-th singular value. Then, we
obtain the snryon-oracle, Which is written as

SNFhon-oracle ~ 7)1 /7’2 . (20)

Here, 77 and 7, are defined as

2
m = 21,7, log (n7h) — Tp(7p + 1) (1 = 70) + 7 \/2(1 — )7 - log (nT3),
A 2 2
ne=(1—m)(mp+1)°— 27T, log(ntp).
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= £ 1000 3
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1000 000 1500
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Figure 2: (Upper panel) Predicted phase transition points snrpon oraice- (LLower panel) Plot of the
recovery rate under the noiseless setting, i.e., snr = oco. Gaussian: BEj N(0,1); Identity:

B! = I,.,; Block-diagonal: B = diag{1,---,1,0.5,---,0.5}. We observe that the correct
recovery rates drop sharply within the regions of our predicted value.

.76

iid
~Y

Note that the predicted snryon-oracte Varies for different 75, and 7,. Viewing snryon-oracie s a function of
Th, We observe a singularity point of 73, which corresponds to the case when 72 = 0. This suggests a
potential phase transition phenomenon w.r.t. 73,. To validate the predicted phenomenon, we consider
the noiseless case, i.e., snr = 0o, and reconstruct the permutation matrix 1% with @) Numerical
experiments in Figure [2] confirm our prediction.

Due to the space limit, this section only presents a glimpse of our results in the non-oracle case. The
technical details along with the additional numerical experiments can be found in Section [C]

5 CONCLUSIONS

This is the first work that can identify the precise location of ]ghase transition thresholds of permuted
linear regressions. For the oracle case where the signal B is given as a prior, our analysis can
predict the phase transition threshold snrorace to a good extent. For the non-oracle case where
B" is not given, we modified the leave-one-out technique to approximately compute the phase
critical snryon-oracle Value for the phase transition, as the precise computation becomes significantly
complicated as the high-order interaction between Gaussian random variables is involved. Moreover,
we associated the singularity point in snryon.oracle With a phase transition point w.r.t the allowed
number of permuted rows. Moreover, we present numerous numerical experiments to confirm the
accuracy of our theoretical predictions.
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A ANALYSIS OF ORACLE CASE: PROOF OF LEMMA (1]

) b
Proof. Denote the singular values of Bf as { )\i}gﬂ;(B ). We exploit the rotation invariance property

of Gaussian random variables; and have = be identically distributed as

rank(BY)

rank(BY)
= > Nui(w—y)+o Y Awi(zi—y).
i=1 i=1

0]

Due to the independence across w, x, and y, we have

rank(BY)
Ee %% = H E, .y wexp [—HA?J: (x —y) — o hw (x — y)]
i=1
ran E
k(B) 9)\12(1' —v) (902(x —y) — 2x)
= H E; ,exp 2
i=1

rank(BF) exp 0>\$x2(0()\?+02)_2)
D 2—-262)X%02
= J] E.
i} V1—0%2)\202
rank(BY) L
= I (142007 0227 (A +20%)) 2,

i=1

where in D we use the fact §?6%\? < 1 and in @ we use the fact 02A7 (A\? + 202) < 1+20X2. O

13
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B NUMERICAL METHODS FOR PHASE TRANSITION POINTS

We present the numerical method to compute the phase transition points in Table|l{and 2] To begin
with, we notice that the correct recovery rate is in monotonic non-decreasing relation with the snr,
that is, the error rate P(IT # Hh) for a larger snr is at least equal to, if not less than, that for a smaller
snr. Thus, we propose a binary-search-based method to compute the phase transition points.

For each snr, we run (2)) for 100 times and calculate the error rate of permutation recovery (full
permutation recovery, namely, P(IT # l'_[h)). If the error rate is below 0.05, we regard snr as above
the phase transition point and try a smaller value. Otherwise, we will try a larger value. The detailed
description is in Algorithm|I]

For each parameter setting, we run 20 times of Algorithm[I] Then, we estimate its mean and the
standard deviation from these estimated phase transition points.

Complexity analysis. For a given precision threshold e, each iteration (Line 3 to Line 14 in
Algorithm [1)) takes O(log é) rounds to converge and it runs the permutation recovery algorithm 100
times in each round. That means, we run 20 x 100 x log,(10%) (a 26575) rounds of experiments
for each parameter.

Algorithm 1 Numerical method to compute the phase transition points.

1: Initialization. Set the initial search range for snr as [I, ]. Define the precision threshold .
2:

3: while |l —r| > e do

4:  Set snrpigde = ”TT

5: Given snryigae, we run (2)) for 100 times.

6

7

8

Compute the error rate of full permutation recovery, namely, IF’(f[ #+ Hh).

if the error rate is below 0.05 then

9: T — SNrpiddle — €, # we have snrpiqaqe be greater than the phase transition point
10:  else
11: I — sNrmigqle + €. # we have snrpiqqe be no greater than the phase transition point
12:  endif
13:
14: end while
15:

16: Output. Return the phase transition point snryjqdie-

14
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C ANALYSIS OF THE NON-ORACLE CASE
This section presents the technical details in analyzing the non-oracle case.

C.1 ADDITIONAL NUMERICAL RESULTS

We consider the same settings as in Subsection[d.1} Here, we present additional numerical results to
evaluate the prediction accuracy of our method.

C.1.1 VERIFICATION OF PHASE TRANSITION POINTS

For the predicted phase transition snryon oracle, W€ notice an increasing gap between the predicted
value and the simulated value, unlike in the oracle case. This might be caused by the strong
correlation across the edge weights {Eij}lgi’ j<n» or due to the error with the approximation relation
Ee~ %% ~ Eexp (0EE — 0°Var=/3).

1500 F T T P T 7 14
1000 - n = 500. p = 100] —— Gaussian
° T P = 0.8y —A-Identity
T—é 500 - ] @ —-o-Block-diagonal
s A 0.6}
>
g ° :
>
0.4}
2 s00| 18
x o
-1000 | 0.2r
-1500 : —o— : 0 .
05 06 07 08 09 1 066 068
Th :
1500 5
1000 n=650,p=175 0%
2 £
Q L
g 50 A 06f
e B
£ o : ,
Qﬂ: 3 0.4 || Gaussian
Z 500 | 18 -A-Block-diagonal
n = —-6-Identity
-1000 0.2y
n=650,p=175
-1500 : : : : ‘ [ — . . .
062 063 064 065 066 067 068 06 062 064 066 068
Th Th

Figure 3: (Left panel) Predicted snryoporaice- (Right panel) Plot of recovery rate under the
noiseless setting, i.e., snr = co. Gaussian: BEj id N(0, 1); Identity: Bi = I, ,; Block-diagonal:

B = diag {1,---,1,0.5,--- ,0.5}.
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Additional experiments are available in Table[3] from which we conclude the solution (20) can predict
the phase transition point w.r.t. 7 to a good extent.

Table 3: Comparison between the predicted value of the phase transition threshold 73, and its
simulated value when n = 500. P denotes the predicted value while S denotes the simulated value.
S corresponds to the 75, when the error rate drops below 0.05. We adopt a similar algorithm as in
Algorithm|T] The only difference is we replace (2)) in Line 5 with (Ig).

p| 75 100 125 150 175 200

P |08 073 068 062 0.56 0.52
S|077 07 07 066 0.61 0.57

C.1.2 IMPACT OF n ON THE PHASE TRANSITION POINT

We study the impact of n on 7. The numerical experiment is shown in the top row of Figure [3]
from which we can see the predicted phase transition 75, matches to a good extent to the numerical
experiments. Then, we fix the p and study the impact of n on 77,. We observe that the phase transition
Tp, increases together with the sample number 7, which is also captured by our formula in 20).

C.1.3 LIMITS OF 73,

We consider the limiting behavior of 7, when 7, approaches 0, or equivalently, p = op (n). We can
simplify E= and VarZ in Theorem[3]as

— 2

Exn(l-n) B

VarZ = 3n% (1 — ) || BT B[,
We notice that the singularity point in (20) disappears. In other words, we can have the correct
permutation matrix II° even when h &~ n. This is (partly) verified by Figure {4 from which we

observe that the phase transition point w.r.t. 7, approaches to one, or equivalently, h approaches n, as
T, decreases to zero.

C.2 ANALYSIS OF NON-ORACLE CASE: PROOF OF THEOREM 3]

This subsection presents the computational details of Theorem 3} To begin with, we decompose the
random variable = as

E=2; 40 (Es + E3) + 0°Ey, (21)

where =; (1 < i < 4) are respectively defined as

B £ X L BB XTI X (X s) — X;),

Hp £ XTTru(i)BhWTX(th(i) - Xj),

E3 2 W/ BT XTI T X (X sy — X;),

E 2 W WIX(X o) — X5).
Unlike the oracle case, obtaining a closed-form expression of Ee~ % would be too difficult. Hence,
we adopt the Gaussian approximation method as presented in Section The task then transforms

to computing the expectation and variance of =. Before delving into the technical details, we give a
glimpse of our proof strategy.

Computation of the mean E=. For the computation of the mean EZ=, we can verify that EZ9 and
E=3 are both zero, due to the independence between X and W. For E=; and E=,, we adopt Wick’s
theorem to obtain

EZ; = n (1) (1+7,) [1+ op (1] || B2,
EZy = nm7, (1 — ) [1 4 op (1)].

16
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Figure 4: Plot of correct recovery rate w.r.t. 7;,. We consider the noiseless scenario (i.e., snr = o)
and pick n = {800, 1000, 1200, 1400}.

Computation of the variance Var=. Since Var= = E=? — (EZ)?, we just need to compute EZ2,
which can be expanded into the following six terms

EZ2 = EZ2 + 0%EE2 + 0°EZE2 + 0'EE2 4 20°EE, 5y + 202 EE,E3.
The computation of above terms turns out to be quite complex due to the high order Gaussian
random variables. For example, the term EZ2 involves the eighth-order Gaussian moments, the
terms ]EE%, EE%, E=1Z4 and EZ5=3 all involve the sixth-order Gaussian variables, etc. To handle

the difficulties in computing EZ2, we propose the following computation procedure, which can be
roughly divided into 3 phases.

* Phase I: Leave-one-out decomposition. The major technical difficulty comes from the correlation
between the product X TII°X and the difference Xri(iy — X;j. We decouple this correlation by
first rewriting the matrix X " IT*X as the sum 3, XX, (¢)- Then we collect all terms X, X[, ;)
independent of X ;) and X; in the matrix 3 and leave the remaining terms to the matrix
A e, A = XTIIX — 3. This decomposition shares the same spirit as the leave-one-out
technique (Karoui, 2013;Bai & Silverstein, |2010; |[Karoui, [2018}; [Sur et al., 2019). Then, we divide
all terms in IEZ? into 3 categories: 1) terms only containing matrix 3; 2) terms containing both 3
and A; and 3) terms only containing A.

* Phase II: Conditional technique. Concerning the terms in the first two categories, which covers
the majority of terms, we can exploit the independence among the rows in the sensing matrix X.
With the conditional technique, we can reduce the order of Gaussian moments by separately taking
the expectation w.r.t 3 and w.r.t vectors X 4(;) and X;.

