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1 SIGNIFICANCE OF L3DHPE TASK

Please show me the
multiple views of the 3D
skeleton of the woman
who is shooting, so we
can assess whether her
motion is correct.

coach

Show me the skeletons of
two people contesting the
ball in order to determine if
the player is offside.

referee

Figure 1: Practical applications examples of L3DHPE task in real life. (a) Example of sports coaching.
(b) Examples of sports officiating.

Language-Driven 3D Human Pose Estimation (L3DHPE), alternatively termed 3D Motion Grounding,
extends the conventional 3D human pose estimation (3DHPE) problem to encompass complex multi-
person scenes. Compared with traditional 3DHPE tasks that can only estimate all individuals
appearing in the video, L3ADHPE emphasizes more on the ability to select specific individuals via full
explorations of semantic interactions between human poses and linguistic expressions. In this case,
the L3DHPE targets a more demanding yet practical problem of reconstructing 3D pose sequences
for individuals, guided by comprehensive language descriptions that include appearance, behavior,
and body movements. As a novel research topic, our proposed L3DHPE task serves as a fundamental
problem to be solved in various downstream applications, including:

* Human-Computer Interaction (HCI): Facilitating systems that can interpret human actions
through verbal commands for more intuitive and natural interactions.

* Robotics: Enhancing robots’ capabilities to comprehend and simulate human movements as
articulated through language, thus improving adaptability in complex real-world contexts.

* Animation and Gaming: Automating the creation of 3D character animations derived
from textual descriptions, thereby streamlining content generation for games and virtual
environments.

* Surveillance and Security: Advancing behavior recognition techniques by enabling systems
to align language-based descriptions with 3D pose estimates in security applications.

* Healthcare: Supporting physical therapy by reconstructing and analyzing patient poses
based on verbal instructions or reports, thereby aiding therapeutic interventions.

The introduction of L3DHPE creates new opportunities for advancing research in the domain of 3D
human pose estimation, including the alignment of visual, pose, and textual features to enhance the
utilization of both detailed and semantic information, the differentiation of similar human poses, and
the integration of human pose with semantic motion. Our proposed L3DHPE task, along with the
newly established Panpotic-L3D dataset and the CPP approach, provides a foundational framework
for these explorations.
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1.1 PRACTICAL APPLICATIONS IN REAL LIFE

In the following section, we will provide two case studies of L3DHPE as concrete examples of
utilizing L3DHPE in real-world applications.

Sports Coaching. As illustrated in Fig. [T{a), coaches must often visualize multiple perspectives
of individual players. Displaying each player independently based on natural language input offers
considerable convenience. By combining language comprehension with 3D pose reconstruction,
our task could offer potentially real-time assessment of player movements by coaches, trainers, and
analysts, thereby facilitating precise feedback and enhancing athletic performance.

Sports Officiating. Fig.[I(b) presents an example of sports officiating. In this scenario, a referee
requires the skeletal representations of two players to evaluate an offside decision. While current
systems can automatically detect all players’ skeletons, identifying the relevant individuals remains
time-consuming. The L3DHPE task leverages language-guided selection to estimate the target
players, disregarding irrelevant ones, thereby streamlining the decision-making process and reducing
delays during the game.

1.2 COMPARISON WITH SIMILAR TASKS

We provide a detailed comparison with three closely related tasks: 3D human pose estimation, human
pose recognition, and human pose generation, to highlight the distinctive contributions and the
necessity of our proposed L3DHPE task.

3D Human Pose Estimation (3DHPE) Pavlakos et al.| (2017); [Pavllo et al.| (2019); Sun et al.
(2017); Zheng et al.| (2021); |Sun et al.| (2022)); [Su et al.| (2022)) aims at estimating the 3D pose
of all individuals present in images or videos. However, it cannot selectively focus on specific
individuals, limiting its applicability in real-world scenarios where targeted pose analysis is essential.
In contrast, our L3ADHPE task incorporates natural language guidance to identify and estimate the
pose of referred individuals, providing a more context-aware understanding of human activity in
complex environments.

Human Pose Recognition Zhang et al.| (2020); Mazzia et al.| (2022)); |Chi et al.[ (2022) involves
categorizing human poses into predefined motion classes. However, as a classification task, these
methods can only select from a fixed set of labels corresponding to known verbs or 3D pose sequences.
This restricts their ability to comprehend the diverse and intricate actions encountered in real-world
contexts. Moreover, such methods are unsuitable for interpreting the natural, everyday language
used to describe actions and are limited in representing complex action combinations. In contrast,
our L3DHPE task tackles a more advanced challenge of reconstructing 3D pose sequences based
on detailed linguistic descriptions, enabling a broader and more flexible understanding of human
behavior.

