
Published as a conference paper at ICLR 2025

LIFE-GOM: GENERALIZABLE HUMAN RENDERING
WITH LEARNED ITERATIVE FEEDBACK OVER MULTI-
RESOLUTION GAUSSIANS-ON-MESH

Jing Wen, Alexander G. Schwing & Shenlong Wang
University of Illinois Urbana-Champaign
{jw116, aschwing, shenlong}@illinois.edu
https://wenj.github.io/LIFe-GoM/

ABSTRACT

Generalizable rendering of an animatable human avatar from sparse inputs relies
on data priors and inductive biases extracted from training on large data to avoid
scene-specific optimization and to enable fast reconstruction. This raises two main
challenges: First, unlike iterative gradient-based adjustment in scene-specific opti-
mization, generalizable methods must reconstruct the human shape representation
in a single pass at inference time. Second, rendering is preferably computation-
ally efficient yet of high resolution. To address both challenges we augment the
recently proposed dual shape representation, which combines the benefits of a
mesh and Gaussian points, in two ways. To improve reconstruction, we propose
an iterative feedback update framework, which successively improves the canon-
ical human shape representation during reconstruction. To achieve computation-
ally efficient yet high-resolution rendering, we study a coupled-multi-resolution
Gaussians-on-Mesh representation. We evaluate the proposed approach on the
challenging THuman2.0, XHuman and AIST++ data. Our approach reconstructs
an animatable representation from sparse inputs in less than 1s, renders views with
95.1FPS at 1024× 1024, and achieves PSNR/LPIPS*/FID of 24.65/110.82/51.27
on THuman2.0, outperforming the state-of-the-art in rendering quality.

1 INTRODUCTION

Generalizable rendering of an animatable human avatar from sparse inputs, i.e., images showing
a human in the same clothing and environment but not necessarily the same pose, is an important
problem for augmented and virtual reality applications. Envision generation of an animatable avatar
from a few quickly taken pictures in an unconstrained environment and efficient yet high-quality
pose-conditioned rendering in a virtual world.

To address this application, recent approaches (Kwon et al., 2024; Zheng et al., 2024; Li et al., 2024;
Hu et al., 2023; Pan et al., 2023) resort to generalizable reconstruction methods. Generalizable
methods avoid scene-specific optimization at inference time but instead use just a single deep net
forward pass, making reconstruction efficient. During an offline training phase the deep net extracts
data priors and inductive biases from a reasonably large dataset. Due to the learned priors, it can be
applied to sparser inputs compared to scene-specific training.

For rendering, recent methods (Wen et al., 2024; Paudel et al., 2024; Guédon & Lepetit, 2024)
introduce a dual shape representation, combining the advantages of a mesh, i.e., regularization via
the manifold neighborhood connectivity induced by the triangle mesh, with those of Gaussian splats,
i.e., fast and flexible rendering.

However, the use of just a single deep net forward pass during reconstruction prevents present-
day methods from refining their prediction. This is a concern because apparent errors that can be
detected by comparing available inputs to a corresponding rendering of the reconstruction are not
utilized. Moreover, w.r.t. the dual shape representation for human rendering, GoMAvatar (Wen
et al., 2024) and iHuman (Paudel et al., 2024) employ identical resolutions for the underlying mesh
and Gaussians, i.e., one Gaussian for each triangle face in the mesh. This is a concern because a

1

https://wenj.github.io/LIFe-GoM/

Published as a conference paper at ICLR 2025

Multiview images

Multi-frame images

OR

Inputs: sparse source images
Coupled multi-resolution

Gaussians-on-Mesh
908 ms

Novel view synthesis

Novel pose synthesis

Rendering
95 FPS

Figure 1: Overview. We tackle the problem of generalizable human rendering. Given sparse source
images (multiview images or multi-frame images), we reconstruct the 3D human representation in
canonical T-pose space. The canonical representation can be animated and rendered in novel views.

reasonably low-dimensional mesh representation is desirable for efficient reconstruction, while a
high-dimensional Gaussian splat representation is desirable for high-quality rendering. GaussianA-
vatar (Qian et al., 2024a) uses an adaptive density control based on gradients to densify Gaussians
on the mesh. However, generalizable human rendering reconstructs and renders subjects in a feed-
forward pass and therefore gradients are unavailable to guide the densification.