* Phase III: Direct computation. For the few terms in the third category (i.e., terms only con-
taining A), we compute the high-order Gaussian moments by exhausting all terms and iterative

applying of Wick’s Theorem and Stein’s Lemma, which can reduce the higher-order Gaussian
moments to lower-orders.

The computation details are attached as follows.
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C.2.1 NOTATIONS

Note that our analysis can involve the terms containing (X (i) — X;) and X T IT*X simultaneously.
To decouple the dependence between (X (i) — X;) and X "TI*X, we first rewrite the matrix
X TII°X as the sum Do XgXIW) and then collect all terms XgX;lr—h © independent of X+ ;) and
X; in the matrix 3, which is written as

S Z XX L p)- (22)
€m0 (0) (i)

The rest terms are then put in the matrix A such that XTII*X = ¥ + A. Note that the expression
of A varies under different cases such that

* Case (s,5): i = 7°(i) and j = 7%(5). We have
A=A =X+ X;X]. (23)

* Case (s,d): i = 7%(i) and j # 7%(j). We have

A =AY =X X+ XX+ Koo () X (24)
* Case (d, s): i # 7%(i) and j = 7%(j). We have
* Case (d,d): i # (i) and j # 7°(j). We have
d,d) _ T T T
A =AY = XX )+ X X o) + XX D)+ Xisoa (X (26)
In addition, we define the matrix M as B!B!T | and define the index sets S , D, and Dpyir as
SE&{t|t#iorg, t=7"(0)}, (27)
DE{e] e, () #iorj, £#£7(0)}, (28)
Doair = { (01, £2) : €1 = 1 (la), bo = 7*(£1), 41,62 € D}, (29)

respectively.

C.2.2 MAIN COMPUTATION
In this case, we can write = as

E= XL BB XTI X Xy — X;] +0 X () BEWTX [X ) — X

Ao
25,

+oW/B XTI X [X o) — X;] +02 W WTX [Xa) — X5]

[I>

[1]

2

The following context separately computes its expectation EZ and its variance Var=.

Expectation. We can easily verify that both E=Zs and E=3 are zero. Then our goal turns to
calculating the expectation of E=; and E=,. First, we have

E1=E Y XL MXX] X IEZX HMX (X[ X
(=mi(0)
With Lemma[T6] and Lemma[I7] we conclude
EZ; =(n—h)Te(M) + (p + 1)E1i:7rh(i) Tr(M) — (pIE]li:j + Eﬂj:ﬂz(i)) Tr(M)
= (n+p—"h—hp/n)[1+o(1)] Tr(M). (30)
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Meanwhile, we have
EZy = E[W/W; -+ W/W, -« W/W,| X (X — X;)

mp(n — h)o?

=mEX, (Xpe) — Xj) = mp (ELi_ps(y — Elij) = [1+o(1)]. (3D

Combining and and neglecting the o(1) terms yields

EE ~ (n+p) (1 h/n) [|B*[|; + M.

Variance. Then we study the variance of =. With the relation Var(Z) = EZ? — (EZ)?, our goal
reduces to computing E=2, which can be written as

22 = EE? + ¢°EZ2 + 0°EE2 4 0'EZ2 + 20°EE, 2y + 20°EE,E3.
The following context separately computes each terms

2

E=2 ~ (n— h)? <1 + %p + n(np_h)> [Tr(M)]?

2 . 2 _ 5
2p <1_Z) L8 =hp  (3n—R)p

2
— 43
o n + n3 n3

Tr(MM),

R\? p*  dp(n—h)?
E=2 ~ 2n2 <p+ <1) +p2+p("3)> Tr(M),
n n n

Sam T
o mp(n—h)(n+p—~h

Eg, 5, ~ T2 )72 P=M) o,
_ n—h)(n+p—~h

E=Zo=3 ~ il )(n p=h Tr(M).

The detailed computation is attached as follows.
Lemma 2. We have

2

EZ2 = (n — h)? (1 + %p + ﬁ + 0(1)> [Tr(M)]*

2p ( h>2 N 6(n — h)?p N (3n — h)p?

2 — —_ —
+nf |3 (1 - 5+ o(1) | Te(MM),

where 21 is defined in (21).

Proof. We begin the proof by decomposing =% as

E=? = E (Xpi() — Xj)T EMX ()X e () MET (X — X)

A1

+ 2]E (Xﬂ-h(z) — XJ)T EMth(l)X;rrh(z)MAT (Xﬂ,n(z) — Xj)

Ag
+E (Xpa) — X;) T AMX ey X L () MAT (Xi(i) — X;),

A3

and separately bound each term as in Lemma[3] Lemma[4] and Lemma 3]
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Lemma 3. We have
.
E(Xpei) = X;5) EMXpy Xy MET (Xe(s) — X;)
2 R\?
i3 (1— ) +o(1)
n n

= (n—h)* (1 +0(1)) [Tr(M)]* + n? Tr(MM).

Proof. Due to the independence among different rows of the sensing matrix X, we condition on 3
and take expectation w.r.t. X ;) and X, which leads to

_ T T T T T T
EA; = EX () EMX ()X L MBT Xy +E X ] EMX iy X e (; M T X

Al,l A1,2

For EA; 1, we obtain

EAy; D E[Tr (SM) Tr (SM)] + ETr (BMMTET) + ETr (EMEM)

Z+2(lh)2+0(1)

D (0 - ) [+ o) [T (M) + n? n

Tr(MM),

where @ is due to (63), and @ is due to Lemma@ Lemma['I_Z], and Lemma@ As for EAq o, we
have

B 2
EA = ETr (SMMTST) =02 |2 4 (1 - ) o(1)| T (MTM)
n n
and hence complete the proof. [
Lemma 4. We have
— )2
E (Xos) — X5) | SMX) XL MAT (X — X;) = w [(Te(M))” + 3 Te(MM)|

Proof. Similar as above, we first expand A5 as

T T T T T T
EAQ = (TL — h)E Xﬂh(i)MXTrh(i)Xﬂh(i)MA Xﬂrh(i) —|—(’/L — h)]E Xj MXﬂ—h(l)Xﬂ.uO)MA Xj

A2’1 A2,2
T T T T T T
—_ (’]’I, — h,)E Xﬂh(i)MXﬂh(i)Xﬂh(i)MA X] —(TL - h)E X‘J MXﬂh(z)XWh(L)MA Xﬂ'h(i) .

A2'3 A2,4
Case (s,5): i = n%(i) and j = 77(j). We first compute Ay ; as

EAs1 = EX MX, X! MX; X/ X; + EX/ MX; X MX;X X,

s

E[| X [3(X] MX;)* E(XMX;)*

(p+5) {(Tr(M))Q + Tr(MM) + Tr (MTM)} .
We consider Ay o as

EAg s = E (X MX; X MX;) +E (X; MMX; X X;)

E(X] MX,)’ E|IX, 13X MMX;

= (Tr(M))? + Tr(MM) + Tr (M M) + (p + 2) Tr (MM)..
As for Ag 3 and Ay 4, we can verify that they are both zero, which gives

EAz = (n—h)p[l+ o(1)] [Tr(M)]2 +3(n—h)p[l+0o(1)] Tr(MM). (32)
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Case (s,d): i = 7%(i) and j # 7%(j). We can compute A ; as

EAgy = EX] MX; X MX; X X5 +EX ] (3 MX () X L (s MX e () X Xy

0
T T T
+ EXﬂn(i)MXwﬂ(i)th(i)MXijhfl(j)XW”(i)

0
— (p+4) [(Tr(M))2 + Tr(MM) + Tr (MTM)} ‘

We consider A o as

EAgy = EX] MX; X MX; X, X; + EX ] MX e () X L (y MX o () X[ X

0
T T T
+ EX G MX e 3y X (5 MX X o1 5y X

0
=R (X MX;)” = (Tr(M))? + Te(MM) + Tr (M M)..
Similarly, we can verify that both EA5 3 and EA5 4 are zero and hence have

EAs = (n—h)p[l+ o(1)] [Tr(M)]2 +2(n—h)p[l+0o(1)] Tr(MM). (33)
Case (d,s): i # 7°(i) and j = 7°(j). We compute A ; as

_ T T T T T T
EAQJ — EXWU(Z’)MXWh(i)th(i)MXWh(i)X‘i Xﬂ.h(i) +]EXﬂh(i)MXFh(i)Xﬂh(i)MXﬂhz(i)Xﬂh(i)Xﬂh(i)

0 0
2
+ EX () MX () X L () MXG X Xy = (Tr(M))” + Tr(MM) + Tr (M M) .

EXT ~MX

) XT.  MX
b (i) ol

wh(4) (i) w0 (4)

We consider Aj o as

EAg o = EX [ MX a5y X o (5 MX gz (y X X+ EX T MX () X L () MX ez () X ) X

(4

0 0
+ EXJ-TMXWu(i)X;(i)MXijTXj = (p + 2) Tr(MM).

E|IX; 13X MMX;
As for EA; 3 and Ag 4, we can follow the same strategy and prove they are both zero, which yields

EAy = (n — h) [Te(M)]* + (n — h)p[1 + o(1)] Tr(MM). (34)

Case (d,d): i # 7°(i) and j # 7 (j). Contrary to the previous cases, we have EA, ; and EA 5 to
be zero in this case rather than EA, 3 and EAs 4.

Hence our focus turns to the calculation of EA 3 and that of EA5 4. For A3 3, we have

T T T T T T
EAg s = EXW”(i)MXﬂ'h(i)Xﬂh(i)MXﬂ'h(i)Xi X, +]Eth(i)MXFh(i)th(i)MX‘fTh2(i)X7rh(i)Xj

EXT ~MX

_EXT T
Pl EX 1y oy MX o) X g MX §=m82 () (4)

(i)
T T T T T T
+ EX iy MX () X (o MX e () X X + EX () MIX ey X () MIXG Xy X

-
h(2) 1 280 X p iy MX ot

. T T T T
PL=BX Ly iy Mt ) X () ME i) Ljmmi2 ) BX 1 () ME ) X g () ME iy

IO

=2 (plicy + Lj—peo(s)) {(Tr(M))Q + Tr(MM) + Tr (MTM)} .
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Then we turn to the calculation of EA; 4, which proceeds as

EAg 4 = EX ] MX e (1) X () MX ez (1) X X5y + EX ] MX (5 X L () MX e () X s ) Xt )

1(i=j)EXT, ’XT
=i () 2 rhii)

T T T T T T
A EX G MX s (i) X 5y MX s () X Xy + EX G MX s 3y X 3y MXG X 1) X i)

=
MX )X 1y MX et () 1 IEHX MMX

j=m02 (i) 78(4) (i)

pp—— -
LE=HEX [ MX oy X 1y MX ) 1 IEHX MMX

g=r2 (05| Xt zxzhu) (D)
= 21 oy (p + 2) Te(MM) + 21 (i = ) [(Tr(M))2 + Te(MM) + Tr (MTM)} .
Then we conclude
EAg = —2(n—h) [(p+ Dlicj + Lj—perp)] [(Tr(M))2 + Te(MM) + Tr (MTM)}
—2(n = h)(p+ 2)1j_paz(;) Tr(MM). (35)

The proof is thus completed by combining (32), (33), (34), and [B3).
O

Lemma 5. We have
.
E (X — X;) AMX o XLy MAT (X — X))
h h
= (1 -+ 0(1)) P [Tr(M)]? + (3 - 0(1)) p? Tr(MM).