Human Pose Generation [Delmas et al.| (2024); Lin et al.| (2024); [Feng et al.| (2024) focuses on
generating human poses from textual descriptions or generating descriptions based on a given pose.
These methods are inherently generative and differ fundamentally from our grounding-based approach
in the L3DHPE task. Furthermore, they typically involve one or two individuals in static scenes,
which does not reflect the complexities of real-world environments. In contrast, L3DHPE is designed
to ground 3D poses based on textual descriptions in dynamic video contexts, often involving multiple
interacting individuals. Additionally, while human pose generation tasks typically rely on virtual or
synthetic environments, our L3DHPE task processes video input from intricate, real-world settings.

2 MORE DETAILS ABOUT THE CPP MODEL

In this section, we present more details of our proposed method CPP, including more details of our
loss function and two modules, i.e., Body Fusion Block and Mask Fusion Block.

2.1 Loss FuNcTIiON OF CPP

In stage 1, the CPP generates bounding box maps M;, € RV > x4 root depth maps M, € RW*H

and 2D joint maps M; € R"W>*H>N; for all individuals in the frame. Here, N; denotes the number
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of human joints, while W and H represent the width and height of the output maps, respectively.
These maps are then compared with the corresponding ground-truth maps, denoted as M;, M,., and

M;. The losses for bounding box maps, root depth maps, and 2D joint maps are defined as Ly,
Laepth, and Ljoine, respectively, and are calculated as follows:

Loow = Y | M2 - 222 . (M
peP !
ﬁdepth = Z ‘Mvp - Mf ) (2)
peEP
—— 12
Lyomi = M5~ M, - 3)

where P represents the set of ground-truth root joint locations. The total loss for stage 1, L1, is a
weighted sum of these individual losses:

£1 = Aboxcboz + )\depthﬁdepth + )\jointﬁjointv (4)

where Apog, Adepth, and Ajoine are the respective hyperparameters.

In stage 2, the CPP generates a referring mask M, the 3D positions of the human root nodes H,., and
the 3D human skeleton Hg. These outputs are then compared with the ground-truth values, denoted

as M , H », and H s- The losses for the referring mask, human root nodes, and 3D human skeleton

are denoted as L,,qsk> Lroot> and Leorg, respectively. The loss L,,,4s% is @ combination of the DICE
loss [Milletari et al.| (2016) and the binary mask focal loss, while L,.,o: and L..,.q are defined as:

2
L el s ®)]
2
1
cord - F Z ) (6)
The total loss for stage 2, Lo, is computed as follows:
£2 = /\maskﬁmask + )\root»c'r‘oot + )\cordﬁcorm (7)

where \iask> Aroot, ad Aeorg are the corresponding hyperparameters.

2.2 DETAILED STRUCTURE OF THE CPP MODEL

Details of the Body Fusion Block. With the input of Body Fusion Block as a visual feature from
image encoder z,, € RV *P text feature from text encoder zz; € RY*P and 2D joints map from pose
encoder m; € RWV>*H*N; where N = HW/P? stands for the number of patches (tokens) in the
Video Swin transformer |Liu et al.[(2022), N; represents the number of human joints, and L stands for
the total length of the text and embedding context. We show the details of the Body Fusion Block
as follows. First, the 2D joints map is reshaped and then passed through a linear layer to align with
visual and text features m/; € RN*D _Then following [Luo et al[(2024), we utilize the MHA module
to interact with different kinds of features. Specifically, m; and z, are put into the first MHA module
and produce x,; € RYN*D And then %,; and x; are put into the second MHA module and produce
zyj¢ € RV*D This process can be formulated as follows:

m’; = Linear(reshape(my)), m}; € RN*D 8)

Ty; = MHA(m), x,),2,; € RN*P 9)
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1 3DPosLabelTool V1.7

Password

2. Label 3. Validate

(© (d)

Figure 2: Screenshots of our sentence annotation system.

