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A GRANGER CAUSALITY OF ACD

Here, we show that when constraining the edge-type e = 0 to be the zero function, time series i does
not Granger cause the model prediction of j in ACD.

Claim: If zij,0 = 1, i does not Granger cause the model prediction of j in ACD.

Proof. According to Definition 2.1, time-series i does not cause j, if gj is invariant to x≤ti . In
our model, the decoder represents this non-linear model gj and consists of two functions. First, it
propagates information across edges using Eq. (12). This function returns a value of zero, if zij,0 = 1.
This output is used for the second function, described in Eq. (1), which does not introduce any new
terms that depend on i. Thus, if zij,0 = 1, the decoder’s prediction for j is invariant to x≤ti , and i
does not Granger cause these predictions.

B CONSISTENCY

In this section, we discuss the consistency of ACD, and show that given the correct dynamics and
under some assumptions, ACD learns the correct causal graph by minimizing the predictive loss `.
Then, we will provide some intuition on the role of the regularization term r for jointly learning the
graph and dynamics. We note that the practicality of our approach will ultimately depend on the
exact parameterization chosen for the encoder and decoder, as well as the forms of the loss function
and regularization.

We define the domain of the observations as X, letting a full, observed sequence x≤t = X≤t,
dropping the s subscript for readability; the domain of the observations plus the predicted step is
Xt+1 3 [x≤t,xt+1]. We recall also the domain of the graph: G ∈ G. Let G ∈ {0, 1}n×n be the
adjacency matrix describing G – we assume without loss of generality that there are only two edge
types (edge or no-edge), and so a binary adjacency matrix is sufficient to describe G. We consider
a data distribution of interest P , which is defined over X≤t × G, and whose density function is
non-zero for a set of x≤t ∈ X≤t of measure greater than 0. We assume that given an observed
sequence, the causal discovery problem has a correct answer — that is, ∀x≤t ∈ X≤t, there is at most
one G ∈ G such that P (x≤t,G) > 0.

As written previously, we assume that some fixed function g describes the dynamics of all samples
x ∈ X given their past observations x≤t and their underlying causal graph G, with some additive
noise εt drawn i.i.d with mean zero:

xt+1 = g(x≤t,G) + εt . (15)

We suppose that we have learned the correct dynamics, i.e. our decoder fθ is equal to g. Suppose we
hope to minimize the mean squared error (MSE) of our predictions. We want to know how much
additional MSE we incur by inferring the wrong graph Ĝ. For a sequence of length T , this MSE loss
is

1

T

T∑
t=1

[g(x≤t,G) + εt − g(x≤t, Ĝ)]2 (16)

=
1

T

T∑
t=1

[g(x≤t,G)− g(x≤t, Ĝ)]2 + (εt)2 + 2εt[g(x≤t,G)− g(x≤t, Ĝ)] . (17)

As T −→∞, this sample mean approaches its expectation:

= E
[
[g(x≤t,G)− g(x≤t, Ĝ)]2

]
+ E

[
(εt)2

]
+ 2E

[
εt
]
E
[
g(x≤t,G)− g(x≤t, Ĝ)

]
(18)

= E
[
[g(x≤t,G)− g(x≤t, Ĝ)]2

]
+ E

[
(εt)2

]
. (19)

Since, for a long enough noisy sequence, E
[
(εt)2

]
is constant, we minimize the MSE by minimizing

E
[
[g(x≤t,G)−g(x≤t, Ĝ)]2

]
. This term is clearly minimized at 0 for Ĝ = G. The remaining question

is, are there any Ĝ 6= G which also minimize this term at 0? What we will show in the next part of this
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proof is that there is indeed a set of x≤t for which such a Ĝ 6= G exists, but that this set is of measure
0, and as such will occur with probability 0 under an absolutely continuous probability distribution.

To show this, we consider the noiseless dynamics:

xt+1 = g(x≤t,G) , (20)

and suppose again that we have learned the correct dynamics, i.e. our decoder fθ is equal to g. We
let ` be a loss function which is minimized at zero when its two inputs are equal (such as squared
error), and see that if Ĝ = G, then `(xt+1, x̂t+1) = `(xt+1, g(x≤t, Ĝ)) = `(xt+1, g(x≤t,G)) =
`(xt+1,xt+1) = 0.