Proof. We begin the proof by expanding A3 as

T T T T T T
EA?, - ]EXﬂ'h(’i)AMXﬂ-h(i)Xﬂh(i)MA Xﬂ-ﬂ(i) +IE X] AMXﬂ.h(,L)Xﬂ_h(z)MA X]

Az 1 Az 2
T T T T T T
_ Exﬂh(i)AMth(i)Xﬂu(i)MA X;—E Xj AMXﬂu(i)Xﬂh(i)MA Xﬂu(i) .

As3 A3

Case (s,5): i = 7(i) and j = 7%(j). First we compute Az 1 as

EAs; = EX] X, X MX; X MX; X/ X; + EX] X; X MX,; X,/ MX;X/X;

EJ|X[|3(X] MX; ) EJ|X[|3 (X MX; )*

+ EX X, X MX,; X MX; X X; + EX] X; X MX; X/ MX;XX;

E[IX: )13 (X] MX;)® E(X]X;)"X] MX,;X] MX;

(p+4) (p+8) [(Te(M))” + 2 Te(MM)| +2 (Tr(M))* + (p + 6) Tr (MM).

Then, we consider A3 5 as

EAse = EX] X, X MX; X MX; X/ X; + EX| X; X MX; X/ MX;X[X;

E|IX,[13(X] MX;)* (p+2)E(X] MX;)*

+ EX] X;X] MX, X MX,X/ X, + EX X, X MX,; X/ MX; X/ X;

(p+2)E(X] MX;)? E[IX;I5X [ MMX;
— (3p+38) [(Tr(M)f 4 Te(MM) + T (MTM)} + (p+2)(p+ 4) Te(MM).
In addition, we can verify that EA3 5 and EA3 4 are both zero. Hence we conclude

EA; = (p? + 15p + 42) [Tr(M)) + (3p* + 37p + 94) Tr(MM). (36)

22



Under review as a conference paper at ICLR 2025

Case (s,d): i = 7°(i) and j # 7(j). We can compute A3 ; as
EAsy = EX] X, X MX; X MX; X/ X; + EX] X; X MX;X MX . X[ X;

E[|X[|3 (X MX, )* 0

+ EX XX MX X MXGX ) X+ EX XX MXG X MXG XX

0 0

T T T T T T T T
+ EXZ XjXﬂ—h(j)MXzXz MXﬂ,n(j)Xj Xz —‘rEXi XjXﬂ,u(j)MXiXi MXjXﬂ—hfl(j)Xi

B[ X, [|2X] MMX; 1, e E(X] MX;)?

+ EXZ»TX,HH(j)XJTMXiXIMXiXiTXi +]EXZ.TXW](j)XjTMXiX?MXWu(j)XjTXi

0

]lj:wNQ(j)E(XzTMXi)Q

+ EX{ X () X MXG X MXX L0 X

E|IX, 12X ] MMX,
— (PP +10p+ 24421 o) {(Tr(M))Q +2Te(MM) | + 2(p + 2) Tr(MM).
We consider Aj o as

EAz2 = EX/ XX MX, X MX; X! X; +EX] X; X MX; X MX 1+ () X[ X;

EJ|X 13 (X MX; ) 0

+ EX [ X, X MX X MXGX L )X

0
T T T T T T T T
+ EX] XX MXG X MX;X] X +EX] XX MXG X MX ) X X

w8 (j

0 E[|X |3 Tr(MM)

T T T T T T T T
+ EX] XX MXGXTMX X X+ EX] X ) X MXGX] MXX] X

1 E[[X;[3X] MMX; 0

i=m82(j)

T T T T T T T T
+ EXj X153 X,; MXG X, MX ey X X +EX G X1 X MXG X, MXjXWh,l(j)Xj

2
L2 () EIX 13X ] MMX; E[|IX; 153X MMX;

— (p+4) [(Tr(M))2 42 Tr(MM)] +(P+2) (p+ 1+ 21;_pua;)) Te(MM).
As for Az 3 and A3 4, we can prove that they are both zero in this case. Hence we conclude
EAs = (p* + 11p + 28 + 21, _s2(;y) (Tr(M))?
+ [30% +27p+ 62+ 2(p + 4) 1y ] Tr(MM). 37)
Case (d, s): i # (i) and j = 7%(j). We consider the term A3 ; as
Bz = EX () XX () MX s (1) X s 5y MX e () X X5

Blx

(x7, MX :
F( b (3) whu))

T T T T
+ EXﬂ—h (Z)X-ZX- )MXﬂ-n(i)Xﬂ'h (i)MXﬂ-h2(i)Xﬂ'h (i)Xﬂ'h(i)

(4

=8 (i)

2 - 2
]17,:nh2(71)]E|||X7rh(1,) F(Xwn(i)Mth(q,J

T T T T
+ EX (1) XiXora oy MK 1) X (y MX X X

(4

0
T T T T
+ BX ()Xo (i) X sz (5) Mot (1) X () MX e () X Ko

2

2
-
VB X e | (KT MX s )
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T T T T
A EX e (5 X (1) Xz (0 Mo (59 X (59 MKz () X e () X )

E[X;[I3X, MMX;

T T T T
+ EX (i)th (i) D, G (1) MX (4) Xt (i) MX; Xj Xt (%)

0
T T T T
+ EXﬂ_h(i)Xij Mth(z)Xﬂ—h(Z)MXﬂ-ﬂ(z)Xz Xﬂ"h(i)

0
T T T T
+ EX (i)Xij MX 7 (i)th (i)MXw”2(i)th (i)Xw“ (2)

0
T T T T
A EX () X5 X MX e () X s () MX X X s

E(X] X;)’X] MX;X] MX;
— (p+6) (Tr(M))? + (p* + 9p + 22) Te(MM) + 21,225y (p + 4) [(Tr(M))2 +2Te(MM)] .
We consider the term Az 5 as

Bz = EX] XX (i MX e () X 1oy MX e (X[ X

pr(x;(i)wau(i))Q

T T T T
+ EXG XX ) MXoa () X () MX sz () X e () X

li:ﬂhQ(i)E(X:MXi)z

+ IEXJTXiXT )MXﬂn(i)XIu(i)MXijTXJ'

h (i

0
T T T T
+ ]EX] Xﬂ'u(i)th2(i)MX7Tu(i)th(i)MXWu(i)Xi X]

1i:":2(i>]E(ijxl)2

T T T T
+ ]EX] Xﬂ.n (i)thQ(i)MXﬂu (l)Xﬂ'h(Z)MXTru2(7/)X7Th(Z)XJ

E|| X, [|12X] MMX;

+ EXJ Xoe 1) X sz () MX e () X 1 () MX X X

0
T T T T
+ EX; XX MX o () Xy MX s () X X

0
T T T T
+ EX XX MX ()X e (o MX oo (X L ) X

0
T T T T
+ EX] XX MX ()X 1 MX; X X,

EIX; I xX] MMX;
= p(Tr(M))® + (p* + 9p + 10) Tr(MM) + 21,_e2;) [(Tr(M))2 + 2T&~(MM)} .
As for A3 3 and As 4, easily we can verify they are both zero and hence
EAz =2 (p+3) (Tr(M))® + 2 (p* + 9p + 16) Tr(MM)
+ 21, (p+5) [(TY(M))Q +2 Tr(MM)} . (38)
Case (d,d): i # (i) and j # 7°(j). First, We compute EA;3 1 as
Bz = EX () XX MX ez () X 1 () MX e () X X5

5]

b (3) E(XL@MXM)Q
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T T T T
+ Exﬂ_h(i)XiXTrn (Z)MXTFH (i)th(i)MXﬂhQ(i)th(i)XTrh(i)

L B[ Ko (Ko MX )

T T T T
+ EXﬂn(i)Xz‘Xwn(i)MXﬂ”(i)th(i)MXw“(j)Xj X (i)

Vs Bl X e ||1§ (X:n<7:>Mth<i>>2

T T T T
+ EXKH(Z)XZXWh(Z)MXﬂh (’L)th(z)MX]Xﬁhfl(J)X‘n't (Z)

2 T 2
V=il e B X [ (KT ) MX )

T T T T
+ Eth(i)Xﬂ“(i)thZ(i)MXﬂ“(i)th(i)MXw“(i)Xz‘ Xw“(i)

I ARV
i=nl2(i) () [|r Wb () wh (i)

T T T T
+ Exnh(i)xw“(i)wa(i)MXw“(i)th(i)MXw”Q(i)th(i)Xw“(i)

4
T
EMX"'h(i) ”|1: (th(i)MMXﬂhm)

T T T T
+ Exwu(i)Xw“(z‘)XwM(i)Mer“(i)th(i)Mth(j)Xj Xt (i)

2 T 2
L=l pee B[ X[ (X ) MX s 1)

T T T T
+ Exﬂ-h(i)XTrh(i)X‘n—h?(i)MXﬂ'h(i)Xﬂ-h(i)MXjXﬂh—l(j)Xﬂt(i)

4 T
L2 B[ Ko, (e MMX i)

T T T T
+ Exﬂh(i)XjXﬂh(j)MXﬂ'h(i)Xﬂh(i)MXﬂh(i)Xi Xt (i)

2 2
. T
LB Xn o [ (KT, MX 0)

T T T T
+ Exﬂh(i)Xijh(j)MXWh(i)Xﬂ”(i)MXWhQ(i)Xﬂ”(i)Xﬂ'h(i)

2 2
L T
Lot B X |, (KT, MX s )

T T T T
+ EX i XX )y MX s (1) X () MX e () X X

MMX

2 2 2
L T . T
VB [, (KT M%)+ X [ X ()

(i)
T T T T
T B X Ko () M X () MXG X 1 () Xy

1 b2y [li:jEme“(i) Hﬁ (thu)MX”('UYHf‘#E(X:meth(i))z}

T T T T
+ EXﬂ(i)Xﬂ.nﬂ(j)Xj MXW”(Z)XWh(z)MXﬂU(z)Xz Xﬂ-ﬂ(i)

2 2
. T
Vi e B[ X[ (T () MX )

T T T T
+ EXﬂh(i)Xﬂufl(j)Xj MXﬂ.u (i)XTrh (i)MXﬂ.nz(i)Xﬂh (Z)er”(l)

12 Bl X e ) |||: (KT MMX s )

T T T T
T EX )Xo () X MX () X () MX 7 () X Xai)