Tyjt = MHA(Myj, &), Tyjt € RVXD (10)

Details of the Mask Fusion Block. For Mask Fusion Block, the input features are 2D joints map
m; € RWXHXN; and masks m € RW>*H. We show the details of the Mask Fusion Block as
follows. First, we concat the 2D joints map and masks together to z, € RW>H*(N;+1)  Then,
we utilize multiple downsample layers, including 2d convolutional layers, batchnorm, and Relu

activation, to downsample the features, resulting in Xy = {2}, 2 € R27 27~ ((N;+1)%x2") ‘There
are 3 downsample layers, so 7 € {1, 2, 3}. Next, we utilize multiple upsample layers, including 2d
transpose convolutionary layers, batchnorm, and Relu activation. For each upsampling layer, we
first pass through upsampling layers and resultin X, = {2? }, 2% € Rz %30 < ((Ni+1X2) and then
concat corresponding upsampling features. Finally, we utilize batchnorm and linear layers to further
process the features to x,,,; € RW>*#*N; This process can be formulated as follows:

x. = concat(m;, m),x. € RW X HX(N;+1) (11
xﬁl = Relu(BN(C’onv(a:C))),mfj € R%X%X((Njﬂ)xy)’i €{1,2,3} (12)
271 = concat(Relu(BN (Conv(z!))), z%), ! € R%X%X((Nﬁl)xzi),i €{1,2,3} (13

Tout = BN(Linear(xg)),xout € RWXHXN; (14)

3 MORE DETAILS OF THE PANOPTIC-L3D DATASET

3.1 DETAILS OF VIDEO COLLECTION

In Sec.3 of the main paper, we mentioned that we selected fourteen activity entries featuring more
than one person. The specific entries are: 160422 _hagglingl, 160226_haggling1, 160224 _haggling1,
170404 _haggling_a2, 170407 _haggling_b2, 170221 _haggling_b2, 160422 _ultimatum1, 160906_band1,
160906_band2, 160906_band3, 160906 _pizzal, 160906_ian1, 160906_ian2, and 160906_ian3.
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Mask Annotation System

Current Number of Images Current Number of Person Mask Selection

1103 /6029 3 1 02 3

Last Image

L@ @

Confirm Person

Ok Fail

O

Point prompt Confirm Mask

O Positive Clear Points

Negative
Confirm Points

Figure 3: Screenshots of our mask annotation system.

3.2 ANNOTATION TOOLS

We designed a sentence annotation system for human description annotation. Fig. [2]shows the various
stages of this system. Panel (a) shows the login page. We have three types of pages corresponding to
our three annotation processes: video clip creation, sentence annotation, and sentence validation, as
shown in panels (b), (c), and (d) respectively.

Annotators begin by cutting the videos into clips, as shown in (b). They can select the start and end
frames of the clips and replay them to ensure accuracy. Next, annotators annotate the description of
every individual who meets the requirements outlined in Sec.3 in the main paper, as shown in (c).
Finally, the validation page (d) presents the original video and its corresponding descriptions to the
first validator, who must identify the target person referred to by the statements. If the chosen target
matches the annotator’s target, the annotated video is retained. If there is a discrepancy, the system
sends the descriptions to a second validator for further review.
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Table 1: Quantitative evaluation on different backbone networks.

i Encoder Type PICI MPJPE-L
Text Video Image App. Beh. Mov. | App. Beh. Mow.
1 Bert - - 415% 40.4% 403% | 883.2 9119 913.6
2 - 13D - 41.0% 40.0% 399% | 895.5 9262 9294
3 - - Resnet-50 | 40.8% 39.7% 39.5% | 902.3 9382 941.5
Full | Roberta Video-Swin-T Resnet-152 | 42.6% 41.3% 41.2% | 853.7 8854 886.3

We also designed a mask annotation system for human semantic mask annotation. Fig. [3|shows a
screenshot of our mask annotation system. This system displays images along with the masks and 2D
skeleton for each individual. Validators are required to check whether each person’s mask is complete
and if the mask and skeleton correspond to the same person.

If an error in the mask is found, validators can select the person (in the top right corner of the screen)
and click on several points on the person (in the bottom left corner of the screen) in the image using
the mouse. These points are fed into SAM for segmentation. Through multiple-point selections, a
corrected mask is eventually produced. If SAM is unable to accurately segment the person’s mask,
validators have the authority to discard that person’s mask.

3.3 DATA LICENSE AND ACCESS DETAILS

The dataset is released under the CC BY-NC-SA 4.0 license. The authors of the dataset bear all
responsibility in case of rights violations. The accompanying code is released under the CCO license.

Our proposed Panoptic-L3D is based on the Panoptic dataset Joo et al.[(2015), and we have obtained
consent from its authors. We appreciate the support of the Panoptic dataset authors for our work.

4 MORE DETAILS OF EXPERIMENTS AND VISUALIZATION

4.1 EVALUATION ON DIFFERENT BACKBONE NETWORKS

As shown in Table[I] we conduct a series of experiments to explore the influence of different backbone
networks on CPP’s performance. We use RoBERTa |Liu et al.|(2019), Video-Swin-T |Liu et al.| (2022),
and ResNet-152|He et al.[(2016) as the text, video, and image backbones, respectively. Three different
variants are designed, each changing one of these modules.

