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A THEORETICAL SUPPLEMENTS

A.1 PROOF OF LEMMA 1

For completeness, we start by re-stating Lemma 1 in more detail.

We consider a multi-class classification problem, with K := {1, 2, . . . ,K} the set of K labels and
p̂(x) := (p̂1(x), . . . , p̂K(x)) the predicted probabilities for x that y = k for all k ∈ K. We denote
yi the true label for a sample xi, ŷi := argmaxk p̂k(xi) the predicted class by the model and
v̂i := maxk∈K p̂k(xi) the predicted probability value for that class. In the context of sequential
label acquisition, we denote X t−1

inf := {xi}Ni=1 the inference set containing N samples at acquisition
step t− 1, and Dt−1

inf := {(xi, yi)}Ni=1 the same set with the associated labels yi. Stepping forward,
at time t, an acquisition batch of Nb samples and their labels Dt

b := {(xi, yi)}Nb
i=1 are selected from

the inference dataset of the previous step Dt−1
inf .

Following the least-confidence acquisition function, at time-step t, the samples in Dt−1
inf are ordered

by confidence where x1 has the predicted class with the lowest confidence and xN has the predicted
class with the highest confidence:

v̂1 ≤ v̂2 ≤ · · · ≤ v̂Nb︸ ︷︷ ︸
first Nb samples

≤ v̂Nb+1 ≤ · · · ≤ v̂N︸ ︷︷ ︸
last N−Nb samples

(6)

and the selected batch consists of the first Nb samples. The remaining inference set is composed of
the remaining N −Nb samples, i.e. Dt

inf := D
t−1
inf \ Dt

b = {(xi, yi)}Ni=1+Nb
.

The practical utility of this ordering depends on the calibration of the model. Calibration reflects
the correctness of the model’s confidence compared to its true performance. A perfectly calibrated
model p̂ would output confidence levels that perfectly match the true probability of correct classifi-
cation. We extend the notation of Guo et al. (2017) to be dataset-specific, and denote PD[Y = Ŷ ]
the probability of p̂ producing the correct class prediction for any sample from a dataset D, which
can equivalently be thought of as p̂’s accuracy on that dataset:

PD[Y = Ŷ ] := E(xi,yi)∼D[1(yi = ŷi)] (7)

Similarly, PD[Y = Ŷ |ṽ] denotes the confidence-conditional accuracy of the model for ṽ, a specific
confidence level2:

PD[Y = Ŷ |ṽ] := E(xi,yi)∼D[1(yi = ŷi)|v̂i = ṽ] (8)
Perfect calibration on the inference set would thus imply that for any confidence level ṽ ∈ [0, 1], we
have PDt−1

inf
[Y = Ŷ |ṽ] = ṽ. Instead, in Lemma 1, we only assume weak calibration of the model

on the predicted class, i.e. that the confidence ordering of the model’s top predictions reflects the
ordering of probabilities of correct classification. Formally, weak calibration on Dt−1

inf implies that
for any pair of samples xi and xj in our dataset Dt−1

inf , we have:

v̂i ≤ v̂j =⇒ PDt−1
inf

[Y = Ŷ |v̂i] ≤ PDt−1
inf

[Y = Ŷ |v̂j ] (9)

We aim to prove that, assuming weak calibration on the inference set, the expected accuracy on the
least-confidence batch is bounded by the expected accuracy over the remaining inference set:

PDt
b
[Y = Ŷ ] ≤ PDt

inf
[Y = Ŷ ] (10)

Proof. The expected accuracy from Equation 7 can be rewritten in terms of its confidence-
conditional form in Equation 8:

PD[Y = Ŷ ] =
1

|D|

|D|∑
i=1

PD[Y = Ŷ |v̂i] (11)

2In practice such confidence levels would be binned together such that PD[Y = Ŷ |ṽ] represents the accu-
racy over all samples in D for which the model’s confidence is in [ṽ − ϵ, ṽ + ϵ], see (Guo et al., 2017).
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From the weak calibration assumption in Equation 9, it follows that the model’s confidence-
conditional accuracy is a non-decreasing function of its confidence. Combined with the acquisition
mechanism of Equation 6, we obtain an ordering of the probability that the model obtains the correct
label along the entire inference set at step t− 1:

PDt−1
inf

[Y = Ŷ |v̂1] ≤ · · · ≤ PDt−1
inf

[Y = Ŷ |v̂Nb
]︸ ︷︷ ︸

Nbfirst terms

≤ PDt−1
inf

[Y = Ŷ |v̂Nb+1] ≤ · · · ≤ PDt−1
inf

[Y = Ŷ |v̂N ]︸ ︷︷ ︸
N−Nb remaining terms

(12)
The empirical average of a set of numbers that are inferior or equal to those of a second set has to
be inferior or equal to the empirical average of the second set:

1

Nb

Nb∑
i=1

PDt−1
inf

[Y = Ŷ |v̂i] ≤
1

N −Nb

N∑
i=1+Nb

PDt−1
inf

[Y = Ŷ |v̂i] (13)

By definition, Dt
inf := D

t−1
inf \ Dt

b, the left-hand side from Equation 13 thus captures all the terms
from Dt

b and the right-hand side those from Dt
inf. Rewriting each side using Equation 11, we obtain:

PDt
b
[Y = Ŷ ] ≤ PDt

inf
[Y = Ŷ ] (14)

This concludes the proof.

A.2 BOUND DERIVATION

Here we derive the bound presented in Equation 5. The Chernoff bound (Chernoff, 1952) for
Bernouilli random variables provides an exponential tail bound for the true mean µ of a sequence
of Bernouilli distributed random variables Z1, Z2, . . . , Zn. It can be expressed using the Kullback-
Leibler Divergence (KL) for Bernouilli distributions (Lattimore & Szepesvári, 2020, page 135, Cor-
rollary 10.4):

P (µ ≤ a) ≤ exp
(
− n · KL(µ̂||a)

)
∀ a ∈ [0, µ̂] (15)

with KL(µ̂||a) := µ̂ log
µ̂

a
+ (1− µ̂) log

1− µ̂

1− a
(16)

It quantifies the probability that the true mean µ is smaller or equal to some bound a given the
observed sample mean µ̂ and sample size n. For us, the value {0, 1} of a variable Zi indicates
whether a particular sample xi was correctly classified i.e. Zi := 1(yi = ŷi). In the context of
inference set design and following the notation from Section 2, µ̂t

b represents the observed accu-
racy on the acquired batch at time-step t, with acquisition batch-size Nb, and µt

inf represents the
(unknown) accuracy of the model on the remaining inference set. Note that the Chernoff bound
usually assumes that µ̂t

b is an unbiased estimator of µt
inf. In our case, µ̂t

b is a biased estimator due
to the active selection mechanism of the batch. However, in Lemma 1, we show that this estimator
is actually a conservative estimate of the true accuracy, and thus in turn contributes to making the
bound presented in Equation 15 even more conservative, and preserves its validity.

To establish a confidence level on that bound, we can lower-bound the right-hand side itself to the
desired bound-failure probability δ, which after rearranging yields:

KL(µ̂||a) ≥
log( 1δ )

Nb
(17)

At time t, we thus seek the maximum bound value a = αt for µt
inf such that the inequality on

Equation 17 holds by finding the value of a that satisfies the following condition:

αt = min
a

{
a ∈ [0, µ̂t

b] : KL(µ̂||a) ≤
log( 1δ )

Nb

}
(18)

Since this is a scalar optimization problem from closed-form expressions, computing αt can be done
easily and efficiently using a grid-search. With this choice for a, we obtain the desired probabilistic
bound P (µt

inf < αt) ≤ δ summarized in Equation 5.
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B ALGORITHM

Algorithm 1 Hybrid Screen using Inference Set Design
1: Input: Acquisition batch-size Nb, threshold γ, margin δ
2: Initialize Step t=0, observation set X t=0

obs ← ∅, inference set X t=0
inf ← Xtarget, predictor p̂.