2 2 2
L T L, T
1i—mi2j) [1'=JE|HXWN<1‘) MF (me)MXwﬂ(i)) H#J]E(Xwanth(i)) }

T T T T
+ BX s (i) Xomr=1(5)Xj M (i) X 3y MXG X o () X 3

1,0 B H|i (X:m)MMXw“<7:))H#wﬂmexwﬂ(i) ’”j (XTo( ) MMX ;)
— (14 21— pea(s) + 3Licj + 615 15 ea(s)) (p+4) [(Tr(M))2 +2 Tr(MM)}
+ (14 3L =me)) (p +2)(p + 4) Te(MM)
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421,y Ligy [(Te(M))? + 2Tr(MM)}
+ ﬂj;éwh?(i) (p + 2) TI‘(MM) + ]li?gj (p + 2) TI‘(MM) (39)
Then we calculate EA3 5 as

EAzo =  EX] XX L MX () X (s MX e () X[ X

L Bl Xilz (XT MX 5y ) C bl (X MX 5y ) ’

-
=h (i) wh (i)

T T T T
+ EX] XiXﬂh(i)MXTrh(i)Xﬂh(i)MXTrm(i)Xﬂh(i)Xj

1 1,,EXTX; X7, MX X7 MX; XX +1,4,E(XT, MX :
i=mh2 (i) | TI=IERG R g gy w0 ()b (a) i Dol T AT b (3) = ()

T T T T
+ EX] XX ] () MX s () X L MX e () X X

2
L B (X, MX )

T T T i
+ X XX () MX e ) X s () MX Xy X

T T T T
Limjd,_ e (o EXT XX, MX g X, MXGXTX

T T T T
+ EXj X (i) Xopaz 3y MK () X () MX o () X X

2
S TX.XT T XT . T
a2 [Jl,:,IEXi X XT, MXp XT MXGXTX 1B (X MX ) ) }

+ EX;FXWh(i)X‘LZ(i)MXﬂ'h(i)XL(i)MXth(i)XL(i)Xj

1 IEWX

2 2 2
T T T 3
Pty MMX g ) T2 E(X] X ;) (XﬂumMXf)

T T T
+ Exj Xﬂ“(i)xﬂnz(i)MXw“(i)Xﬂn(i)MXw”(j)Xj X

JAw82(3)

Limj 1, oo EXT XX, (MX ) X7, MX;XTX

=)
+ EXJ Xﬂh(i)Xﬂ-W(i)MXWh(i)Xﬂ-h(i)MXjXﬂ-hfl(j)Xj

ol (4)

L2 B (X X)) (X MX %)

.
+ EX] XX 5 MX i ) XL MX ) X X

2
L BIXG0E (X, MX )

T T T T
+ EXJ XjXﬂ_h( -)Mth(i)Xﬂ—h(i)MXwW(i)Xﬂ—h(i)Xj

T T
Limjd,_ oo (o EXT XX, MX g X, MXGXTX )

T T
+ ]EX X; X, MX (i) X iy MX 2 () X j X

78 (4)
L BIXGHE (X, MX ) )+ L BIXG X, | MMX s
+ EX XX g (y MX s 1) X (y MX X o1 () X
1y [Lim EXT X X7, M ﬂ(i)x:h(i)Mxixjxﬂbm+1i¢jnzmxj|H§XJTMMXJ-]

T T
+ EX X1 (5)X ] MX s ) X o () MX s () X X

MX; XX

Vimg Uy ) EXJ KX Dy () MX () Xy MXGXT Xy

T T T
+ EXJ Xﬂ.h—l(j)Xj MXT(“(i)Xﬂ—ﬂ(i)MXﬂ'hz(i)Xﬂ—ﬂ(i)Xj

1 B(X X ) (X, (i)ij)Z

T T T T
+ EX [ X1 ()X MX ()X oy MX s () X[ X
12 [1i:jEijixzu(i>Mxﬂh() XT, o MXXTX L EIX 1 X MMX, |
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T T T T
+ BXj (X (X ) MX e () Xy M (Xﬂ‘Xwﬂfl(a‘)) X

1j:ﬂt2mE(x_Txﬂ(i))2(XTM,)MX ) +1 02 () EIXG 12X ] MMX;
= 41i—;p(p +2) [[Tr(M))* + 2Tr(MM)] + Lizjp(p + 2) Tr(MM)
8Ly Ly (p 4 2) [(Tr(MD))? + 2 Te(MM)|
4Ly [2[TH(M)] + (p + 6) Te(MM) |
+ 2Lz (p + 2) Te(MM) + 215451 iz ) (p + 2) Tr(MM)
T Ligg (p+ 2Limgny) [(Tr(M))? + 2T (MM)]

The term A3 3 is computed as

T T T T
]EA373 = EXﬂ‘h(Z)X'ZXﬂ"h(@)MXWn(l)Xﬂ"h(l)MXTrn(l)Xl X]

0
T T
+ EX 5y XX o iy MX s 1) X () MK sz (1) Xy X

0
T T T T
A X s (3 Xi X (5 M 3y X () MX e () X X

2
1 T
1o PE [XWM)MXM”]

T T T T
+ Exﬂu (1)X1X7'ru (1)MX7Th (i)Xﬂ—ﬁ ('L)MXJXﬂ'hfl(J)X]

0
T T T T
+ EXT{'h (i)Xﬂ-h (i)Xﬂ'hQ(i)MXﬂ'u (1)X7Th(Z)MX7Th (’L)Xz X]

0

T T T T
+ EX o )Xo i) Xz 3y MK (5) X a5y MK sz () X ) X

0
T T T T
+ EX )Xo (1) Xz () MX i (1) X (5 MX () X X

0
T T
+ EX ()Xot (1) Xz () MX et () X o () MXG X o 9 X
2T
]lj:wh3<ri>]E|||X«h<fv> 2 Xy MMX )

T T T T
+ EX L (XX ey MX iy X ) MX i () X X

2
A
1 E{X,,m)Mth(i)]

i=7l(5)

T T
+ EX ()X X )MXwn(i)Xnu(i)MXﬂ”(i)th(i)X

()

0
T T T T

0
T T T T
+ EXﬂh (Z)X]X»n—h(j)MXﬂ’h (’L)Xﬂ-h(z) MX.]—XTrh*] (j)X]

0
T T T T
+ Exﬂ_h(i)Xﬂ.n—l(j)X_j MXWu(i)XWh(i)MXWh(i)Xi :X-_‘7

0
T T T T
+ EX e ) Xwamr () X MX e () X () MX 2 () X () X

2
>
1,_43.)E [Xﬂh(i)wah(i)}
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T T T T
+ EXﬂh(i)Xﬂﬂfl(j)Xj MXﬂ.t(i)Xﬂ_h(i)MXﬂ.u(j)Xj X]'

0
T T T T
+ EXﬂh(i)qufl(j)Xj MXﬂ.t(i)Xﬂ_h(i)MX]‘Xﬂ.u—l(j)Xj

0
= [(P + 1>]li:7rh(j) + ]lj:whS(i)} [TT(M)}Z
+ 200+ DLimrugy + (P + 4 Lj—puz (] Te(MM). (41)

Then, we consider the term [EA3 4, which can be written as

T T T T
EAsa = EX] XX MX ()X e MX (X Xy

0
T T T T
+ ]EXJ XiXﬂ_u (i)MXTrJ(i)Xﬂ—h (Z‘)MXWM(Z')XWH (Z)Xﬂ'h(l)

0
T T T T
+ EXj XiXﬂn(i)MXwﬂ(i)Xwn(i)MXw”(j)Xa‘ th(ﬂ

]lizwh(j)]E{X NIXWL‘(’L')}2

T
(i)

T T T T
+ EX ] XX () MX e () X 1 () MX X ) Xt (i)

ﬂ—t—l(j

0
T T T T
+ EX G Xora (i) X (4 MX s (1) X s () MX () X X

0
T T T T
+ ]EXJ Xﬂq(i)XTrHZ(’I:)MXTrJ(i)XTru (i)MXTrhz(i)Xﬂ-ﬂ (’L)Xﬂ'h(7)

0
T T T T
+ EX]’ Xﬂ“(i)XW(i)MXﬂﬂ(i)th(i)MXﬂ“(j)Xj Xra(i)

0
T T T T
+ B Xore () X () M& 1) Ko oy M Koo 1 5y X

2
>
l.j:ww(i)E[X,u<i>MXwﬂ(7¢>]

T T T T
+ ]EXJ X_]Xﬂ—h(])MXTrh(z)Xﬂh(L)MXTrh(z)XL X-Trh(i)

2
>
1) PE [Xwanxwﬂu)]

T T T T
+ ]EXJ XJXﬂh(J)MXTFh (i)X‘Trh (i)MXTrh2(i)X-7rh (Z-)X_ﬂ.h (1)

0
T T T T
+ EX G X5 X e 5y MX (1) X s () MX s () X Xai)

0

T T T T
+ EX G XX 5y MX e 3y X 5y MXG X e 5y X )

0
T T T T
+ ]EXJ Xﬂ:_l(j)Xj ].\/.I:Xﬂ.h(Z):Xﬂ,n(7)1\/.[:Xﬂ.h(L):X.7 Xﬂ—h(i)

0
T T T T
+ EXG X)X MX e () X e () MX iz () X e () X )

1 ru305 =8 (3)

]ENX ()

2
XT,  MMX
IO

T T T T
+ EX X)X g MX e () X e () MX s () X Xai)

0
T T T T
+ ]EXJ X_ﬂ.q—l(j)X.j MXﬂ'h(i)X‘ﬂ-h(i)MX‘jXﬂ'h—l(j)Xﬂ':(i)

0
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= [(p+ DLimrs(jy + Ljmgas(py] [Tr(M)]?

+ 20+ DLimragy + (P + D Lj—pms ()] Te(MM). (42)
Combing (39), @0), (@I), and [@2) together then yields
4hp(p + 2
EA; = % [1 4 o(1)] [Tr(M)]? + 2p2 [1 + o(1)] Tr(MM). (43)
The proof is thus completed by summarizing the computations thereof. [

Lemma 6. We have

EZ3 = 2[(p+2)(p+3) + (n— 2)(p + 1)] || B2 = 2np (1 + p/n + (1)) || B2,

where 2y is defined in 1))

Proof. We have

[

X7 BT (X (Xes) = X5) (X = X5) T X7 B X

=B [[[X (Xr) = X5) [5X 2 BB Xy
= ||X (Xezgiy = X5) |3 % BT e [3] -

For the conciseness of notation, we assume 7%(7) = 1 and j = 2 w.l.o.g. Decomposing the term

X (X1 — X2)|[5 as

IX (X1 — Xo)I7 = [XT (X1 — X)) "+ [X] (X1 - X))+ Y [XT (X - Xa)]%,
1=3

T T2

Ts

we then separately bound the above three terms. For the first term E77 || B*T X4 H‘i, we have

ETH B X = E [ (Il + (X{ X2)") B X ]

= EIX 4B X0} + B (XT %) [BX 7 L (o + 200+ 5) B2
(p+2)(p+4) IBA |17 (p+2)IBH ]
(44)
where @ is due to (66) and (67).