BERT |Devlin et al.| (2018) is a pre-trained transformer-based model that captures context from both
directions (left-to-right and right-to-left) in all layers. ROBERTa is an enhanced version of BERT,
improving upon it by training with more data, longer sequences, and dynamic masking. Using BERT
as our text backbone reduces the PICI metric by 0.9 and leads to an average increase of 27.7 in
MPIPE-L (id 1 vs. Full).

Video-Swin-T extends the Swin Transformer, which is based on hierarchical feature maps and shifted
windows, to handle temporal information in videos. This allows the model to efficiently capture
both spatial and temporal dependencies, making it suitable for tasks like video classification and
action recognition. I3D (Inflated 3D ConvNet) |Carreira & Zisserman|(2017) is a deep learning model
for video analysis that extends 2D convolutional neural networks to 3D. Using I3D as our video
backbone reduces the PICI metric by 1.4 and leads to an average increase of 41.9 in MPJPE-L (id 2
vs. Full).

ResNet-50 |He et al.| (2016) has 50 layers, while ResNet-152 |[He et al.|(2016) has 152 layers. The
increased depth in ResNet-152 allows for learning more complex features. Using ResNet-50 as
our image backbone reduces the PICI metric by 1.6 and leads to an average increase of 52.2 in
MPJPE-L (id 3 vs. Full).
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Table 2: Quantitative evaluation on different hyperparameters.

id Hyperparameters PICI MPJPE-L
Ajoint )\bnz&)\depth )\mask )\cord&)\root APP Beh. Mov. App Beh. Mov.
1 1000 - - - 41.0% 40.7% 40.6% | 9034 9292  930.1
2 100 - - - 36.3% 36.0% 36.1% | 1178.5 1225.0 1213.5
3 - 0.01 - - 42.5% 41.2% 41.0% | 861.7 891.7 892.3
4 - 1.0 - - 42.6% 413% 41.1% | 854.1 885.3 889.2
5 - - 0.1 - 42.1% 40.7% 409% | 871.0 901.6  903.3
6 - - 10.0 - 42.1% 40.7% 409% | 870.8 9009 8974
7 - - - 0.01 42.5% 413% 41.1% | 855.1 8855  887.8
8 - - - 1.0 42.6% 413% 41.1% | 853.8 885.9 887.0
Ori. | 10000 0.1 1.0 0.1 42.6% 413% 41.2% | 853.7 885.4  886.3

Table 3: Quantitative evaluation of MPJPE-success-only
MPJPE-success-onl
Methods Pub. App. | Beh. | Body Nfove.
URVOS+VP ECCV | 1704 | 171.2 170.5
MTTR+VP CVPR | 170.8 | 170.3 170.6
Referformer+VP | CVPR | 170.6 | 171.2 170.2
SOC+VP NeurIPS | 170.3 | 170.9 170.1
CPP (Ours) - 158.6 | 1594 158.3

4.2 SENSITIVITY ANALYSIS ON HYPERPARAMETERS

As shown in Table 2] we conduct a series of experiments to explore the influence of different
hyperparameters on CPP’s performance. We test six different hyperparameters, each with two
different values. Among these parameters, \ ;¢ has the most significant impact on the model.

When Ajoin: is relatively small (100 or 1000), the model has difficulty converging, leading to poor
skeletal performance during training, with MPJPE-L increasing by 45.7 and 330.5, respectively. Our
2D joint map displays the positions where different joints appear. These joints are sparsely distributed,
and the background without the skeleton occupies a large portion of the image. This significant
distribution difference between the joints and the background might explain why the 2D joint map
struggles to converge.

Amask also influences the model’s performance. When A, 451 is set to 0.1 or 10, the PICI metric
decreases by 0.4, and the average MPJPE-L increases by 16.8 and 14.5, respectively. In contrast, the
Abozs Adepth> Acords and Aroo¢ parameters have relatively little effect on the model’s performance.