What remains to show is that no graph Ĝ 6= G can minimize this loss function. To show this, we
will show that for any two graphs G,G′, for which Ĝ 6= G, the subset of x≤t for which g(x≤t,G) =
g(x≤t,G′) has measure zero. Therefore, the probability of sampling x≤t for which g(x≤t,G) =
g(x≤t,G′) is zero. We then note that at most 3n of these sets exist, yielding a total measure of 0.

First, we assume that both the input and output of g are in continuous spaces, and we make two
assumptions on g:

1. If Gij = 0, then ∀x≤t, x̃≤t ∈ X≤t which are equal except for the i-th time-series,
gj(x

≤t,G) = gj(x̃
≤t,G).

2. Let x≤t ∈ X≤t,G ∈ G. Suppose Gij = 1. Define the function gij(v; k) = g(xv→{i},G), where
xv→{i} refers to a perturbation of the i-th time-series in x≤t such that xt−ki takes on the value v,
with every other position remaining the same. Then, for some k, gij is strictly monotonic for all
i, j. Going forward, we use the k for which this holds and simply let gij(v) = gij(v; k).

The first assumption follows directly from the definition of non-linear Granger causality (Defini-
tion 2.1), and describes the same phenomenon as proven for our decoder in Appendix A: when
there is no edge in the causal graph between time-series i and j, gj is invariant to x≤ti . The second
assumption describes that, when there is an edge in the causal graph, the j-th output of gj will be
sensitive to changes in i in a predictable way.

Suppose we have some P (x≤t,G) > 0. Let j be an output dimension, and let I, I ′ ⊆ {1 . . . n} be
sets of indices with I ∩ I ′ = ∅ such that Gij = 0 ∀i ∈ I and Gij = 1 ∀i ∈ I ′. Let x≤tI ,x

≤t
I′ be the

subsets of positions in x≤t indexed by the corresponding index set, and x≤tI,k,x
≤t
I′,k the k-th position

in each.

As in the second assumption above, the notation x≤tv→I,w→I′ will refer to the assignment of values v
to indices I and the assignment of values w to indices I ′, both at the k-th position (v and w may be
|I| and |I ′|-length vectors for this reason). Let g→j (v, w,G) = gj(x

≤t
v→I,w→I′ ,G). We will letXI,k

be the domain of vectors containing values for all k-th positions of time-series indexed by I, and
XI′,k analogously.

We begin by noting that we can set the k-th position values in I to any values v without changing
the j-th output of g, following from the first assumption on g. Formally, ∀v ∈ XI,k, gj(x≤t,G) =

g→j (v,x≤tI′,k,G) = c for some c ∈ R.

Now, we consider the graph GIj=1, which is defined as GIj=1
il = 1 if i ∈ I, l = j, and Gil otherwise.

Intuitively, this is just the adjacency matrix resulting from adding edges at all of the indices in I to G.
We note that g→j (v,x≤tI′,k,GIj=1) is monotonic in v by the second assumption on g. In particular, this
means that the set of x≤t for which g→j (x≤tI,k,x

≤t
I′,k,GIj=1) = gj(x

≤t,GIj=1) = c = gj(x
≤t,G)

is small; it is a curve of dimension |I| − 1 < n and as such has measure 0. We can see this
because this set of x is the intersection of a monotonic curve with the constant c, where the curve
is {(y, v)|g→j (v,x≤tI′,k,GIj=1) = y}, which is |I|-dimensional since that is the dimensionality of v.
We can use similar logic to address the possibility of flipping 1’s to 0’s in the adjacency matrix; this
will similarly change the prediction with probability 1.

Now that we have flipped all the edges in I from 0 to 1, we turn to additionally flipping all
the edges in I ′ from 1 to 0. We consider the graph GIj=1,I′j=0, whose adjacency matrix is
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defined as GIj=1,I′j=0
il = 1 if i ∈ I, l = j, GIj=1,I′j=0

il = 0 if i ∈ I ′, l = j, and Gil oth-
erwise. By the first assumption on g above, we have that ∀w ∈ XI′,k, gj(x≤t,GIj=1,I′j=0) =

g→j (x≤tI,k, w,GIj=1,I′j=0) = c′ for some c′ ∈ R.