Similarly, for term E7; H‘B“TXl H|§, we invoke (66) and (7)), which gives

ET: B Xy = B [ (X7 Xa)” [[B Xu 7] + EIIXall; < BB X | (45)
(p+2) Bt |2 p(p+2)|BE|7

D (p+ 1 +2)|BI7, (46)

where @ is due to (66).

For the last term E73 H’B”Xl ’Hi, we exploit the independence among the rows of matrix X and
have

BT3B X g = DB [(X] (X0 - X0))” BT X ]

i>3
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= Y E[IX: - Xol2 BT ]

i>3
= S e[l + ||x2\|§) ~ \HB”XJHE]
>3
=23+ 1)||BY: = )+ D|BE- “7)
>3

The proof is then completed by combining (@4), (@6), and @7).

Lemma 7. We have

h 2 2 4 _h2
EZ3 = 2n° p+<1—n) +%+M+0(1) Tr(M),

n n3

where Z3 is defined in 1))
Proof. To begin with, we decompose the term E=2 as

EZ} =B |(Xp) = X;)| IMET (Xp) = X,) | 42E (X = X;) T SMAT (Xagy) = X,)|

éAl éAQ

TE | (Xnn — X)) T AMAT (X - X)) 48)

LAq

Step L. First we consider EA, which can be written as

B 2
Py (1— ) +o(1)
n n

Step II. Then we turn to EA5, which can be written as

EA; = 2ETr (EMET> D 92 Tr(M), (49)

where @ is due to Lemma [13]

EAs = (n— h)E [X MA X,,um] (n— h)E [X;-r MATX]}

[ ——
Aoy Az 2

— (0= D)E [Xpen T MATXG | ~(n = WE[X;T MA Xy

wA (i)

Aa 3 A2 g

Case (s,5): i = 7%(7) and j = 7%(j). We have

EAs1 =EX] M (XX + X;X]) X; = (p+3) Tr(M),

EAss =EX] M (X; X, + X;X])X; = (p+3) Tr(M).
In addition, we can verify that EA, » and A, 3 are both zero, which suggests that

EAz = 2(n — h)(p + 3) Tr(M). (50)
Case (s,d): i = 7°(i) and j # 7°(j). We have
EAs, =EX; M (X X+ XX )+ X)X )xl — (p+2) Te(M);

Ay, = EX/M (XiXiT + XX )+ X)X ) X, = Te(M).
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Moreover, we have both EA3 5 and EA; 4 be zero, which suggests that
EAy = (n—h)(p+3) Tr(M). (51)
Case (d,s): i # 7°(i) and j = 7°(j). We have
EAy; =E (X;m ijxjxﬂu(i)) — Tv(M),
EAsp = EX]MX; X/ X; = (p+2) Tr(M).

Similar as above, we can verify both EA» 3 and EA, 4 are zero, which suggests that

EAz = (n —h)(p + 3) Tr(M). (52)

Case (d,d): i # 7°(i) and j # 7°(j). Different from the above three cases, we have EA ; and
EA; 2 be zero and focus on the calculation of EA; 3 and EA2 4, which proceeds as

EAss= E [Xﬂu(i)—r MXﬂn(i)XIXj} +E [th(i)—r MthZ(i)X;rh(i)Xj}

pLi; |BE]2 L2 IBERR

T T T T
+ E [Xﬂu(i) MX 5 ()X, Xj:| +E [th(i) MXijhfl(j)XJ}

pli; | BE|Z Lot iy=mi=1(5 IBEIE
=2 [plizj + Ljogaap)] Tr(M);
T T T T
EAgy = E [Xj MX ()X Xpie()] +E {Xj MX””Q(i)X””(")X””(i)}

o IBhl2
Li=; 1B P12 IBAI2

+E {Xﬁ Mxﬂu(j)XjTXﬂm)] +E [XjT MXjXIhfl(j)XW”(i)}

1= IB#| P2 IBAIE
=2 [pLjzms2) + Liy] Te(M),
which suggests that

EAy = —2(n — h)(p + 1) (]lj:ﬂ.nz(i) + li:j) TF(M) (53)
Combing (30D, (31), (32), and (B3], we conclude
132
EA, = w Tr(M) [1+ o(1)] . (54)

Step II1. Then we turn to the calculation of EA3. First we perform the following decomposition

Ag= X, AMAT X () + X AMATX; — X1, ) AMATX; — X[ AMA "Xz ;) -

A3z 1 Az,2 Az 3 A3z
Case (s,5): i = w7 (i) and j = 7%(j). We have

EAs1 = E (X! XX MX; X/ X;) +E (X X;X] MX;X]X;)

E|| X |[4X T MX, (p+2)IBE 7

+ B (X X,;X] MX;X[X;) +E (X] X;X] MX;XX;) = (p+2)(p+ 7) Tr(M);

(p+2)IBE| (p+2)IBEIZ
EAsp = EX] (XX + XX ) M (XX +X;X[) X; = (p+2)(p+ 7) Tr(M).
As for EA3 3 and EAs3 4, easily we can verify that they are both zero and hence have

EAs = 2(p +2)(p +7) Tr(M) = 2p? Tr(M) [1 + o(1)] . (55)
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Case (s,d): i = 7°(i) and j # 7°(j). We can write A3 1 as
EAs: = E (X XX MX; X/ X;) +E (X X; X[ MX,.:(; X[ X;)
E[|X;[|5X] MX; 0

+ E (XXX MX X X

0
+E (ijjxjh(j)lleixjxi> +E (ijjxjh(j)Mth(j)ijxi)

0 pIBAI?
T T T
+ B (XXX MXX )X
1j— b2y Tr(M)
T T T T T T
+ B (X Xreo1 ()X MXGX X)) +E (X X)X MX e () X X
0 T, 825 Tr(M)

T T T
+ B (X X ()X MXX X )

pIB*1?
= (p® +8p+ 8 + 2L, _s2(;)) Tr(M).

Mean A3 2 can be written as

EAsp = E (X)X, X MX; X/ X;) +E (X X; X MX,.: X, X;)

(p+2)IBA I 0

+ B (XXX MXGX ) X )

0
T T T T T T
+E (Xj X; X1, MXX, Xj) +E (Xj XX MX e ()X Xj)

0 EJX; [ Tr(M)

T T T
+ B (XXX MXG X, ) X;)

Ls1 5yt () (PH2) IBEL

T T T T T T
+ E (X[ X1 X MXX[ X;) +E (X[ Xpom1() X[ MX 2 () X X))

0 lﬂb—l(,):wb(j)(PJF%mBh|‘12

T T T
+ B (X)X () X MXG X X))

(p+2)IB|7
=(p+2) (p+2+2L;_p(;)) Tr(M).
And for EA3 3 and EA3 4, easily we can verify that they are both zero. Then we conclude

EA3 =2 (p* +6p + 6+ (p+ 3)1j—p2(5)) Tr(M) = 2p* Tr(M) [1 + 0(1)] . (56)
Case (d,s): i # 7°(i) and j = 7%(j). In this case, we can write A3 ; as

T T T
EAs; = E (Xﬂh(i)xixﬂh(i)wat(i)xi me))

EJX [ X MX;

T T T
tE (me)Xz‘th<i>Mth2<i>th<i>Xﬂﬂ<z‘)>

1,2 () EIX: B X MX;
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T T T
+ E (Xﬂ'h(i)xixﬁﬂ(i)MXij th(i))

0
T T T
+E (Xﬂh(i)xwh(i)xﬂhg(i)wah(i)Xi me))

1, e EIXGI2X] MX;

T T T
+ E (Xﬂ-h(i)xﬂh(i)XTrHQ(i)MXTth(i)XTrh(i)XTrh(i))

E[ X |7 Tr(M)

T T T
+E (Xﬂ—t(i)XTrh(i)XTrm(i)MXij Xﬂ”(i))

0
T T T
B (XXX MK X X))

0
T T T
+E (Xﬂh(i)xjxj Mxﬁm(i)xwh(i)xﬂ(i))

0
T T T
+ B (XXX MXGX] Xy )

EJX; |2X] MX;
=(P+2) (p+2+2Li_p2) Tr(M).

We consider Ag o as

Bz = EX[ XXy MX e () X X+ EX XX o MX (X () X

p Tr(M) ]li:TrHQ(i) Tr(M)

T T T
+ EX] XX\ MX; X[ X

0
T T T T T T
+ EXG Xon () X 5y MX ez () X X+ EXG X () Xz (3 MX i () X () X

1 Tr(M) p Tr(M)

i=m82 (i)

T T T
+ EX; th(i)Xﬂuz(i)MXij X

0
+ EXJ XX MX e () X X+ EX XX MX e () Xy X+ EXJ XX MX; XX

0 0 EIX; [§ X MX;
= (p* + 8p+ 8+ 21, _s2(;y) Tr(M).
Similarly, as above, we can verify that EA3 3 = 0 and EA3 4 = 0. Hence, we can conclude

EA3 =2 (p” +6p+ 6+ (p+ 3)1;_puz(sy) Tr(M) = 2p* Tr(M) [1 + o(1)] . (57)

Case (d,d): i # 7%(i) and j # 7°(j). We write A3 ; as

_ T T T T T T
EAsy = EX L XX L MX e (0 X Xy + E X XX () MX i (g X L ) Xy
EIX [ X MX; 1,2 BIX12X] MX;

T T T T T T
+ B X L XX ) MX e () X Xy +E X XX L) MXGX Ly X

]li:j]EmX% |‘|EXTMX7 ]171:] ]li:,th(i)EmXi ‘I?X: MX,;

T T T T T T
A B X ()Xo (6) Koo (4 MK e (1) X Koy T X 4y X () Xz 3y MX ez () X 3y Xt ()

1 E|X; X MX; E|X [ Tr(M)

i=m02 (i)
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+ B X () Xt ) Xz (1) M e () X Xoee i) + B X 5 X () X e (o MXG X Ly X

Limjl,_ o2 EIX X MX; 1 EJX; ¢ Tr(M)

+ E X XX ) MX () X Xy + E Xy XX

j=mb82(3)

.
i (j ()Y M X sz i) X a5y X 1)

L B X F X MX; 1;=;1 E|X: [F X MX;

=82 (4)

T T T T T T
+ B X ) X5 X 5y MX i () X Koy + B X (X X () MXGX ey Ko i)

Lim BIXG 15X MXi+1525p Tr(M) L) (L BEIXGIRX] MX 4 Ligj Tr(M))

T T T T T T
+ B X () X1 () X MX o (3 Xy Xy + B Xy () X1 () X MX a2 () X () X

Timy T, o2 EIXG IE X MX; 12 EIX g Te(M)
T T T
+ EXﬂh(i)Xﬂtq(j)Xj MX s ()X, Xorti) +EX (l)Xﬂa 1(])X MX; Xﬂh 1(])X7ru(i)
L, h2 g [Lims EIXGIEXT MX, 4145 Tr(M)] L2 BIX g Tr(M)+1 02,y p Tr(M)

= (p* +5p +2) Te(M) + Limga2(5) 2(p + 2) Tr(M) + Lj—re2(5y (3p° + 5p) Tr(M)
—+ 21] 7rh2(]) TI'(M) + ]].72]2(]) =+ 3) TI‘(M) =+ ]].ij 11':7712(1')2(3]) =+ 5) TI‘(M)