To address the first concern of not leveraging apparent errors, we propose a novel iterative feedback-
based reconstruction network. The iterative update mechanism augments generalized methods via
a feedback mechanism to improve results by fusing information from inputs, the current 3D recon-
struction, and current rendering from input views. Importantly, the designed iterative update mech-
anism is end-to-end trainable, i.e., the feedback is taken into account when training the generalized
reconstruction. Note that the iterative update mechanism makes reconstruction slightly slower, yet
our un-optimized version still performs the task in less than one second. Since reconstruction is a
one-off task, independent from pose-conditioned rendering, we think it makes sense to spend a bit
more effort than a simple deep network.

To address the second concern, we study a coupled-multi-resolution Gaussians-on-Mesh represen-
tation. More specifically, reconstruction is performed with a low-resolution mesh while we increase
the number of Gaussians by attaching multiple ones to a single triangle face. This is achieved via
a sub-division-like procedure. Beneficially, reconstruction remains efficient while rendering can
achieve high-quality and high-resolution results.

We illustrate our method in Fig. 1 and observe compelling rendering quality and speed. We assess
the efficacy of the proposed method on the challenging THuman2.0, XHuman and AIST++ data.
As mentioned, reconstruction needs less than one second and rendering runs at 95.1 FPS on one
NVIDIA A100 GPU. The rendering quality of the designed method outperforms the state-of-the-
art, improving PSNR/LPIPS*/FID to 24.65/110.82/51.27 from 21.90/133.41/61.67 for GHG (Kwon
et al., 2024).

2 RELATED WORK

Rendering of human avatars can be broadly categorized into two main areas: ‘per-scene optimized
human rendering’ and ‘generalizable human rendering’. We review both areas next before dis-
cussing prior work on dual shape representations, which combine Gaussians and meshes, and itera-
tive networks.

2

Published as a conference paper at ICLR 2025

Per-scene optimized human rendering. Human rendering from multiview or monocular videos
has achieved great results in recent years, benefitting from progress in neural rendering, e.g., neural
radiance fields (NeRF) (Mildenhall et al., 2020) and Gaussian splatting (Kerbl et al., 2023).

NeuralBody (Peng et al., 2021) is one of the earlier works that explores NeRFs for human rendering.
It regresses the colors and opacities based on the latent codes associated with the vertices of a
deformable mesh. HumanNeRF (Weng et al., 2022) learns subject-specific representations from a
monocular video and improves over prior works by introducing non-rigid transformations. Followup
NeRF-based works further improve the rendering quality (Yu et al., 2023), training speed (Geng
et al., 2023; Jiang et al., 2023), and rendering speed (Jiang et al., 2023). Later, Gaussian splatting was
adopted by human rendering techniques due to its superior rendering speed (Lei et al., 2024; Wen
et al., 2024; Hu et al., 2024; Kocabas et al., 2024; Li et al., 2023; Paudel et al., 2024). Human101 (Li
et al., 2023) advances the training speed to ∼100s on ZJU-MoCap and MonoCap. iHuman (Paudel
et al., 2024) further improves the training speed to 12s on PeopleSnapshot and can be trained on
as few as 6 frames. Even though the training speed improves significantly when using Gaussian
splatting, real-world applications often prefer sub-second training times. Moreover, without learned
priors from large-scale datasets, per-scene optimization approaches suffer from overfitting when the
training views are sparse.

Differently, in this work, we adopt the dual shape representation introduced by GoMAvatar (Wen
et al., 2024) and adapt it to generalizable human rendering. This permits to reconstruct the 3D
representation in less than one second and further excels even if only sparse inputs are available.

Generalizable human rendering. Generalizable human rendering operates on sparse source views
and benefits from learned priors and inductive biases extracted during a training phase from large-
scale datasets. In addition, it has a greater potential to attain a faster speed when recovering a
3D representation from the source views. ActorsNeRF (Mu et al., 2023) combines per-scene opti-
mization with priors learned from large-scale datasets using a two-stage training. Diffusion-based
approaches and large-reconstruction model-based methods (Weng et al., 2024; Chen et al., 2024;
Xue et al., 2024; Kolotouros et al., 2024; Pan et al., 2024) denoise the multiview images or other
properties. Since it requires multiple steps for each denoising process, diffusion-based approaches
usually take 2-10s to reconstruct the human avatar from images. Another line of works (Remelli
et al., 2022; Hu et al., 2023; Kwon et al., 2021; 2023; Li et al., 2024; Pan et al., 2023; Zheng et al.,
2024) build a single feed-forward approach to recover a 3D representation. They operate on source
views and output a 3D representation for novel view rendering. Without evaluating the network
several times, feed-forward methods are much faster compared to diffusion-based methods.