4.3 DISCUSSION OF DIFFERENT METRICS

There are two main goals in our L3ADHPE setting: the first is to precisely identify the person referred
to by the given text description, and the second is to minimize the deviation between the predicted
pose and the ground truth pose. In our main manuscript, we adopt the PICI metric for the first goal
and the MPJPE-L for both person identification and pose prediction. However, there is an intuitive
solution that the metrics should evaluate these two goals separately. PICI evaluates the first goal
and there should be an another metric for evaluating the second goals only. In this context, we
could solely estimate the precision of pose estimation after performing successfully language-guided
person identification. We perform this evaluation via an extra metric named MPJPE-success-only,
as reported in Tab. [3] Although the comparison results consistently demonstrate the superiority of
our proposed CPP, however, the MPJPE-success-only ignores the impact of language, which violates
the key concentrations of our proposed L3DHPE task. In alignment with our goals of understanding
natural language and interacting with human pose information, we believe that the MPJPE-L is more
suitable for evaluating the L3DHPE task than the MPJPE-success-only.

4.4 VISUALIZATIONS OF MOTION GROUNDING.

We provide detailed visualizations of successful cases of CPP in Fig. ] Samples (a) and (b) illustrate
cases of appearance description. CPP effectively generates clear boundary masks and accurate 3D
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(a). A person on the left wearing blue shirt and jeans (b). The person in blue shirt and jeans stands with both
hands resting on right ear at the beginning of the video

§58

2
CAPTTTT

750
00
oo 1058

). The person pinches the ruler with hand, extending (d).The person walks up to the table, then picks up two
|t forward blocks

). The person sways arms and rotates wrists (f). The person leaned backward and swang right arm to

the right

Figure 4: Successful samples of our CPP.

Figure 5: Visualizations of (a) the original video frames, (b) the predicted 2D joint maps, and (c) the
output 2D box maps of CPP, respectively.

poses based on the given expressions, demonstrating its ability to understand terms like ”blue shirt”
and ”jeans”. Samples (c) and (d) represent behavior description cases. CPP accurately detects
movement directions indicated by words such as forward” and "up” and recognizes common objects
like “ruler” and “blocks”. Samples (e) and (f) showcase of body movement description. They strongly
demonstrate CPP’s capability to understand verbs like ”sway”” and ”swing” and recognize joint-related
nouns like “wrists” and ”arm”.

Additionally, we provide visualizations of 2D joint maps and 2D box maps in Fig.[5] CPP’s outputs
(b) 2D joint maps and (c) 2D box maps show that CPP accurately detects joints and human boxes.
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Figure 6: Visualizations of three samples for CPP’s generated 2D joint maps along with their GT
maps. The former two rows of each sample are the generated joints sequence, while the latter two
rows are their ground-truth joints’ positions.

This reliable 2D information helps the model recognize different individuals and segment the one
referred to by the text.

Moreover, we provide visualizations of 2D joint maps for each type of joint along with their ground-
truth (GT) 2D joint maps in Fig.[6l Comparing the CPP outputs with the GT 2D joint maps, we
observe that CPP accurately recognizes different joints for all individuals. These 2D joint maps
enhance the accuracy of detecting the 3D positions of various joints.

5 DATASHEET OF THE PANOPTIC-L3D DATASET

5.1 MOTIVATION

For what purpose was the dataset created? In reality, human motion is characterized by diverse
and detailed descriptions, highlighting an emerging need for 3D human pose estimation to address
more complex, real-world, and multi-person scenarios. This necessitates a shift towards incorporating
motion grounding, a concept that connects dynamic human movements with rich semantic context,
enabling a more comprehensive understanding of human activities in natural and multifaceted
environments. Given the scarcity of pose estimation datasets with precise and richly contextual
linguistic annotations, we developed Panoptic-L3D, the first LADHPE dataset, to propel advancements
in this field.

Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? The creators of the Panoptic-L3D datasets comprise nine
researchers from a single research group. We represent only a laboratory within a university.

10
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Table 4: Labels of the Panoptic-L3D dataset

Key Value_type Example
video_id str 160224 haggling1
camera_id int 30
begin_frame int 3249
end_frame int 3392
body_id int 4
category list [4]
caption str The person is holding a tape measuring with both hands

Any other comments? Through the release of Panoptic-L3D, we extend an invitation to the
research community to build upon our foundation, exploring and improving language-guided 3D
pose estimation.

5.2 COMPOSITION

What do the instances that comprise the dataset represent (e.g., documents, photos, people,
countries)? The Panoptic-L3D dataset consists of several videos along with their corresponding
annotations, including language descriptions, mask images, and frame-level 3D skeleton annotations
for all individuals in the videos.