We consider As o as

EAzy = EX] XX L MX e (n X[ X+ EXJ XX () MX ez () X s () X

L BJ X [ Tr(M)+1;5;p Tr(M) 1,_ ﬂ_h2<.)[]ljijENXi|‘|gX;rMXi+]]~i#j TI'(M)]

+ EX XX () MX () X X+ EX XX MXG XL ) X

1i—;EJX; I Tr(M) Limjl,_ o2 () EIXG I3 X MX;

+ EXJ Xy X oo () MKz (y X X 4+ EXJ X ()X Lo 5y MX ez () X s () X

Ly o2y [Lim EIXG IRXT M+ 1 Tr(M)] L2y EIXG IEXTMXi+1 4o,y p Tr(M)

T T T T T T
+ EX] X‘ﬂ'h(l)Xﬂ‘nQ(l)MXﬂ'h(J)Xj X] +EX] Xﬂh(Z)Xﬂ-JQ(z)MXjXT;-hfl(])X]

Licj 1,2 EIX|2X] MX; e (o EIXG 12X MX;
T T T T

+ EX] XX MX () X X+ EXS XX MX ez ) X ) X
1 BIX [ Tr(M) Limj1,_ oo EIXG X MX;

+ EXJ XXy MX e () X X+ EX XX MXGX )X

EIX [ Tr(M) 1 EIX, |2X] MX;

j=m82(5)

T T T T T T
+ EX] X1 (59 X MX iy X X+ EX] X (59 X MX iz (X ) X

Limj1,_ b2 EIXG X MX; 1,2 EIXG2XT MX,

+ EXJ X1 (X MX e () X[ X+ EXJ X1 (n X MXGX L)X

1, n2 5 EIXG IEX MX; E|X; |2X] MX;
= (P® +5p+2) Te(M) + Lj—rs2(y2(p + 2) Tr(M) + 1;—; (3p® + 5p) Tr(M)
=+ 2]1i:7rh2(i) TI‘(M) =+ ]lj:ﬂ'h2(i)2(p + 3) TI‘(M) —|— ]li:j]li:ﬂ'h2(i)2 (3]) —|— 5) TI‘(M)

We consider A3 3 as

T T T T T T
EAss = E XD XiX T (o MX s (0 X] X + EX T XX L ) MX iz () X 1 X

0 0
T T T
+ E XL XX ) MX e ()X X+ E X XX MXGX L ) X

li:wh(j)pTr(M) 0
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T T T T T T
+ E Xﬂ—h(z)Xﬂu(’L)Xﬂ-hz(z)MXﬂu(’L)Xz X] + ]E Xﬂ‘?(i)X‘ﬂ'u (’L)XWhQ(z)MX‘n’uQ(’L)XWh(7,)Xj

0 0
T T T T T T
B XL ) Xt (1) X e ) MK () X X+ B X 0 X (X Lo MXG X)X

0 ]lj:whS(i)pTr(M)

T T T T T T
+ E Xﬂ-h(i)XjXﬂ-ﬂ (])MXﬂ.u (L)X'L Xj + ]E Xﬁh(i)XjXﬂ—h (])MXWh2(/L>X’7Tu('L)X]

]li:ﬂ—ﬂ(j) Tr(M) 0
T T T T T T
+ E Xﬂh(i)XjXWh(j)Mth(j)Xj X;+E Xﬂu(i)XjXWh(j)MX]‘Xﬁh—l(j)Xj
0 0

T T T T T T
+ E Xﬂ_h(i)xﬂ.h—l(j)xj MXTrh(i)Xi X] +E th(i)xﬂuq(j)xj MXTrh2(7:)X7Tu(i)Xj

0 L34 Tr(M)

T T T T T T
+ E X‘IT“(’L)Xﬂ'hil(])Xj MXﬂ‘h(])X] Xj +E Xﬂ-h(z)Xﬂ‘ufl(‘])X‘] MXJXTrjfl(j)X]

0 0
=(p+1) [Licra) + Ljrm(py | Tr(M).

Then we consider A3 4 as

_ T T T T T T
EAsa = EX] XX ) MX e ()X X () + EX XX MX ez ) XL ) X

0 0
T T T T T T
+ EX] XX MX s ()X Xy + EX] XX MXGX 0 X

]11:7rh(_7‘) Tr(M) 0

T T T T T T
+ EXJ Xﬂh(i)Xﬂ—hQ(i)MXﬂh(i)Xi Xﬂh(i) +]EXJ XTrn(i)Xﬂ-h?(i)MXﬂ'h?(i)Xﬂ-h(i)Xﬂ'h(i)

0 0
T T T T T T
 BX G Xorn (i) Xnz (o) MX s () X j Xoesi) +EX G X 5y X (y MXG X 15y Xe )

0 ]lj:ﬂ—hii(i) Tr(M)
T T T T T T
+ EXJ )(J)(ﬂ,n(‘7)].\/.[)(71&1(1)}(2 Xﬂ—h(z) +EXJ XJXWH(J)MXWtQ(’L)XWH(1)X7‘ru(z)
p]li:wh(j) Tr(M) 0

T T T T T T
+ EX; XjXﬂh(j)MXﬂu(j)Xj Xy T EX; XjXWh(j)MXjXﬂh_l(j)Xﬂh(i)

0 0
T T T T T T
+ EXG X)X MX o () Xy Xorai) +EXG Xoroo () X MX ez () X ) Xra i)

0 p]lj:ﬂug,(i) Tr(M)

T T T T T T
+ EX X)X g MX ey X X ) +EX G Koo () X MXGX oy X3

0 0
= (p + 1) (]]-i:nh(]‘) + ]]‘j:ﬂ'hs(i)) TI‘(M)
In summary, we have
EAs =2 (p* 4+ 5p+2) Te(M) + 2(p + 3) [Limraz (i) + Ljmgaz(jy] Tr(M)
+ (3p2 +7p+ 6) (]li:j + ]lj=7rh2(7i)) Tr(M) + 1i=j1;—r2 ()4 (3p + 5) Tr(M)

=2(p+ 1) [Lizrs(j) + Ljmpsa(sy | Te(M) = 2p” Tr(M) [1 + o(1)] . (58)
Combining (33), (G6), (57), and (58) then yields
EAs = 2p* Tr(M) [1 + o(1)]. (59)

The proof is then completed by @8], @E9), (34), and (F9).
0
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Lemma 8. We have

EZ2 = m(m + 1) [p (p+2) (]li:ﬂn(i) + L-:j) +p (]l#.,rn(i) + li;éj)] +2mp(n+p+1)
(n — h)ym?p?

= I (14 o(1)),

where Zy4 is defined in 1))
Proof. For the conciseness of notation, we define " as X (Xz(;) — X)) (Xyz(s) — Xj)—r X T and
hence have
EZ2 =EW,/ W TWW,.
We begin the discussion by expanding WW; as

W/ W W,
Wi | w, = Wi W,
W, W, W,

Then we obtain

E=3 = 33 TLE[(W]W,) (W W,)] = TLE (W W,)* + 33 TLE (W] W,W/ W)
s=1t=1 s#i t#i

i TacE(WTW3)?
2
=I;E Z Wi + Z Lss -m = m(m + 1)ETy; + mE Tr(T). (60)
j=1 s#i

We can thus complete the proof by separately computing E Tr(M) and ET';;. First we compute ET';;,
which proceeds as

El'y; =E (X;Xﬂh(i))z +E (XiTXj)z
= Liert ()PP + 2) + Ligra(yp + Lizjp(p + 2) + Liggp
=p(p+2) [Licrs(s) + Lizg] + P [Ligrs i) + Ling] - (61)
Then we turn to the computation of E Tr(IM), which proceeds as
2
ETr(T) = [IX (Xne i) = X5) I

2

:EHX;@) (Xaeei) = X;) I

2 2
L EIXT Ky = X))+ X EIX] (e — X))

s#m(1),]
4 2
= 2| Xnll, + 2B (XL X)) + 2 Y EIX
s#m (i),
=2p(p+3)+2(n—2)p=2p(n+p+1). (62)
The proof is thus completed by combing (©0), (62), and (61). O

Lemma 9. We have

mp(n —h)(n+p—h)

EE15, = 1+ 0(1)] Tr(M),
where E1 and Z4 are defined in (21)).
Proof. We have

E=12, = ]EX;(Z.)MXTH”X (Xosgy = X5) (Xai) — Xj)T XTWW,.

A
ST
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First we conditional on X. Expanding the product WW, as

W, W, 0
W, W; 0
Elwiw,| = [m]|
W, W, 0

we can compute E=1Z, w.r.t. W as

E (2,5;) = Ev' WW,; = mEw;,

where v; denotes the ¢-th entry of v and can be written as

vi = X] (X — X5) (X = X5) T EMX ) + X (Xpagey — Xj) (Xsp) — X

D TAMX

Al A2

For A1, we conclude
EA; = EX{ Xoa () X o 5y EMX () + EXJ XX EMX ;)
— EX Xoo (1) X EMX o) — EX] XX () EMX e 5
= Licns(y(p+ 3)ETH(EM) — L;—;(p + 1)E Tr(EM)
= (n—h) (Lizge iy (0 +3) = Lizj(p + 1)) Te(M) =
Then we turn to [EA5 and obtain

EAg = EX[ Xe (X 1o (n AMX o) +E X[ XX [ AMX x5

A2,1 A2.2
T T
~ EX] X0 X] AMX i) ~E X[ X; X, ) AMX s -

Ao s A2a
We compute the value of EA5 under the four different cases.