Our approach falls in the feed-forward category. However, differently, we devise an end-to-end
trainable iterative feedback module to improve performance. As we show quantitatively and quali-
tatively in Section 4, our approach achieves better rendering quality compared to prior feed-forward
methods, while not being significantly slower.

Gaussians-on-Mesh dual shape representation. Though Gaussian splatting alone achieves supe-
rior rendering quality and speed, it suffers from overfitting when a good position initialization is
not available (Wen et al., 2024) and its underlying geometry is less accurate (Paudel et al., 2024;
Qian et al., 2024a). Prior work (Wen et al., 2024; Paudel et al., 2024) regularizes the Gaussians
and enables animation using parametric models such as FLAME (Li et al., 2017) and SMPL (Loper
et al., 2015). We also combine Gaussian splatting with a mesh. Different from the use of one Gaus-
sian per face by Wen et al. (2024) and Paudel et al. (2024), we adopt a coupled-multi-resolution
representation: a low-resolution mesh is deformed and Gaussians are linked to a high-resolution
mesh. Different from Qian et al. (2024a), who split the Gaussians based on gradient signals, we
subdivide the mesh and bind the Gaussians on the subdivided mesh since gradients are unavailable
in our generalized human rendering setting which uses only a feed-forward pass. SuGaR (Guédon &
Lepetit, 2024) works on general static scenes and attaches multiple Gaussians to each triangle based
on predefined barycentric coordinates. However, the Gaussians’ scales are learned in the world co-
ordinates, while we define Gaussian parameters in a triangle’s local coordinates. This modification
is important for modeling dynamic scenes.

Iterative network. Our approach falls into the category of iterative feedback networks (Adler &
Öktem, 2017; Manhardt et al., 2018; Carreira et al., 2016; Li et al., 2018; Ma et al., 2020). The
core idea is to learn to iteratively update the output through a forward process. This method works

3

Published as a conference paper at ICLR 2025

particularly well when feedback signals can be incorporated at each step to improve the estimation.
Previous works either unrolled standard optimizers into differentiable feedforward networks (Wang
et al., 2016; Belanger & McCallum, 2016; Schwing & Urtasun, 2015; Zuo & Deng, 2025), explic-
itly optimizing an energy function, or trained a generic iterative network with supervised learning
without an explicit energy formulation (Andrychowicz et al., 2016; Wichrowska et al., 2017; Flynn
et al., 2019; Teed & Deng, 2020). In computer vision, these methods have been used for pose
estimation (Li et al., 2018; Carreira et al., 2016), inverse problems (Ma et al., 2020), dense recon-
struction (Flynn et al., 2019), optical flow (Teed & Deng, 2020), and depth estimation (Zuo & Deng,
2025). Our work presents a novel use of this iterative framework for generalizing human avatars.

3 METHOD

In the following we first provide an overview of the proposed approach in Section 3.1. We then
detail our two contributions: first the coupled-multi-resolution Gaussians-on-Mesh representation in
Section 3.2 and then our reconstruction approach with iterative feedback in Section 3.3. Finally we
provide some information on training of the proposed method in Section 3.4.

3.1 OVERVIEW

Input. The proposed method operates on a set of source images {In}Nn=1, corresponding binary
source masks {Mn}Nn=1 identifying the human, source camera extrinsics {En}Nn=1, source camera
intrinsics {Kn}Nn=1, and human poses {Pn}Nn=1. Here, N is the number of source images. The
human pose Pn = (Rj

n, T
j
n)

J
j=1 is represented by a collection of J rotations Rj

n and translations T j
n.