Now we ask, what is the set of x≤t where gj(x≤t,GIj=1,I′j=0) = gj(x
≤t,G)? We note that, in

general, for all v, w, we have

g→j (x≤tI,k, w,G
Ij=1,I′j=0) = gj(x

≤t,GIj=1,I′j=0)
?

6= gj(x
≤t,G) = g→j (v,x≤tI′,k,G) (21)

We want to know, for how many values of v, w do we have

g→j (v, w,GIj=1,I′j=0) = g→j (v, w,G) (22)

This is the intersection of two curves — the first is |I ′|-dimensional and the second is |I|-dimensional.
Therefore, their intersection is at most min(|I|, |I ′|)-dimensional, which is ≤ n

2 . This has also
measure 0.

The regularization term r is important for tackling the remaining challenge of jointly learning
both the dynamics and the causal graph. Without it, the loss cannot differentiate between a model
that represents a non-causal relation correctly in Ĝ, or incorrectly as an empty edge-type within
fθ. By regularizing Ĝ, this symmetry can be broken and the loss can enforce the correct solution.
Additionally, the regularization term allows us to include prior knowledge into our model about what
we think the true sparsity of the graph should be.

C FULLY OBSERVED AMORTIZED CAUSAL DISCOVERY

C.1 EXPERIMENTAL DETAILS

C.1.1 DATASETS

Physics Simulations To generate these simulations, we follow the description of the underlying
physics of Kipf et al. (2018) for the phase-coupled oscillators (Kuramoto) (Kuramoto, 1975) and the
particles connected by springs. In contrast to their simulations, however, we allow the connectivity
matrix, which describes which time-series influences another, to be asymmetric. This way, it describes
causal relations instead of correlations.

For both datasets, we generate 50,000 training and 10,000 validation samples. We restrict the number
of test samples to 200, since the previous methods we compare to must be refit for each individual
sample. We simulate systems with N = 5 time-series. Our training and validation samples consist of
T = 49 time-steps, while the test-samples are T = 99 time-steps long. This increased length allows
us to infer causal relations on the first half of the data, and to test the future prediction performance
on the second half (with k = {1, ..., 49}).

Netsim The Netsim dataset simulates blood-oxygen-level-dependent (BOLD) imaging data across
different regions within the human brain and is described in Smith et al. (2011). The task is to infer
the directed connections, i.e. causal relations, between different brain areas.

The Netsim dataset includes simulations with different numbers of brain regions and different
underlying connectivity matrices. In our experiments, we use the data from the third simulation
Sim-3.mat as provided by Khanna and Tan (2020). It consists of samples from 50 subjects, each
with the same underlying causal graph, each of length T = 200 and including N = 15 different
brain regions. Note, that we report worse results than Khanna and Tan (2020), since we assume
self-connectivity for all time-series and only evaluate the causal discovery performance between
different time-series.

The dataset is very small (50 samples) and due to this, we do not use a training/validation/test split,
but use the same 50 points at each phase instead. While this is not standard machine learning practice,
it still facilitates a fair comparison to the other methods, each of which are fit to individual test points.
The purpose of including experiments on this dataset is not to demonstrate generalization ability, but
rather to show that our method is flexible enough to work reasonably well even in the classical causal
discovery setting (with one shared causal graph, and fitting the model on the test set).
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C.1.2 ARCHITECTURE AND HYPERPARAMETERS

Our model is implemented in PyTorch (Paszke et al., 2019). We did no hyperparameter optimization
for model training, but used the settings as described for the NRI model (Kipf et al., 2018). The latent
dimension throughout the model is set to size 256. We optimize our model using ADAM (Kingma
and Ba, 2015) with a learning rate of 0.0005. In the experiments on the particles dataset, the learning
rate is decayed by a factor of 0.5 every 200 epochs. We set our batchsize to 128 and train for 500
epochs. The temperature of the Gumbel-Softmax is set to τ = 0.5. During testing, this concrete
distribution is replaced by a categorical distribution to obtain discrete edge predictions.

There was no thorough hyperparameter optimization done for test-time adaptation (TTA). Since there
was no pre-existing implementation, some hand-tuning was performed. We use a learning rate of 0.1
for the Kuramoto and particles datasets and 0.01 for Netsim. For each, we run 1000 iterations.

