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A EXPERIMENT DETAILS

This section provides more implementation details of the proposed Object2Scene approach and
L3Det model.

Prompt Generation for Object2Scene Here we provide detailed information for the grounding
prompt generation process introduced in Section 3.2. Following SR3D, we generate the spatial
prompt for the inserted target object using the following template: ⟨target − class⟩⟨spatial −
relationship⟩⟨anchor − class⟩. Since the target and anchor classes are determined during 3D
object insertion, we need to describe the spatial relationship according to their relative locations. we
divide the spatial object-to-object relations into three categories:

1. Vertical Proximity: It indicates the target is on the anchor object.
2. Horizontal Proximity: This indicates the target is around the anchor object and can be

represented by words like: next to or close to.
3. Allocentric: Allocentric relations are actually based on Horizontal Proximity, which en-

codes information about the location of the target with respect to the self-orientation of the
anchor, which can be represented by words like: left, right, front, back.

Once we obtain the generated spatial prompt such as ”the table that is next to the bar stool.”, given
a text sentence of anchor object ”it is a wood bar stool. The stool is in the kitchen at the bar. It is
the very first stool at the bar.” in ScanRefer (Chen et al., 2020), we utilize the off-the-shelf tool to
decouple the text and obtain the main object, auxiliary object, attributes, pronoun, and relationship of
the sentence as shown in Figure 5, following EDA (Wu et al., 2022). Then we replace the main object
in the sentence with the inserted target object and the original main object becomes the auxiliary
object. Combining the spatial prompt, the generated grounding prompt could be ”it is a table next
to a wood bar stool. The stool is in the kitchen at the bar. The stool is the very first stool at the bar.”

Figure 5: Sentence decoupling illustration.

Details of the model architecture of L3Det In our proposed model L3Det, the point cloud feature
tokens V ∈ Rn×d are extracted by PointNet++ (Qi et al., 2017) encoder pre-trained on ScanNet (Dai
et al., 2017) seen classes, where n = 1024 denotes the number of input points. The text query tokens
T ∈ Rl×d are extracted by the pre-trained RoBERTa (Liu et al., 2019) text encoder, where l = 256
is the maximum length of the text. The non-parametric queries are predicted with an MLP from
the 256 visual tokens with the highest scores. Besides, the number of layers in the decoder is set
to NE = 6. The decoder predicts object features O ∈ Rk×d, where k = 256 is the number of
candidate objects, and d = 288 is the feature dimension.

Performance in the process of BUTD-DETR simplification to L3Det Table 7 shows the changes
in the visual grounding performance from top to bottom during the process of simplifying BUTD-
DETR to our L3Det. From the results, it can be seen that by directly inputting text tokens and
object queries parallelly into the decoder, it can compensate for the performance drop caused by
abandoning the cross-encoder and even achieve better performance (51.0 → 47.2 → 51.3). Besides,
using alignment loss following GLIP can further improve the model’s performance to 52.8 ( > 52.2,
the performance of BUTD-DETR) while not using box stream compared with BUTD-DETR.

Comparision with existing detection methods for L3Det To demonstrate our L3Det’s strong
detection capability, we directly train L3Det on ScanNet 18 classes using the 18 categories com-
bination detection prompt, and the experiments in Table 6 show L3Det achieves higher detection
performance.

14



Under review as a conference paper at ICLR 2024

Table 5: Performance change in the architecture modification from BUTD-DETR to L3Det.
Method Accuracy

BUTD-DETR 52.2
+ remove box stream 51.0

+ with concatenated Visual and Language Streams 50.1
+ remove cross-encoder 47.2

+ replace with our L3Det decoder (using parallel text and object query 51.3
+ replace with GLIP alignment loss (Our L3Det) 52.8

Table 6: 18 class 3D object detection results on ScanNetV2.

Method mAP50

3DETR 44.6
GroupFree3D 48.9

L3Det 50.1

Combining Object2Scene with existing methods Here we attempt to use Object2Scene to en-
able the close-set 3D object detector to obtain open-vocabulary detection capability. Since both
GroupFree3D and 3DETR are close-set 3D object detectors and do not possess the text input capabil-
ity, we modified their class prediction to 20 classes, which cover all the categories in OV-ScanNet20
benchmark, but only seen annotations (10 classes) are used for training in the actual training process.
Then we introduce unseen objects using Object2Scene to expand the training dataset. Results on OV-
ScanNet20 in Table 7 show our Object2Scene is general, and L3Det is also better than GroupFree3D
and 3DETR due to the text prompt input ability and architecture advantages.

Table 7: Detection results on unseen classes of OV-ScanNet20.

Method mAP25

3DETR 1.31
GroupFree3D 0.53

3DETR + Object2Scene 14.23
GroupFree3D + Object2Scene 15.16

L3Det + Object2Scene 23.98

Alignment Matrix Generation for L3Det In the second paragraph of Section 4.1 of the main
paper, we introduce the training supervision for L3Det, where calculating the alignment loss requires
a target alignment score matrix Starget ∈ {0, 1}N×M . The key to generating the target alignment
score matrix is the fine-level alignment between the text tokens and 3D boxes which is typically
not provided in most of visual grounding datasets including ScanRefer (Chen et al., 2020). We use
the off-the-shelf tool following EDA (Wu et al., 2022) to parse the text description, generate the
grammatical dependency trees, and obtain the position label. For example, given a sentence ”It is a
white table. It is next to a backboard” consisting of multiple objects, the main object in this sentence
is ”table” and the corresponding position label is ”0000100....”.