Output. Given this input, our goal is to render the target image Ipred
tg and its corresponding binary

mask M pred
tg given as additional input the target camera extrinsics Etg, intrinsics Ktg, and the target

human pose Ptg, again specified via a collection of J rotation matrices and translation vectors.

Method overview. We render Ipred
tg and M pred

tg by transforming a learned canonical Gaussian-on-
Mesh representation GoMc specified in a T-pose space. For this, Gaussians and mesh (i.e., GoMc)
are first articulated using the target pose Ptg and subsequently transformed to target image space via
the target camera parameters. We provide details in Section 3.2 and formally write this as

Ipred
tg ,M pred

tg = Renderer(GoMc, Ptg, Etg,Ktg). (1)

The canonical 3D representation GoMc is extracted from the N source images. We abstract this via

GoMc = Reconstructor({In}Nn=1, {Mn}Nn=1, {Pn}Nn=1, {En}Nn=1, {Kn}Nn=1), (2)

and provide details in Section 3.3. Unlike GPS-Gaussian (Zheng et al., 2024), we choose to re-
construct the subject in the canonical T-pose instead of the poses provided as an input. Benefitting
from this choice, our representation can be retargeted to novel poses without any post-processing,
such as skeleton binding. Further, our model can operate on images showing different poses. No-
tably, our GoMc representation uses different resolutions for the Gaussians and the mesh, and the
Reconstructor benefits from an iterative feedback update.

3.2 COUPLED-MULTI-RESOLUTION GAUSSIANS-ON-MESH REPRESENTATION

In this section, we describe the details of the Renderer used in Eq. (1). We first define the coupled-
multi-resolution Gaussians-on-Mesh representation in Section 3.2.1, which refers to our canonical
T-pose shape. Next, we detail articulation and rendering in Section 3.2.2 and Section 3.2.3.

3.2.1 CANONICAL REPRESENTATION

The classic Gaussians-on-Mesh (GoM) representation associates one Gaussian with one tri-
angle face of a mesh, i.e., the number of Gaussians is identical to the number of tri-
angle faces. Further note, in GoMAvatar (Wen et al., 2024), the vertices of the mesh
and the Gaussians’ parameters in the triangle’s local coordinates are optimized per scene.

4

Published as a conference paper at ICLR 2025

Subdivide

𝑣!" !#$
% , 𝑓& &#$

'
𝑣!"↓ !#$

%↓
, 𝑓&↓ &#$

'↓

𝑟! , 𝑠! , 𝑐! , 𝑜!
high-res Gaussian params

𝑣"#↓
low-res vertex

Figure 2: Multi-resolution Gaussians-on-Mesh
representation. We use a low-res mesh for faster
animation and simpler geometry and attach Gaus-
sians on a high-res mesh for better rendering.

To achieve high-quality rendering, GoMAvatar
subdivides the mesh to increase the number
of Gaussians. However, in the generaliz-
able human rendering setting, naively subdi-
viding the mesh significantly increases the re-
construction time from less than 1s to ∼13s
since the network operates on a larger set of
points. We therefore study the coupled-multi-
resolution Gaussians-on-Mesh representation.
It reduces the computational cost while simulta-
neously improving the rendering quality. Con-
cretely, we achieve this by deforming the ver-
tices of a low-resolution mesh and attaching the
Gaussians to a coupled high-resolution mesh.

Formally, we define the coupled-multi-resolution Gaussians-on-Mesh representation in the canoni-
cal space as follows:

GoMc ≜
{
{vc↓i }V

↓

i=1, {w
↓
i }

V ↓

i=1, {f
↓
j }

F↓

j=1, {vci }Vi=1, {fj}Fj=1

}
. (3)

Here, {vc↓i }V ↓

i=1 and {f↓
j }F

↓

j=1 define the V ↓ vertices and F ↓ faces of the low-resolution mesh re-
spectively. Note, f↓

j ≜ ({∆↓
j,k}3k=1), where ∆↓

j,k ∈ {1, . . . , V ↓} is the k-th vertex index of the j-th
triangle in the low-resolution mesh. To articulate it to any given human pose, we utilize linear blend
skinning weights w↓

i ∈ RJ corresponding to the i-th vertex v↓i in the low-resolution mesh.