How many instances are there in total (of each type, if appropriate)? There are 588 videos
featuring 1,476 targeted individuals included in the Panoptic-L3D dataset. The annotations are
of 3,838 language descriptions, 6035 mask images, and corresponding frame-level 3D skeleton
annotations for all individuals.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? Panoptic-L3D builds upon the Panoptic dataset Joo et al. (2015)),
and we have obtained consent from its authors, for which we are grateful for their support. From
the Panoptic dataset, we have selected fourteen activity entries that involve more than one person,
spanning five social interaction categories: Haggling, Ultimatum, Toddler, Musical Instruments,
and Special Events. For each activity entry, we have obtained two variants from different camera
viewpoints (cameras No.16 and No.30) to ensure the robustness of 3D human pose estimation.
Specifically, the selected entries are: 160422 _hagglingl, 160226_hagglingl, 160224 _haggling],
170404 _haggling_a2, 170407 _haggling_b2, 170221 _haggling_b2, 160422 _ultimatum1, 160906_band1,
160906_band2, 160906_band3, 160906 _pizzal, 160906_ian1, 160906_ian2, and 160906_ian3.

What data does each instance consist of? Each video consists of several individuals that are in
motion. Each annotated individual has its own language descriptions, mask images, and frame-level
3D skeleton annotations.

Is there a label or target associated with each instance? Yes, each instance is associated with its
annotations. The details of annotations are shown in the Table[d] ‘Video_id’ represents the entry
of the video clips. ‘Camera_id’ indicates the camera number used in the Panoptic dataset. We use
only cameras No.16 and No.30, so ‘Camera_id’ has only two possible values: 16 and 30. Since
redistribution of the Panoptic dataset is not permitted, we require the Panoptic-L3D dataset users
to download the original videos from the Panoptic official website. ‘Begin_frame’ and ‘end_frame’
represent the starting and ending frame numbers of the original videos. ‘Caption’ provides a language
description of individuals. ‘Body_id’ represents the ID of the person referred to by the caption.
‘Category’ represents the type of caption, ranging from 0 to 5. Categories 0-3 represent appearance
descriptions such as clothes, posture, gender, and initial pose, respectively. Categories 4 and 5
represent behavior and body motion descriptions. Since two types of captions can be described in one
appearance description sentence, we use a type list to store two categories that appear simultaneously.

Is any information missing from individual instances? Yes, only individuals visible from the waist
up should be considered valid subjects for description. All others will be discarded.

11
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Are there recommended data splits (e.g., training, development/validation, testing)? Yes,
we provide data splits for the Panoptic-L3D dataset. The dataset is split according to the textual
descriptions, where the training/validation/testing set comprises 3,005/312/521 sentences, respectively,
along with their corresponding videos, masks, and 3D skeletons.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? Yes, our proposed Panoptic-L3D relies on the Panoptic Joo et al.
(2015)) dataset, and we have obtained consent from its authors. We collect the annotations our-self.

Is it possible to identify individuals (i.e., one or more natural persons), either directly or
indirectly (i.e., in combination with other data) from the dataset? Since the dataset targeting
our proposed Language-Driven 3D Human Pose Estimation (L3DHPE) task, aims to reconstruct 3D
pose sequences for individuals based on detailed language descriptions that capture aspects such as
appearance, behavior, and body movements, it is possible to identify individuals directly.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that
reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or union
memberships, or locations; financial or health data; biometric or genetic data; forms of
government identification, such as social security numbers; criminal history)? While the
PanopticL3D dataset provides valuable advancements in video analysis, it is important to consider the
potential risks associated with its misuse. There is a possibility that the dataset could be used in ways
that might infringe on privacy or be employed in systems that do not fully respect individual rights.
For example, if not properly regulated, such systems could be misapplied in scenarios that raise
concerns about personal privacy or lead to unintended consequences. To address these concerns, we
believe it is essential to ensure that developments based on PanopticL.3D adhere to ethical standards
and are guided by appropriate regulatory frameworks.

Any other comments? We appreciate the support of the Panoptic dataset authors for our work. We
require all users of Panoptic-L3D to cite the papers of Panoptic Joo et al.[(2015) dataset.

5.3 COLLECTION PROCESS

How was the data associated with each instance acquired? To construct the language-driven
3D human pose estimation dataset, we utilize videos from the Panoptic Joo et al.| (2015)) dataset.
To simulate complex multi-person interactions found in real life, we select fourteen activity entries
that feature more than one person and span five social interaction categories: Haggling, Ultimatum,
Toddler, Musical Instruments, and Special Events. For each activity entry, we obtain two variants
from different camera viewpoints (cameras No.16 and No.30) to ensure the robustness of 3D human
pose estimation. Subsequently, these videos are separated into clips and filtered. Then, we employ
over 10 annotators to label individuals in the videos according to our developed linguistic expression
annotation system and guidelines. Specifically, each annotator is required to provide three sentences
describing the attributes (i.e., appearance, behavior, and body movements) of each person visible
from the waist up.