3: repeat
4: Train the predictor p̂ on (X ,Y)tobs (if not empty)
5: Obtain the predictions on the inference set P̂t

inf ← {p̂(xi) ∀xi ∈ Xinf}
6: Run acquisition function to obtain scores Stinf ← g

(
P̂t

inf

)
7: Select a batch of Nb inputs with the highest scores Stinf to form X t

b

8: Remove the acquired batch from the inference set X t
inf ← X

t−1
inf \ X t

b
9: Obtain the true labels Yt

b for the acquisition batch
10: Append the acquired batch to the observation set (X ,Y)tobs ← (X ,Y)t−1

obs ∪ (X ,Y)tb
11: Compute α on (X ,Y)tb from Equation 5
12: until

|X t
obs|+ α|X t

inf|
|Xtarget|

> γ or X t
inf = ∅

13: Return hybrid screen readouts: (X ,Y)t=τ
obs ∪ (X , Ŷ)t=τ

inf

C ADDITIONAL DETAILS ON DATASETS AND PREPROCESSING

C.1 MOLECULAR DATASET PREPROCESSING

In many practical applications exact geometries of screened molecules are unknown as they require
computationally expensive DFT calculations. As a first data processing step, we use RDKit li-
brary (Landrum et al., 2024) to convert molecular structures into SMILES strings and compute their
Extended Connectivity Fingerprints (ECFPs). The SMILES representation provides complete infor-
mation about molecule’s composition and atomic connectivity, however, it removes all information
about 3D atomic positions. Using SMILES representation is a common solution that simplifies gen-
eration of candidate molecules for screening but makes property prediction a more challenging task
as many properties vary depending on specific 3D conformation of a molecule.

Both molecular datasets are cleaned by removing duplicated SMILES and fingerprints as well as
single-atom structures. For total energies in Molecules3D dataset we use reference correction tech-
nique where atomic energies are calculated using linear model fitted to the counts of atoms in a
molecule of each element present in the dataset (obtained atomic energies are presented in Table
1). For reference correction a randomly selected sample of 100k molecules is used. The atomic
energies are then subtracted from the total energies of all molecules in the dataset. The obtained
referenced-corrected energies are normally distributed with mean around 0 eV. A small number of
outliers with reference-corrected energy values above 10 standard deviations are removed from the
dataset as well as 100k samples that were used for reference correction to avoid data leakage.

The final QM9 and Molecule3D datasets contain 133, 885 and 3, 453, 538 molecules respectively.
Both datasets are split into inference, validation, and test sets with 80%, 5%, 15% fractions. The
QM9 HOMO-LUMO gap values are discretized into 2 balanced classes using median as a boundary
condition to explore agents’ performance on classification task.
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Atomic Number Energy (eV) Atomic Number Energy (eV)
1 -26.765 14 -7922.180
5 -673.550 15 -9313.610
6 -1054.411 16 -10810.329
7 -1483.001 17 -12474.680
8 -2034.056 32 -56538.647
9 -2687.455 33 -60828.588

12 -5367.759 34 -65296.349
13 -6657.476 35 -69980.303

Table 1: Atomic energies used for reference correction on Molecules3D dataset.

C.2 RXRX3 DATASET PREPROCESSING

The RxRx3 dataset contains one embedding for each well. Each perturbation type (gene-guide
pair or compound-concentration pair) has several replicates across wells, plates and experiments.
Each plate also contains unperturbed control cells which are used to keep track of and eliminate
a portion of the batch effects (Sypetkowski et al., 2023). These raw embeddings thus need to be
aligned and aggregated. We align them by centering and scaling each perturbation embedding to
the embeddings of the experiment-level unperturbed control wells. The embeddings are then aggre-
gated through a multi-stage averaging procedure, across wells, plates, experiments and guides (for
CRISPR perturbations), which yields an average embedding for each gene-perturbation and each
compound-concentration perturbation. We then use the obtained embeddings to compute cosine
similarities between gene and compound perturbations in the RxRx3 dataset.