The high-resolution mesh is specified via {vci }Vi=1 and {fj}Fj=1, which subsume the V vertices and F
faces. These are obtained by subdividing the low-resolution mesh. Different from the low-resolution
mesh representation, we attach Gaussians to the high-resolution face fj , i.e.,

fj ≜ (rj , sj , cj , oj , {∆j,k}3k=1), (4)

with j ∈ {1, . . . , F}. Here, rj ∈ so(3) and sj ∈ R3 are the rotation and scale in the faces’s local
coordinate system. Moreover, cj ∈ R3 is the RGB color, oj is the offset defined in the faces’s local
coordinate system, and {∆j,k}3k=1 are the three vertex indices belonging to the j-th triangle, i.e.,
∆j,k ∈ {1, . . . , V }. We illustrate the representation in Fig. 2.

3.2.2 ARTICULATION

It remains to answer 1) how we transform the defined coupled-multi-resolution Gaussians-on-
Mesh representation to the target pose; and 2) how we perform rendering. To answer the
first question, given a target pose Ptg, we articulate the canonical coupled-multi-resolution
Gaussians-on-Mesh representation GoMc to a Gaussians-on-Mesh representation GoMo ≜{
{vo↓i }V ↓

i=1, {f
↓
j }F

↓

j=1, {voi }Vi=1, {fj}Fj=1

}
in the pose space utilizing linear blend skinning. Note

that this representation is still multi-resolution because linear blend skinning is performed in the
low-resolution space for efficiency reasons while high-quality rendering requires high-resolution
Gaussian information. Concretely, we transform the canonical low-resolution 3D vertex coordinates
vc↓i to posed low-resolution 3D vertex coordinates

vo↓i = LBS
(
vc↓i , w↓

i , Ptg

)
=

∑J
j=1 w

j↓
i (Rp

jv
c↓
i + tpj)∑J

k=1 w
k↓
i

. (5)

Here, LBS refers to classic linear blend skinning. Since the high-resolution canonical space mesh{
{vci }Vi=1, {fj}Fj=1,

}
is obtained from the low-resolution canonical space mesh via subdivision, it

is straightforward to transfer the vertex transformations between the posed low-resolution 3D vertex
coordinates vo↓i and its canonical counterpart vc↓i to the high-resolution mesh and obtain {voi }Vi=1.

3.2.3 RENDERING WITH GAUSSIAN SPLATTING

Given the pose space Gaussians-on-Mesh representation GoMo and the target camera parameters
Etg and Ktg, we render the target image Ipred

tg and the mask M pred
tg with Gaussian splatting.

5

Published as a conference paper at ICLR 2025

Iterative update at

Iterative
feedback net

Human Poses

Feedback feature
Mesh decoder

GSplat decoder
Input Images

Camera Params

Updated

Rendered Images

Articulate & Render

<latexit sha1_base64="OWORqQNqBE1h1I8by56CZ8lwaRU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7Gt5nffuLaiFg94iThfkSHSoSCUbTSA5b65Ypbdecgq8TLSQVyNPrlr94gZmnEFTJJjel6boL+lGoUTPJZqZcanlA2pkPetVTRiBt/Or90Rs6sMiBhrG0pJHP198SURsZMosB2RhRHZtnLxP+8borhtT8VKkmRK7ZYFKaSYEyyt8lAaM5QTiyhTAt7K2EjqilDG04Wgrf88ippXVS9y2rtvlap3+RxFOEETuEcPLiCOtxBA5rAIIRneIU3Z+y8OO/Ox6K14OQzx/AHzucPF6aNFQ==</latexit>

t
<latexit sha1_base64="Btf+ctVps7xhI5JY0V2ZnwCBP1Y=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BIvgqSRS1GPRg16ECvYD2hg22027dLMbdifFEvpPvHhQxKv/xJv/xm2bg7Y+GHi8N8PMvDDhTIPrfluFldW19Y3iZmlre2d3z94/aGqZKkIbRHKp2iHWlDNBG8CA03aiKI5DTlvh8Hrqt0ZUaSbFA4wT6se4L1jECAYjBbbdBfoEYZTdyLvJIwkgsMtuxZ3BWSZeTsooRz2wv7o9SdKYCiAca93x3AT8DCtghNNJqZtqmmAyxH3aMVTgmGo/m10+cU6M0nMiqUwJcGbq74kMx1qP49B0xhgGetGbiv95nRSiSz9jIkmBCjJfFKXcAelMY3B6TFECfGwIJoqZWx0ywAoTMGGVTAje4svLpHlW8c4r1ftquXaVx1FER+gYnSIPXaAaukV11EAEjdAzekVvVma9WO/Wx7y1YOUzh+gPrM8f1NeTzA==</latexit>