To ensure concise language descriptions, we establish the following guidelines for annotators:

* Shared Rules: 1) Only individuals visible from the waist up should be considered valid
subjects for description. 2) Each description must uniquely refer to only one person in the
given video. 3) Unobtrusive attributes should be omitted to avoid ambiguity if they are
difficult to describe properly.

* Rules for Describing Appearance: Annotators describe the appearance based on the first
frame of the video, focusing on four specified elements: clothes, posture, gender, and
initial pose. To simulate variability in individual perception, two of these four elements are
uniformly sampled for each individual, and annotators are required to base their descriptions
on the selected attribute pair. This procedure enhances the diversity and informativeness of
appearance descriptions, aiding in video 3D pose analysis.

* Rules for Describing Behaviors & Body Movements: Linguistic expressions can describe
behaviors across multiple frames, encompassing both fleeting and prolonged actions. An-
notators must describe an individual’s behavior and body movements after watching the
entire video, ensuring comprehensive coverage. Descriptions of behaviors must exclude
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appearance information, while descriptions of body movements should focus solely on the
motion itself, excluding interactions with environmental elements (e.g., cups, food, pens).

Finally, the mask annotations for each referred individual in our video data are generated using
the advanced 2D segmentation model SAM [Kirillov et al.[(2023)). We utilize the projected joint
points of the upper body (i.e., neck and head top) from the 3D skeleton provided by the original
Panoptic dataset as coarse point prompts for SAM. For each video, we generate a coarse mask every
15 consecutive frames.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)?

We design a sentence annotation system and a mask annotation system for human description
annotation and human semantic mask annotation, respectively.

Fig.[2]shows the various stages of the sentence annotation system. Panel (a) shows the login page.
We have three types of pages corresponding to our three annotation processes: video clip creation,
sentence annotation, and sentence validation, as shown in panels (b), (c), and (d) respectively.
Annotators begin by cutting the videos into clips, as shown in (b). They can select the start and end
frames of the clips and replay them to ensure accuracy. Next, annotators annotate the description of
every individual, as shown in (c). Finally, the validation page (d) presents the original video and its
corresponding descriptions to the first validator, who must identify the target person referred to by
the statements. If the chosen target matches the annotator’s target, the annotated video is retained. If
there is a discrepancy, the system sends the descriptions to a second validator for further review.

Fig. [3|shows a screenshot of our mask annotation system. This system displays images along with the
masks and 2D skeleton for each individual. Validators are required to check whether each person’s
mask is complete and if the mask and skeleton correspond to the same person. If an error in the mask
is found, validators can select the person (in the top right corner of the screen) and click on several
points on the person (in the bottom left corner of the screen) in the image using the mouse. These
points are fed into SAM for segmentation. Through multiple-point selections, a corrected mask is
eventually produced. If SAM is unable to segment the person’s mask accurately, validators have the
authority to discard that person’s mask.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)? The videos in our Panoptic-L3D dataset are
a subset of the Panoptic dataset. We have our strategy for sampling high-quality video clips. To
simulate complex multi-person interactions found in real life, we select fourteen activity entries from
the Panoptic dataset that feature more than one person and span five social interaction categories:
Haggling, Ultimatum, Toddler, Musical Instruments, and Special Events. For each activity entry,
we obtain two variants from different camera viewpoints (cameras No.16 and No.30) to ensure the
robustness of 3D human pose estimation.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors)?
We employ 16 students for our annotation. Specifically, 2 students select the entries of the Panoptic
dataset and cut them into video clips. Then 4 students annotate descriptions of individuals. Then
another 4 students validate the description to make sure our Panoptic-L3D is high-quality. If these 4
students find some descriptions have an ambiguity, another 2 students will make a final check and
decide whether to modify or discard the ambiguous data.

Over what timeframe was the data collected? The annotation of our Panoptic-L3D dataset lasted
for three months from March to May.

Did you collect the data from the individuals in question directly, or obtain it via third parties
or other sources (e.g., websites)? We collect the data from the individuals from the Panoptic dataset.

Did the individuals in question consent to the collection and use of their data? Yes, as shown in
figure /| we have the consent of the authors of the Panoptic Dataset.
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Thanks for your email
Sure I believe it's good and we permit to use our db for your project

Thanks,
Han

On Fri, Mar 8, 2024 at 4:08 PM
Dear Professor Hanbyul (Han) Joo,

I hope this message finds you well. | am writing to request your approval for conducting annotations on the CMU Panoptic dataset. Our project primarily involves curating a dataset where each individual's actions
are described, aiming to enable models to identify the corresponding individuals and outline their 3D skeletal structures based on these descriptions.