Case (s,5): i = 7% (i) and j = 7%(j). In this case, we have A be
A=A =XX] +X;X].
We have
EAs =EX] X X[ (XX +X;X]) MX; = (p+2)(p+5) Tr(M),
EAsp =EX/ X; X (X;X] +X;X]) MX; = 2(p+2) Tr(M),
EAss = EX/ XX/ (XiX] +X;X/) MX; =0,
EAs s =EX] X; X/ (XX + X;X]) MX; =0,
which implies
EAy = (p+2) (p+7) Tr(M).
Case (s,d): i = 7°(i) and j # 7 (). First we write A as

s,d) _ T T
ALY = XX + XX )+ Ko (y X

Then we conclude

EAs, = EX] X, X[ (x X[+ XX )+ X1 X] )Mxi — (p+2)(p +4) Te(M),
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Bz = EX]X,X] (XX + XX ) + Xooor () X] ) MX; = (p+2) Te(M),
EAos = EX] XX (XiX[ + XXy + Xy ()X ) MX; =0,
EAoq = EX] XX (XiX] + XX, + Xpr1(y X] ) MX; =0,
which suggests that
EAs = (p+2)(p+ 5) Tr(M).
Case (d,s): i # 7°(i) and j = 7%(j). In this case, A reduces to
Alds) — XX iy + Xy X ooy + XX
We have
EAg 1 = EX X () X Ly XX s () MX (3 + BX X () X s 0y Kot () X sz () MX (5

EIX; [2X] MX, 1 EIXGI3X] MX,
0

_ T T T T T T
EAz 2 = EX; X;X; XiXﬂ;(i)MXﬂa(i) +EX; X;X; Xﬂ-t(i)xﬂ_hg(i)MXﬂ.t(i)

pTr(M) L, k2 Tr(M)
+ EX XX XX MX o) = (94 Lizgsz) Tr(M),
0
EAz3 =0,
EAQA = 07

which suggests
EAs = 2(p+ 1) Te(M) + 1,—e2(s) (p + 3) Tr(M).
Case (d,d): i # 7°(i) and j # 7%(5). In this case, A is written as
d,d) _ T T T T
A = XX )+ Ke ()X iy + XX o) + Kpoor (X
We have

T T T T T T
EAzy = EXG X ()Xo () XX (5 MX i ) + EXG X () X 3y X (1) Xz () MX e )

E[|X;[I2X] MX; 1, o EIXG 13X MX,

T T T T T T .
+ EX,; Xﬂ—h(i)X—ﬂ.h(i)XjXﬂ—h(j)MXTrh(i) +EX; Xw:(i)th(i)Xﬂ“‘l(j)Xj MX 3y

LB X; 15X, MX; Lijl,_u2 ) EIX:I5X] MX;
_ T T T T T T
EAgp = EX; XX XX () MX sy + BXG XX X () Xz () MX )

Li—;jp(p+2) Tr(M)+1;%,p Tr(M) L, b2 [Lims BI X 33X MX 4155 Tr(M)]

T T T T T T .
+ EX; XX XX () MXqs ) + EX XX X1y X j MX s )3

1;—;p(p+2) Tr(M) Limjl;_ 2 EIX[53XTMX

Bl s = EX{ X () X[ XX o 5y MX e (3 + EX X () X X ) Xz 5y MX e (5

0 0

T T T T T T .

+ EX] Xope (X XX () MK )+ EX] Ko ()X X1 ()X MX 1)
l,izwh(j)pTr(M) 0
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T T T T T T
EApy = EX] X X1 XX MX a3y + EXT XX () X 0y X oy MX )

0 0
T T T T T T
+ EXG XX (1) X Xy MX e ) + EXG XX () Xope o1 () X MX ey -

1 Tr(M) 0

i=7l(5)
Hence we conclude
EAs = 2(p+ 1) Tr(M) + Li—;2 (p + 1)* Tr(M) + Li_psj)(p + 1) Tr(M)
+ ]]-i:ﬂhz(i) (p —+ 3) TI’(M) + Il.i:j I]-i:ﬂ'hz(i) (3p + 5) TI‘(M)

Lemma 10. We have

p(n—h)(n+p—h)

EZ,=5 = Tr(M) [1 +o(1)],

where =9 and =3 are defined in (21).
Proof. To start with, we write the expectation as EZ,=3

= = T T T TxT T
EZ,E3 = EX L B*W T X (Xpz(p) — X;) W BUT XTI X (X5 — X))
N——

'LLT peRn X1 v

= EuTWTpW:v =E <WZ-, uTWTp'v> .
Exploiting the independence among X and W, we condition on X and have
Ew <Wi, uTWTpU> =Ew Tr (VwiuTWTp’U) .

Note that only the diagonal entries of the Hessian matrix Vy,u' W T pv matters. For an arbitrary
index s, we can compute the gradient of the s-th entry of u' W pv w.r.t. W, , as

d d n d d
dWi,s (’LLTWTP'US) = Vg dWLs ('LLTWTP) = Vg tz:; dWi’s (ptw;ru) = UémpZW:u = P;VsUs.
Invoking the definitions of p, v and u, we have

Ew x <Wi,uTWTpv> =Ex (Xﬂu(i) — X]‘)T X; Z [XTTru(i) (BuT>s (BHT): XTI T x (Xﬁn(i) B Xj):|

s=1

[S)

E|(Xery = X5) | XX MBT (Xaiy = X5) | + B [ (Ko = Xp) " XX MAT (Xpegiy = X5,

Ay Ao

where in D we use the relation (BhT) (Bh—r);r =BIBT = M.

S

For the first term A, we obtain

i (3)

1

EA = B (X1 XX ME X)) + B (X] XX METX;)

i:ﬂn(i)E\l\Xi\l\E‘XIMETXi ]li:ﬂh(i)EX;rMZTXi

_E (X,Trh XX, (Z.)METXJ-) —E (X]-TXZ-XLU)METX,,W))

EXT, MXZTX

1;—;1 EX M 'X i£ml (i) ol (4) b (i)

=7 Lisrl () TN e (4) wh (i)
=(n—h) []li:ﬂ”(i) (p+3)—(p+ 1)]li:j]]'7i;éﬂ'b(i)] Tr(M).

Then we consider the second term A5, which can be decomposed further into four sub-terms reading
as

pli=;1
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EA = E (XT ) XiX ]y MA X)) +E (XXX ], MATX;)

Az 1 As 2

~ B (X[ XX MATX;) -E (X] XX () MA X )

Agyg A2,4

Case (s,5): i = w7 (i) and j = 7°(j). In this case, we have A be

ALY = XX+ XX
Hence we conclude
EAzy = E [X] XXM (XX +X;X]) X;] = E|X; ;X MX; + E[X; ;X MX;
— (p+2)(p+4) Te(M) + (p + 2) Tr(M),
EAss = B [X] XXM (XX] + X;X]) X,] = BJX[2X] MX; + EJX,|2X] MX,
= 2E[ X [7X] MX; = 2(p + 2) Te(M),
EAss =B [X] XX/ M (X;X] + X;X]) X;] =0,
EAss =B [X] XX/ M (X; X + X;X])X;] =0
which suggests EAs = (p+2) (p + 7) Tr(M).
Case (s,d): i = 7°(i) and j # 7%(j). First we write A as

)

s, )T _ T T T
A( ) *Xlxz +X7rh(j)Xj +XjX7rU*1(j)'
Then we conclude

EAsy = E (X XX MX; X! X;) + E (X X, X MX ) X[ X;)

E|X; ¢ X MX; 0

+ B (XXX MX,X], ) Xs) = BIXG X MX; = (p+2)(p -+ 4) Te(M);

0
EAs = E (X)X, X! MX, X! X;) +E (X] X; X MX,.:(; X[ X;)

EIX, [2X] MX; 0

+E (XTX X MX;X ] )Xj) = BJX, 23X} MX; = (p + 2) Tr(M),

0
EAss =E [xjxiij XX + X X) + XX, 1(;)) X, } —0,

Ao =B [X] XXM (XiX] + X)X + XX 1)) Xi| =0,
(

which suggests EAs = (p + 2)(p + 5) Tr(M).
Case (d,s): i # 7°(i) and j = 7%(j). In this case, A reduces to

AT _ Xﬂu(i)XzT + Xﬁuz(i)X:n(i) + XJX;—
Then we obtain

T T T T T T
EAyy = E (Xﬂh(i)xixﬂ”(i)MXﬂh(i)Xi th(i)) +E (th(i)XiXTr”(i)MXWhQ(i)Xﬂh(i)Xﬂ'”(i)>

EIX; [2X] MX; 1, o2 ) EIXG 12X MX;

+E (X:“(i)XiX;rrﬂ(i)MXjX;'rXW”(i)> = (14 Lizrs2()) (p+2) Tr(M),

0
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EAyp =E (X;XiXIn(i)MX‘n—h(i)XIXj) +E (X;I—XiX;ru(i)Mthz(i)X;rh(i)Xj>

L BJ X [f Tr(M)+1,5;p Tr(M) 1, b2 [Jli:,-E\l\Xi\I@X? MX;+152;5 Tr(M)]

+E (XJ-TXZ-X;@)MXJ-X]TXJ-) = (p+ Liepus)) Tr(M),

0
EAos =B [ X[ XiX T ()M (Xoe X[+ Xmay Xy + XX ) X5 =0,

T T T T T
EAyy =E [Xj Xz‘Xﬂh(i)M (erh(i)Xi + Xﬂw(i)Xﬂh(i) + Xij ) Xwﬂ(i)} =0,
which suggests
Case (d,d): i # n°(i) and j # 7°(5). In this case, A is written as
d,d)T _ T T T T
AlPDT = XrsnXi + X"Thz(i)X‘nh(i) + X)X + Xijnfl(j)-
Then we have

T T T T T T
EAz1=E (Xﬂ:(i)XiXﬂu(i)MXﬂn(i)Xi Xﬂ-h(i)) +E (Xﬂu(i)xixﬁt(i)Mquz(i)Xﬂt(i)Xﬂn(i))

EIX; 37X MX; 1,52 BIX: I2X] MX;

T T T T T T
+E (erﬂ(i)XiX‘n-ﬂ(i)MXﬂ'h(j)Xj Xw”(z‘)) +E (X'rr”(i)XiXTrﬂ(i)MXjXﬂ'”*1(j)Xﬂ'b(i))

1i— ;B X; R X MX; li:j]li:,,nz(i)EmXi\|\§X[-TMX1'
=(p+2) [1 + Li—rnz(s) + Lizsj + ]li:ﬂm(i)]li:j] Tr(M),
EAso = E (XJTXiXLmMXﬂm)XZT Xj) +E (XJT XiXLu)MXwﬂ(i)XL(nxj)

Liz B X | Tr(M)+pliz; Tr(M) 1, b2 gy [Li=j (P42) Tr(M)+15; Tr(M)]

T T T T T T
+ B (XXX ] () MK () X X ) + B (X] XX MX,X )X )

1, EIX; | Tr(M) 11, e ) EIXG2X] MX,
= 21i—;p(p + 2) Te(M) + pliy; Tr(M) + Limrez(i) [Li=;2(p + 2) Tr(M) + 1;2; Tr(M)],
T T T T T T
EAys = E (Xﬂj(i)XiXﬂh(i)MXﬂn(i)Xi Xj) +E (Xﬂh(i)xixﬂ(i)MXW(i)Xm)Xj)

0 0
T T T T T T
+ B (X XX e MX )X X ) + B (X XX MXG X )X ).

p]li=7rt(j) Tr(M) 0

Ao = B (X] XX\ MXore(X] X))+ (X] XX Ly MX 2 ()X ) X))

0 0
T T T T T T
+ B (XXX [y MX ()X Koy ) + B (X] XX MXGX T X )
Ly, Te(M) 0

which gives

EAy = (p+1) [242(p+ 1)Lizj + Li—pay] Te(M) + Li_rs2(sy [p + 3 + (3p + 5) Lij] Tr(M).

O
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C.2.3 SUPPORTING LEMMAS
First, we study the higher order expectations of Gaussian random vectors’ inner product, which
hopefully will serve independent interests.