Encoder In our experiments, the amortized encoder applies a graph neural network fenc,φ on the
input. It implements two edge-propagation steps along the causal graph:

ψ1
j = femb(xj) (23)

ψ1
ij = f1e ([ψ1

i ,ψ
1
j ]) (24)

ψ2
j = f2v (

∑
i 6=j

ψ1
ij) (25)

ψij = f2e ([ψ2
i ,ψ

2
j ]) . (26)

f1e , f
2
e and f2v are fully-connected networks (MLPs). On both the particles dataset and Netsim, femb

is an MLP as well (MLP Encoder); on the Kuramoto dataset, we use a 1D CNN with attentive pooling
(Lin et al., 2017) instead (CNN Encoder).

When conducting test-time adaptation as described in Eq. (7), we remove the encoder and model a
distribution over G using a non-amortized variational distribution q(z) with its initial values sampled
from a unit Gaussian.

Decoder The decoder implements a single edge-propagation step according to equations 12-14.
It uses MLPs for both fe and fv. To improve performance, we train the decoder to predict several
time-steps into the future. For this, we replace the true input xt with the predicted µt for k = 10
steps.

Following our causal formulation of the NRI model, we implement Eq. (12) by masking out the
values of the corresponding edges. Thus, the ordering of the edge types is not arbitrary in our setting.

Since out physics simulations are differentiable, we can replace the decoder with the ground-truth
dynamics and backpropagate through them. We call this setup the simulation decoder.

Variance When we report the variance on the ACD results, we collected these across five different
random seeds. Baselines in Kuramoto/Netsim use three seeds each, except for NGC, which uses only
one due to a longer runtime (the confidence intervals shown for NGC are confidence intervals on the
AUROC itself, whereas all other confidence intervals are based on variance of AUROC across seeds).

C.1.3 BASELINES

We compare ACD against several baselines:

Neural Granger Causality From Tank et al. (2018), we optimized an MLP or LSTM to do next
step prediction on a sample. We found that the MLP worked best. The causal links are wherever an
input weight is non-zero. We used ADAM and then line search to find exact zeros. In this method,
we calculate AUROC by running with a range of sparsity hyperparameters (λ = [0, 0.1, 0.2, 0.4, 0.8]
for Kuramoto and λ = [0, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 1] for Netsim). As in Tank et al. (2018),
we calculate a score s for each edge, where s = min{λ : zij,0 = 1}, and use that score to calculate
AUROC. Code was used from https://github.com/icc2115/Neural-GC.
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ESRU Khanna and Tan (2020) take a similar approach to Tank et al. (2018), but they use economy
statistical recurrent units (eSRU), instead of LSTMs. We found one layer worked best, and used their
hyperparameters otherwise. We use sparsity hyperparameters [0.1, 0.2, 0.3, 0.4, 0.5] for Kuramoto,
and [0, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 1] for Netsim. Code was used from https://github.
com/sakhanna/SRU_for_GCI.

MPIR Wu et al. (2020) determine where causal links exist by examining the predictive performance
change when noise is added on an input variable. Code for this method and the baselines below was
used from https://github.com/tailintalent/causal.

Transfer Entropy Schreiber (2000) suggest this entropy-like measure between two variables
to produce a metric which is likely to be higher when a causal connection exists. We use the
implementation by Wu et al. (2020).

Mutual Information Using the implementation by Wu et al. (2020), we calculate the mutual
information between every pair of time series.

Linear Granger Causality Using the implementation by Wu et al. (2020), this is a linear version
of Granger causality where non-zero linear weights are taken as greater causal importance.

We did not run the baselines on the particles dataset since it is two-dimensional and most baselines
did not provide an obvious way for handling multi-dimensional time series. When training ACD on
the particles and Kuramoto datasets, we additionally input the velocity (and phase for Kuramoto) of
the time-series. Since our chosen NRI encoders and decoders are not recurrent we cannot recover this
information in any other way in this model. This enables a more fair comparison to the recurrent
methods, which are able to aggregate this information over several time steps.