We assure you of the following commitments:
1. 1. We will ask dataset users to download videos and skeletal information from the CMU Panoptic official website, ensuring that we do not redistribute your dataset.
2. 2. We will not alter any data within the CMU Panoptic dataset.
3. 3. We will require dataset users to cite the CMU Panoptic paper.
4. 4. We will follow a set of academic licenses

5. Your approval for this annotation task would be invaluable to our research endeavors. Please let us know if you require any additional information or have any concerns regarding our
proposed usage of the dataset.

Thank you for considering our request. We eagerly await your response.

Figure 7: Screenshots of our consent from authors of Panoptic Dataset.

5.4 PREPROCESSING/CLEANING/LABELING

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing,
tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing
of missing values)?

Yes, we filter and cut the video into video clips. Some low-quality data are discarded. Here are the
guidelines for our filter process:

* R1: The length of the video clips is standardized to ensure an average length of 5 seconds.
This duration allows individuals to perform a series of actions without being overly complex,
making it suitable for describing characters’ behavior using sentences.

* R2: To ensure the accuracy of language descriptions referring to the target individuals, each
video clip must include at least two participants with fully exposed upper bodies, and at
least one individual must be undergoing significant movements. This requirement focuses
on perceptible limb movements, providing necessary motion information that matches the
descriptions in 3D pose recognition and estimation.

For description annotation, we also make validation to filter the error data. Specifically, we follow
an interactive game-like approach inspired by Referlt [Kazemzadeh et al.|(2014), involving two
participants in an alternating validation process. Initially, the original video and its corresponding
descriptions are presented to the first validator, who must identify the target person referred to by the
statements. If the chosen target matches the annotator’s target, the annotated video is retained. If
there is a discrepancy, the sample is forwarded to a second validator for further review. If the second
validator finds any ambiguity, the description is revised. If ambiguity persists, the sample is discarded
to maintain the accuracy of descriptions.

For mask annotation, we also make validation to filter the error data. We use SAM model to segment
individuals introduced in section[5.3] However, some misprojected 3D joints may occur during mask
generation due to overlapping between individuals. Additionally, SAM may focus only on the upper
part of the referred person since the joints are mostly located in the upper body. To validate and
correct the mask annotations, we perform a multi-round check and re-annotation process, ensuring
completeness and consistency between the masked individual and the corresponding description.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? Some of the “raw” data are saved. Specifically, videos and correspond-
ing frame-level 3D skeleton information are saved, since we utilize the Panoptic dataset which can be
accessed by every user. Users can find these “raw” data on the official website of Panoptic dataset.
However, the "raw” data of description, and masks are not saved.

Is the software that was used to preprocess/clean/label the data available? Yes, we design 2
annotation (validation) systems for our annotation process. Please refer to section[5.3]for more details.
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5.5 USES

Has the dataset been used for any tasks already? The Panoptic-L3D dataset has already been used
for our proposed language-driven 3D pose estimation task, which is introduced in the main paper.

Is there a repository that links to any or all papers or systems that use the dataset? Yes, please
seeinhttps://languagedriven3dposeestimation.github.io/.

Any other comments? The users should cite our paper as well as the Panoptic dataset paper Joo
et al.[|(2015)).

5.6 DISTRIBUTION

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The dataset
will be distributed through the website (https://languagedriven3dposeestimation,
github.io/).

When will the dataset be distributed? We have already distributed the Panoptic-L3D dataset.

Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? The Panoptic-L3D dataset is released under the CC
BY-NC-SA 4.0 license. The authors of the dataset bear all responsibility in case of rights violations.

5.7 MAINTENANCE

Who will be supporting/hosting/maintaining the dataset? The first author of the Panoptic-L3D
dataset will be supporting/hosting/maintaining the dataset.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The
owner/curator/manager of the dataset can be contacted through Email addresses. We will release the
email addresses of all the authors.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? We plan to update our dataset every month. We will collect the questions from
users and dynamically modify our dataset. The updated information will be posted on https:
//languagedriven3dposeestimation.github.io/l

Will older versions of the dataset continue to be supported/hosted/maintained? Yes. The older
versions will be stored in our private database. If any dataset users want the older version of our
Panoptic-L3D dataset, please contact us.

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? Yes, if others want to extend/augment/build on/contribute to the dataset, please
contact any author of our papers by email.
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