D HYPERPARAMETERS AND IMPLEMENTATION DETAILS

For all presented experiments in this work we use MLP models with residual connections (Touvron
et al., 2021). All experiments were repeated with 3 different random seeds. Hyperparameters for
each experiments are summarized in Table 2.

Hyperparemeter name MNIST QM9 Molecules3D RxRx3 Proprietary
data

Acquisition batch size 1,000 250 10,000 10 1000

Number of hidden layers 2 3 2 2 2

Hidden layer size 512 512 512 512 1024

Learning rate 0.001 0.001 0.001 0.001 0.001

gradient norm clip 1.0 1.0 1.0 1.0 1.0

Dropout 0.1 0.1 0.1 0.1 0.1

Train epochs 1,000 1,000 30 30 1000

Train batch size 1,024 1,024 32,768 1,024 1,024

Early stop patience 50 50 15 25 25

Number of ensemble
members

None None 5 None None

Table 2: Hyperparameters for experiments.
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E ADDITIONAL RESULTS

E.1 REGRESSION TASK ON MOLECULES3D

To evaluate the inference set design paradigm on a regression task we use a large dataset
Molecules3D (Xu et al., 2021). Molecules3D contains structures and DFT-computed properties
of approximately 4 million molecules. In our experiments we aim to predict the HOMO-LUMO gap
and total energy. For inputs, we convert the SMILES strings molecular representations into their
Extended Connectivity Fingerprints (ECFPs).
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Figure 10: Performance of QBC, random, and heuristic agents for HOMO-LUMO gap prediction
(top) and energy prediction (bottom) on Molecules3D dataset. The dashed vertical shows average
stopping time across random seeds, surrounded by mix to max intervals (left to right). The patience
parameter p = 10 was used in all experiments with the threshold MSE tMSE = 0.1eV 2 for HOMO-
LUMO gap and tMSE = 100eV 2 for Energy predictions. QBC agent satisfied stopping condition
after acquiring ≈ 80% of the data.

For this regression task, we use a query-by-committee (QBC) active learning approach that computes
variance across the predictions of an ensemble. To determine the stopping time we use a criterion
with two parameters: MSE threshold tMSE on the acquired batch and patience p. The stopping
time is reached if the acquired batch MSE is lower than tMSE for p steps. Like for our QM9
experiments, in addition to active and random agents, we also evaluate the performance of heuristic-
based acquisition orderings (molecules ordered by size, sorted by SA-score, etc.). QBC achieves
an approximately five times lower MSE compared to the random agent or heuristic-based orderings
(see Figure 10). This shows that inference set design approach is not limited to classification tasks
and can be applied to regression problems.

Although, in many applications predicting properties of larger molecules present a more challeng-
ing task, our experiments on the Molecules3D dataset demonstrate that acquiring molecules ordered
from large to small may harm the predictions on inference set and overall system performance
(see Figure 10). One of the reasons is the distribution of chemical elements across molecules in
the dataset. When acquiring molecules from small to large, all unique chemical elements of the
Molecules3D dataset are present in the training set after acquiring just the first 1,000 samples. How-
ever, when acquiring molecules from large to small, some chemical elements remain only in the
inference set until the very end of the experiment which is especially detrimental for the total en-
ergy predictions (see Figure 11). This result demonstrates that using heuristic rules such as ordering
molecules by size for data acquisition does not guarantee optimal acquisition or generalization of
heuristic rules to new data.
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Figure 11: Number of unique chemical elements in the training set when acquiring samples ordered
by molecule size. Acquiring molecules from large to small leaves several chemical elements out of
the training set until the end of the dataset.