C.2 ADDITIONAL EXPERIMENTAL RESULT - TRAINING CURVES

Fig. 7 shows the training curves when training on 100 training samples of the particles dataset. We
observe that the encoder overfits on the training samples, as indicated by the AUROC performance.
In contrast, the decoder shows less overfitting as indicated by the negative log-likelihood (NLL)
performance.
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Figure 7: Training curves when training on 100 samples of the particles dataset. The encoder
performance (AUROC - left) shows stronger signs of overfitting than the decoder performance (NLL
- right).

D AMORTIZED CAUSAL DISCOVERY WITH UNOBSERVED VARIABLES

D.1 TEMPERATURE EXPERIMENTS

Implementation Details In this experiment, we use the CNN encoder and a simulation decoder
matching the true generative ODE process. Our optimization scheme is the same as before.
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Figure 8: MSE (lower better) averaged across
5 random seeds for hidden temperature ex-
periment. MSE for None baseline was much
worse with MSE = 0.009, 0.02, 0.04 for α =
2, 4, 8 (not shown in plot).
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Figure 9: Confusion matrix for latent tem-
perature prediction with α = 2. ACD with
Latent’s prediction tends to be conservative: it
is more likely to predict a too low temperature
than a too high one.

For modeling the latent temperature, we output a uniform distribution as our posterior qφc(c|x). One
tricky aspect about this is the KL-Divergence:

KL(qφc(c|x)||p(c)) = −
∫
qφc(c|x) log

qφc(c|x)

p(c)
dz . (27)

We must ensure that our posterior support is a subset of our prior support. Otherwise, the KL-
Divergence is undefined and optimization impossible. Recall that our prior is a uniform distribution
over [0, 4α].

We output two latent parameters a, b ∈ R for each input and use these values to parametrize a mean
m and a half-width w for the uniform distribution. First, we bound these values to represent a uniform
distribution u1 in [0, 1]. To achieve this, we let m1 = σ(a) and w1 = σ(b) ∗min (m1, 1−m1) with
σ(x) = 1

1+exp (−x) . We then sample a temperature ĉ1 ∼ u1 = U(m1 − w1,m1 + w1), which is
guaranteed to be bounded within [0, 1]. Stopping gradients, we use this temperature sample in the
encoder qφ(z|x, c) to improve the causal discovery performance.

Next, we scale this result to the desired interval [0, 4α]. To achieve this, we feed the scaled temperature
ĉ = 4αĉ1 into the decoder, and use the scaled distribution u = U(4αm1 − 4αw1, 4αm1 + 4αw1) to
find our KL term. We allow gradients to flow through the temperature sample in both the decoder
and the distribution in the KL term, which informs our parameter updates.

Additional Results Similarly to Fig. 5, we show the future prediction performance in MSE across
different values of α in Fig. 8. Again we find a slight improvement in performance when using ACD
with Latent compared to the baselines, although this is a noisier indicator.

Additionally, we evaluate how well the introduced latent variable learns to predict the unobserved
temperature. To do so, we use the mean of the predicted posterior uniform distribution. When a
discrete categorical prediction is needed for evaluation, we quantize our results into three bins based
on their distance in log-space. To calculate AUROC in this three category ordinal problem, we
average the AUROC between the two binary problems: category 1 vs not category 1, and category
3 vs not category 3 (category 2 vs not 2 is not a valid regression task for the purposes of AUROC
which is concerned with ordering, since it is the middle temperature and hence the labels would not
be linearly separable).

The confusion matrix between true and predicted temperature in Fig. 9 indicates that ACD with
Latent’s prediction tends to be conservative: it is more likely to predict a too low temperature than
a too high one. This is probably due to higher temperatures incurring larger MSEs, since higher
temperature systems are more chaotic and thus less predictable.

Table 3 lists the temperature prediction results across all tested values of α. We find that we can
predict the unobserved temperature quite well, especially with respect to ordering (as measured by
correlation and AUROC).
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α
2 4 8

Correlation 0.888 0.844 0.661
Accuracy 0.644 0.384 0.346

AUROC (1vAll) 0.966 0.935 0.843

Table 3: Latent Temperature Prediction Metrics. We treat the mean of the outputted interval of the
uniform posterior as the predicted temperature. For accuracy, this value discretized in log space to get
a ternary prediction. AUC (1vAll) averages the two one-vs-all AUC values which can be calculated in
a 3-category ordinal problem.