Lemma 11. Assume x € RP and y € R? are Gaussian distributed random vectors whose entries
follow the i.i.d. standard normal distribution, then we have

E Tr (nya:mTM) = Tr(M), (63)
ETr (yy 'z Mz) = E[|y[; Tr (' Mz) = pTr(M), (64)
E(z"Mz)" = [Tr(M)]? + Te(MM) + Tr (M M) , (65)
El|z||3(x"Mz) = (p+ 2) Tr(M), (66)
Ellz3(z Maz) = (p+2)(p + 4) Tr(M), (67)
Elz|? (z"Mz)® = (p+4) [(Tr(M))z + Tr(MM) + Tr (MTM)} : (68)

Ell2]} (27Mz)* = (p+4) (p+6) [(Tr(M))” + Te(MM) + T (MTM)],  (69)

E(xz y)%y Myzx Moy = 2 Tr(M,;) Tr(My) + (p + 4) Tr(M;My) + 2 Tr(M; M, ), (70)
where M € RP*P is a fixed matrix.

Remark 5. If we assume M = 1, ,, we can getIE)Ha:H;l =p(p+2), E|z|s = p(p+2)(p+4), and
E|lz|5 = p(p+ 2)(p + 4)(p + 6).

Proof. This lemma is proved by iteratively applying the Wick’s theorem in Theorem[4] Stein’s lemma
in Lemma[20] and Lemma

* Proof of (63) and (64). The proof can be conducted easily with the property such that Tr(uv ") =

u'v = Tr(vu ") holds for arbitrary vectors u and v.

* Proof of (63). This property is a direct consequence of Neudecker & Wansbeekl (1987) (Equa-
tion (3.2)), which is attached in Lemmafor the sake of self-containing.

* Proof of (66). Invoking the Stein’s lemma, we have
E|z|5(z"Mz) = E [V,(z Mz)z] .

Then our goal transforms to computing the trace of the Hessian matrix Tr [Vm Tr(mTMw):c} . For
the i-th entry of the gradient, we have

d
dl‘,;

where M, is the i-th row (or column) of M. Then we obtain

x Mz = (M;, z)+ (M");, ),

i, [z; Tr(z"Mz)] = ' Mz +z; [(My, z) + (M ");,z)],

and hence

E|z|3(@ Mz) = Y E(z M=)+ Y E[z; (Mjz) + (M), z))]

i=1 i=1

=pTe(M) +2> M;; = (p+2) Tr(M).

* Proof of (67). Following the same strategy as in proving (66), we have

Eleli(="Me) = E [V, |23 Mz)z]
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Then our goal transforms to computing the trace of the Hessian matrix Tr [Vm HacHg(acTMa:)m} .
For the i-th entry of the gradient, we obtain

d 2, T _ T d T
o [millalb@ M) =lle]3 - (2" Ma) + o {2l @ M)

= |l - (=" Ma) + 227 (:BTMw) + el [(Mi,2) + (M");,2)]
whose expectation reads as

E|z - (2" Ma) + 2E [27 (¢ Ma)] + Ex; || [(Mi,2) + (M);, z)]

= (p+2) Te(M) + 2B |2 Migo? + o2 [ 57 Mj02 | | + 2048 [z}
J#i

= (p+2) Tr(M) + 2M;; (Eaf) + 2> M;;(Ea?)(Ea?) + 2M;i |E(z)) + > (Ea?)(Ea?)
J#i J#i

= (p+2) Tr(M) + 6M;; +2)  M;; +2M;; (3+p—1)
J#£i
= (p+4)Tr(M) + 2(p + 4) My;.

Then we conclude
ETr [vmuwug(mTMm)w} = p(p+2) Te(M) +2(p +4) Y My + 2 Te(M)
=(p+2)(p+4) Tr(M).

* Proof of (68). Invoking the Stein’s lemma, we have

2 d
E|z|; (x"Mz)" = Zd

[mi (:cTMw)Q} =p (wTMw)2 + 42 T; (:cTMw) <M§Sym), :c> .

XTj -
K2

The proof is then completed by invoking Lemma [12]

* Proof of (69). Following the same strategy as in proving (68)), we consider the i-th gradient w.r.t
x;, which can be written as

d
Ellzlly (@™ Me)* =Y — [aa]l} (2 Ma)’|
= Z ||w||§ (:BTMw)2 + QZ:UZQ (wTMw)2 + 4le||wH2 x " Mzx) <M(5ym) :B>

= llell; (= d‘ii[ (2" M) }+4ZE* [ 3(a™Ma) (M, 2))].

(71)

Noticing the following relations

y [;UZ (ZBTMiL')z} = (:BTMQZ)2 + 4x; (a:TM:c) <M§Sym)7w> , (72)
z;

d m m

T [||w||§Tr(a:TMa;) <M§Sy ),mﬂ = 27, (z Mz) <M§5y ),w>
Ty
2
23 (MO™. @)+ My 2ll} (& TMz) (73)

we can conclude the proof by combining (68), (71), (72), (73), and Lemmal[l2]
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* Proof of (70). Due to the independence between x and y, we first condition on @ and have
]E(acTy)ZyTMl:c:cTng = IEwayT:cmTnyMlmxTng
@ E, Tr (a:a:T) Tr (Mlﬂ)ﬂ:TMg) + E, Tr (mwTlewTMg) + E; Tr (mwTM;—mmMI)
= ]Em||:cH§wTM2M1w + Epz'Mizz Moz + ]EmwTMIwa:TM;w
2, Tr(M;) Tr(Ms) + (p + 4) Tr(M;My) + 2 Tr(M; M, ),
where in @ and @ we both use Lemma
O

Lemma 12. For a fixed matrix M € RP*P, we associate it with a symmetric matrix MY™ defined
as M+MT) /> Consider the Gaussian distributed random vector  ~ N(0,T), we have

IEZ;E (=T Mz) <M§.5ym>,x> = (Tr(M))? + M| + Tr(MM).

Proof. This lemma is a direct application of Wick’s theorem, which is completed by showing

Ez; (" M) <Mgsym)’ m> —EY Y MYV My, pywiwsae, e,

JoLila
= EZ Z Il.gl 1122 JM(Sy )Mgl742xlxj$51£g2 +EZ Z ]].[2 1]].51 ]M(Sym)Mghbxixj:wlxgz
VAW J L1l
>, MO™ M >, M M;,;
2
+EY N Vil me M ™ My, i, ve, = Y2 [Mi(,?‘ym)} + M;,; Tr(M),
J il J
X MI™ M e
where M(®™ is defined as (M + M) /2. O

Then we study the properties of 3, which is defined as XTII'X — A.
Lemma 13. For a fixed matrix M, we have
B\ 2
Py (1— ) +0(1)
n n

ETr (EMET) = n? Tr(M),

where matrix X is defined in [22)).
Proof. We conclude the proof by showing

ETr (EMET)@ Y OET (X, X MX, X[+ Y ETr {le (zl)MXWu(mx@]
61,6268 EI,EQED

=Y ETr (XX, MXX/) + > ETr[X,X;,MX;,X/]

es 01,02€8 01 %£Ls
+ Y ET[X XL MX o XT |+ > ETr[Xe, X[ MX,, X[

LeD £1,£2) € Dpair

© p Tr(M) ( €Dy Tr(M)

= (n—h)(p+2) Te(M) + (n — h)(n — h — 1) Te(M) + hp Tr(M) + | Dpair| Tr(M)

§+ (12)2+0(1)

where (D is due to the definitions of index sets S and D (Equation and in Equation (28)), and @
is because |Dyir| < h. O

TL2

I

Tr(M),
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Lemma 14. For a fixed matrix M, we have

ETr(ESMEM) = (n — h + [Dyaie]) [Tr (M)]? + (n — h)? Tr (MM) +nTr (MM ")

Proof. Following the same strategy as in proving Lemma[I3] we complete the proof by showing

ETr(EMIM) = ETr (X, MX,X,/ MX,) + ETr (X, X, MX,, X, M
4 4 01 Lo

Z:‘frh(é) 5175265721?5[2
+ Y BT (XX MX XL (M) + 3 ETr (XX () MX X[ M)
teD £ Dy

= (n — h+ [Dpaie]) [Tr (M)]* + (n — h)? Tr (MM) + 7 Tr (MM ") .

Lemma 15. For a fixed matrix M, we have

E[Tr(SM)]* = (n— h)? [Tr(M)]* + 2Tt (M"M) + (n — h + [Dpair]) Tr(MM).

Proof. We complete the proof by showing

2
E(Tr(SM))* = Y E(X/MX,) + > (Tr(M)” + > EX] ( MX,X/ M X,
= 01,65€S 0140y LeD

Tr(MTM)

+ > EX (o MX X MX g
eerair

Tr(MM)
= (n = h)?[Tr(M)]” + 2 Tr (M"M) + (n — h + |Dpir]) Tr(MM).

O
Lemma 16. For a fixed matrix M, we have
E Y X MXX] Xy = (n = h) Tr(M) + (p+ 1) 1;_pa(s) Te(M).
L=7t(L)
Proof. Provided that i = 7% (i), we have
B2, =EX/MX,X/X;+ Y EX/MX/X/X;
£, t=mt (L)
=(P+2T(M)+ > Te(M)=(n—h+p+1)Te(M)Li_nq. (74)
£, t=mt (L)

Provided that 7 # 7%(7), we have

EZ11= Y EBX[L MXX] X = (n—h) Tr(M)Li ). (75)

L=ml(L)

Combining and then completes the proof. O

Lemma 17. For a fixed M, we have
EY X1 MX (X X = (pLizjlizrs(s) + Ljmee()) Tr(M).
¢

We omit its proof as it is a direct application of Wick’s theorem (Theorem ).
Lemma 18. We have
n—nh

. . h
BLi =) = "1t o (1), Bl = +or)
h |Dpair|
E]]-j:ww(i) = ﬁ(l + op (1)), E:ﬂ-i:j]]-i:fn—h?(i) = 2 (1 + op (1))

This lemma can be easily proved by assuming the indices i, j, 7" (i), and h () are uniformly sampled
from the set {1,2,--- ,n}
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D USEFUL FACTS

This section collects some useful facts for the sake of self-containing.

Theorem 4 (Wick’s theorem (Theorem 1.28 inJanson| (1997))). Considering the centered jointly
normal variables g1, g2, -+ , gn, we conclude

E (9192 9n) = Z HE(gikgjk)-
K

all possible disjoint
pairs (ix,jk) €{1,2,-+ ,n}

With Wick’s theorem, we can reduce the computation of high-order Gaussian moments to calculating
the expectations of a series of low-order Gaussian moments.

Lemma 19 (Equation (3.2) inNeudecker & Wansbeek! (1987)). For a normally distributed random
matrix G € R"*P which satisfies EG = 0 and Evec(G)vec(G)" = U ® V, we have

E(G'AGCG 'BG) = Tr (AU) Tr (BU) VCV + Tt (AUB'U) VC 'V
+ Tr (AUBU) Tr (CV) V,

where vec(-) is the vector operation; ® is the Kronecker product (Horn & Johnson| |1990); and A, B
and C are arbitrary fixed matrices.

Lemma 20 (Stein’s Lemma (cf. Section 1.3 in [Talagrand| (2010))). Let g ~ N(0, 1). Then for any
differentiable function f : R — R we have

Elgf(9)] = Ef (g),

where lim||g|| o0 f(g)e‘"”gHg = 0 for any a > 0.
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