E.2 CLASSIFICATION TASK ON RXRX3

Results on the RxRx3 dataset demonstrate minor improvements from the active agents (LC and
BALD) compared to random selection. The accuracy on inference and test set remains low through-
out the experiment regardless of the acquisition method. This is expected considering the extreme
difficulty of predicting biological relationships in a low data regime. The result suggests that in
the setting with low predictive power, even when the majority of the data is acquired, the ability of
inference set design to provide significant budget reductions is limited.
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Figure 12: Performance of agents on pheno-similarity classification task on RxRx3.
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F ADDITIONAL ANALYSIS

F.1 EMPIRICAL VALIDATION OF WEAK CALIBRATION ASSUMPTION

In Lemma 1, we show that when using a least-confidence acquisition function, at any time-step t,
the measured accuracy µ̂t

b on the acquisition batch is a lower-bound on the unobserved accuracy on
the remaining inference set µ̂t

inf, assuming that the model p̂ is weakly calibrated in the infence set.
A weakly calibrated model is such that an increased confidence translates to a higher likelihood of
correct prediction (higher accuracy). In Figure 13, we can see that at several points throughout the
active learning loop, the least-confidence based agent is not perfectly calibrated. Indeed, there is a
substantial gap between its confidence levels and the true accuracy (seen when comparing the col-
ored bars to the identity function shown in gray). However, the model is generally weakly calibrated
(the colored bars are always increasing). These observations support the empirical validity of our
assumption for Lemma 1.

Figure 13: Model calibration analysis for a run of the least confidence agent at different active
learning steps (columns) for all of our classification experiments (rows). The colored bars represent
the accuracy of predictions binned w.r.t their confidence level, and the gray bars show the identity
function illustrating what perfect calibration would look like. The models satisfy the condition of
being weakly calibrated since the accuracy of the model’s predictions increases monotonically with
their confidence. The confidence distribution shifting to the right as t increases indicates that the
growing confidence of the model in correctly predicting the labels of the remaining examples in the
inference set.

F.2 EMPIRICAL VALIDATION OF STOPPING CRITERION

In Section 2.2, we present a stopping criterion based on the fact that the accuracy measured on the
acquisition batch can be used as a proxy for the accuracy on the remaining, non-acquired samples
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Figure 14: System accuracy at stopping time observed across 100 seeds for the MNIST, Cropped
MNIST, Shuffled MNIST and QM9 experiments, and 50 seeds for the Phenomics experiments. In
all experiments, we use a bound-failure probability of δ = 0.05. For the LC agent, all trials lead to
a stopping time t = τ at which the true system accuracy µt=τ

sys higher than the threshold γ. For the
Random Agent, we observed the same thing for Cropped MNIST, Shuffled MNIST and Phenomics.
We also observed 1% of bound failure for (regular) MNIST, and 6% for QM9.

(inference set). The criterion is simple, once the estimated system accuracy µ̂t
sys at time t (see

Equation 4) is above a user-defined targeted threshold γ, the acquisition is stopped. This criterion
makes use of the bound of Equation 5, and both a random sampler and a least-confidence based
agent can use this bound in a principled way. The random agent can validly use it because the
accuracy of its acquisition batches, uniformly drawn from the inference set, are unbiased estimates
of the true accuracy on the entire inference set, which is typically required for such bounds. The
least-confidence agent can use it validly because we show in Lemma 1 that, assuming that the model
is weakly calibrated (which we empirically validate in Appendix F.1), because of its confidence-
based acquisition function, the accuracy of its acquisition batches represent a lower-bound on the
true inference set accuracy, making the bound of Equation 5 even more conservative.

To empirically validate this bound (Equation 5), we run a large number of trials for both the least-
confidence (LC) and random agents across the classification datasets used in the experiments section.
The results show that for the LC agent, all trials ended at a stopping time t = τ at which the true
system accuracy µt

sys was above the threshold γ, which is in accordance with the fact that the LC
agent uses a lower-bound estimate in place of an unbiased estimate for the inference set accuracy,
resulting in a looser bound for Equation 5 and an actual failure-probability lower than δ. For the
random agent, we observed 1% of the trials end with a system accuracy below the threshold in
one of the experiment, 6% in another, and 0% on the three remaining datasets. These results are
in accordance with the theory presented in Section 2.2 and Appendix A.2. On QM9, 6 out of
100 experiments resulting in slight bound failure is statistically in accordance with the theoretical
bound failure probability of δ = 5%. For the other datasets, the bound was looser, which is also a
possibility, and showcases that the observed gap between δ and the true bound-failure probability
can be problem-dependent.
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