D.2 UNOBSERVED TIME-SERIES

Implementation Details For modeling the unobserved time-series, we employ a two-layered, bi-
directional long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) with a latent
dimension of size 256.

Additional Results The full evaluation of our experiments with an unobserved time-series can
be found in Table 4. Our results indicate that our proposed method ACD with latent predicts the
trajectory of the unobserved time-series (unobserved MSE) more accurately than the Mean imputation
baseline. Even though this prediction is worse than for the Supervised baseline, ACD with Latent
manages to recover the performance of the fully Observed baseline better than the None and the
Mean imputation baselines.

Method AUROC Accuracy MSE unobserved
MSE

Observed (0.99) (0.993) (0.00301) -
Supervised 0.982 0.931 0.00822 0.0164
None 0.946 0.882 0.0119 -
Mean 0.951 0.881 0.0106 0.0397

ACD with latent 0.979 0.918 0.00747 0.0375

Table 4: Experiments with an unobserved time-series.

Fig. 10 shows the performance of the tested methods dependent on the number of time-series that are
influenced by the unobserved one. In addition to Fig. 5 in our Experiments section, these plots show
the achieved accuracy and MSE results. The general trends are the same. Fig. 11 shows example
trajectories and the corresponding predictions for all tested methods.
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Figure 10: Experiments with an unobserved particle. Performance of the various methods depends
strongly on how many observed particles are influenced by the unobserved one (x-axis). The more
particles that are influenced by the unobserved particle, the stronger the benefit of using an additional
Latent variable for modeling its effects. Left - causal relation prediction accuracy (higher = better),
right - MSE (lower = better).
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Figure 11: Predicted trajectories for all tested methods in the unobserved time-series experiment
for two samples (left/right). From top to bottom: Baselines – observed, supervised, none and mean;
proposed ACD with latent. The faded lines depict the ground truth trajectory; bold lines are the
trajectories predicted by the model and they start after initializing the model using first half of the
ground truth. Dots denote the end of the trajectories. Except for the fully observed baseline, the first
panel shows the ground truth and prediction for the unobserved time-series. The second panel shows
the trajectories of all time-series that are directly influenced by the unobserved one. The third panel
shows the trajectories of all time-series that are not directly influenced by the unobserved one.

Additional Experiment: Uninfluenced Influencer Predicting the trajectory of a time-series that
influences only a small number of observed time-series and is (invisibly) influenced by them is
arguably very difficult. In this follow-up experiment, we reduce the difficulty of this problem by
adding two assumptions: (1) the unobserved time-series influences all observed time-series and (2)
it is not influenced by any of the observed time-series. This way, we gain more information about
its trajectory (due to (1)) and its trajectory becomes easier to predict (due to (2)). Indeed, in this
setup, ACD with latent manages to almost completely recover the performance of the fully observed
baseline (Table 5). In contrast, the performance of the None and Mean imputation baselines worsens
considerably in this setting. Now, all time-series are influenced by the unobserved particle - making
their prediction harder when not taking into account this hidden confounder. Fig. 12 shows example
trajectories and the corresponding predictions for all tested methods in this setting.
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Method AUROC Acuracy MSE unobserved
MSE

Observed (1.0) (0.997) (0.0193) -
Supervised 1.0 0.993 0.024 0.000615
None 0.829 0.76 0.0431 -
Mean 0.853 0.782 0.0365 0.0357

ACD with latent 1.0 0.994 0.0251 0.137

Table 5: Experiments with an unobserved time-series that influences all observed time-series, but is
not influenced by them.
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Figure 12: Predicted trajectories for all tested methods when the unobserved time-series influences
all observed ones, but stay uninfluenced itself for two samples (left/right). From top to bottom:
Baselines – observed, supervised, none and mean; proposed ACD with latent. The faded lines depict
the ground truth trajectory; bold lines are the trajectories predicted by the model and they start after
initializing the model using first half of the ground truth. Dots denote the end of the trajectories.
Except for the fully observed baseline, the first panel shows the ground truth and prediction for the
unobserved time-series. The second panel shows the trajectories of all observed time-series (which
are all influenced by the unobserved one).
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