Training Details The code is implemented based on PyTorch. Our model is trained on two
NVIDIA A100 GPUs with a batch size of 24. We freeze the pretrained text encoder and use a
learning rate of 1×10−3 for the visual encoder and a learning rate of 1×10−4 for all other layers in
the network. It takes around 25 minutes to train an epoch, and our model is trained for 120 epochs.
The best model is selected based on the performance of the validation set.

B VISUAL GROUNDING RESULTS

Our proposed L3Det model unifies the 3D object grounding and detection with the same framework,
and we report the language-based 3D grounding performance trained on ScanRefer (Chen et al.,
2020) in Table 8. Compared with previous works such as BUTD-DETR (Jain et al., 2022), our
proposed L3Det achieves better grounding results with a simpler model architecture. We hope our
proposed L3Det will serve as a new 3D grounding and detection baseline for its simple, effective,
and unified model architecture.
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Table 8: Performance comparisons on language grounding on ScanRefer (Chen et al., 2020)
Method Unique@0.25 Unique@0.5 Multi@0.25 Multi@0.5 Overall@0.25 Overall@0.5

ReferIt3DNet (Achlioptas et al., 2020) 53.8 37.5 21.0 12.8 26.4 16.9
ScanRefer (Chen et al., 2020) 63.0 40.0 28.9 18.2 35.5 22.4
TGNN (Huang et al., 2021) 68.6 56.8 29.8 23.2 37.4 29.7

IntanceRefer (Yuan et al., 2021) 77.5 66.8 31.3 24.8 40.2 32.9
FFL-3DOG (Feng et al., 2021) 78.8 67.9 35.2 25.7 41.3 34.0

3DVG-Transformer (Zhao et al., 2021) 77.2 58.5 38.4 28.7 45.9 34.5
SAT-2D (Yang et al., 2021) - - - - 44.5 30.1

BUTD-DETR (Jain et al., 2022) 84.2 66.3 46.6 35.1 52.2 39.8

L3Det 84.8 67.1 47.1 35.9 52.8 40.2

Figure 6: Sample scenes generated by Object2Scene. The objects surrounded by the red circle in
the figure are sampled from 3D object datasets and inserted into the real-scanned scene.

C QUALITATIVE ANALYSIS

In this section, we illustrate more scenes generated by our Object2Scene approach in Figure 6 and
more visualization results in Figure 7. Figure 6 shows several scenes generated by Object2Scene,
where the 3D objects are inserted into the real-scanned scenes in a reasonable manner. As illustrated
in Figure 7, L3Det can locate all objects belonging to the category described in the input text prompt
covering various object sizes. Nevertheless, we find that our model may sometimes incorrectly
detect the objects (illustrated in the top middle sub-figure in Figure 7) or miss the objects. For
example, if the chairs are tucked under the table, the actual point cloud distribution of the chairs and
the point cloud distribution of chairs we insert into by Object2Scene are often very different, making
it difficult to detect. Those failure cases might be due to the distribution misalignment between the
scanned point cloud in the scene and the point cloud of the inserted objects from other datasets. We
leave this issue for future work.

Table 9: Ablation Study.
(a) Performance of different training epochs when
40% of the 3D objects from the 3D object dataset
are used for training.

Training Epochs mAP25

30 11.87
45 15.43
60 18.99

100 20.62
120 21.31

(b) Performance of different data ratio used in Ob-
ject2Scene with 120 training epochs. Data ratio
refers to the ratio of objects from the 3D object
dataset that are used for training. It reflects the di-
versity of 3D objects that are inserted to the scenes.

Data Ratio mAP25

40% 12.56
80% 18.11

100% 21.31

D ABLATION STUDY

In this section, we provide more ablation studies on how to use the data generated by Object2Scene
for training. During training, the Object2Scene approach generates augmented scenes online, i.e.,
the inserted objects and locations to insert objects are sampled at each iteration. We investigate two
factors: 1) the number of training epochs, and 2) the diversity of inserted objects, i.e.. the ratio of
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Figure 7: Qualitative results for open-vocabulary 3D object detection results. For each scene, the
detection prompt is shown under the input point cloud. The colors of bounding boxes correspond to
the classes in the prompts.

data from the 3D object dataset that is used for training. Table 9a demonstrates that more training
epochs lead to better performance. Table 9b indicates that increasing the diversity of inserted 3D
objects improves the performance.

E TRANSFERABILITY TO NEW DATASETS

We explore the transferability of our 3D detectors by evaluating the cross-dataset transfer perfor-
mances between OV-ScanNet20 and OV-SUN RGB-D20. The transferability of our 3D detector
mainly comes from the pretrained text encoder and the robust and transferable 3D feature repre-
sentations trained with objects from multiple source datasets using the cross-domain category-level
contrastive loss. The object detector trained on OV-ScanNet20 achieves an mAP25 of 16.34% when
tested on OV-SUN RGB-D20 dataset, and the object detector trained on OV-SUN RGB-D20 achives
an mAP25 of 17.11% when tested on OV-ScanNet20, demonstrating the transferability of the object
detectors trained with Object2Scene.

17


	Introduction
	Related Work
	3D Object Datasets
	Open-Vocabulary Object Detection
	Open-Vocabulary 3D Understanding
	3D Referential Language Grounding

	Object2Scene
	Anchor-guided 3D Object Insertion
	Object Grounding Prompt Generation

	Open-vocabulary 3D Object Detection with Object2Scene
	L3Det: Langauge-grounded 3D Object Detection
	Cross-Domain Category-level Contrastive Learning

	Experiment
	Benchmarks
	Implemntation Details
	Main Results
	Ablation Study

	Conclusion
	Experiment Details
	Visual Grounding Results
	Qualitative Analysis
	Ablation Study
	Transferability to New Datasets