GoMc
t

 𝐹"!,#↓ #%&
'↓

×𝑻

Figure 3: Iterative feedback. We iteratively update in a feed-forward way the vertices of the low-
resolution mesh and the Gaussian parameters attached to the high-resolution mesh. We repeat the
update for T steps. Each step t operates on the source images, camera parameters and human poses,
as well as the last iteration’s results including the canonical representation GoMc

t−1 and the predicted
source images rendered by GoMc

t−1 (the brown arrows).

Our Gaussian parameters defined in Eq. (4) are located in the triangle’s local coordinates. To render
the images, we first transform the local Gaussian parameters to the world coordinates. Following Go-
MAvatar (Wen et al., 2024), we denote the local-to-world transformation of the j-th high-resolution
face as Aj . The mean of the Gaussian and its covariance are computed via

µj =
1

3

3∑
k=1

vo∆j,k
+Aj · oj and Σj = Aj(RjSjS

T
j R

T
j)A

T
j , (6)

where Rj and Sj are the matrices encoding rotation rj and scale sj . The color of the Gaussian is cj .

3.3 RECONSTRUCTION WITH ITERATIVE FEEDBACK

It remains to answer how to reconstruct the canonical space coupled-multi-resolution Gaussians-
on-Mesh representation GoMc. For this, our Reconstructor defined in Eq. (2) uses sparse
source images {In}Nn=1 and masks {Mn}Nn=1. Note that the sparse inputs can be multiview im-
ages or multi-frame images sampled from a monocular video, where human poses are not neces-
sarily identical across frames. We also assume that human poses {Pn}Nn=1 and camera parameters
{En}Nn=1, {Kn}Nn=1 are given which can be human-annotated or predicted from off-the-shelf tools.

We reconstruct the canonical representation in T-pose rather than the input poses, enabling animation
without any post-processing and allowing the model to handle images in unaligned poses. The added
difficulty due to this choice: the gap between the canonical pose and the input poses. While scene-
specific methods refine the canonical representation with gradient-based optimization, generalizable
approaches must predict it in a feed-forward pass which leads to undesired reconstruction quality. To
address this challenge, we propose iterative feedback updates that successively ‘refine’ the canonical
representation in a feed-forward manner, as illustrated in Fig. 3.

To compute GoMc, we perform a T step iterative feedback update. We use GoMc
t to denote the

output representation from the t-th step, i.e., t ∈ {0, . . . , T} and let

GoMc
t ≜

{
{vc↓t,i}

V ↓

i=1, {w
↓
i }

V ↓

i=1, {f
↓
j }

F↓

j=1, {vct,i}Vi=1, {ft,j}Fj=1

}
. (7)

Here, the step-dependent face information is given by

ft,j ≜ (rt,j , st,j , ct,j , ot,j , {∆j,k}3k=1), with j ∈ {1, . . . , F}. (8)

Note, GoMc
0, the canonical representation at t = 0, is the initialization and GoMc = GoMc

T .

We emphasize that our iterative feedback updates the low-resolution mesh vertices {vc↓i }V ↓

i=1, and the
Gaussian parameters {rj , sj , cj , oj}Fj=1 associated with the high-resolution faces. The vertices in

6

Published as a conference paper at ICLR 2025

the high-resolution mesh {vct,i}Vi=1 follow the low-resolution update, analogously to the articulation
update discussed in Section 3.2.2.

At each step t, we update the low-resolution mesh vertices and high-resolution Gaussian parameters
using the following equations:

vc↓t,i = vc↓t−1,i + MLP(F̃ ↓
t,i), (9)

rt,j , st,j , ct,j , ot,j = MLP(cat(F̃t,j , {Fn,t,j}Nn=1)). (10)

Here, F̃ ↓
t,i, i ∈ {1, . . . , V ↓} is our ‘feedback’ feature for the i-th vertex in the low-resolution mesh.

Further, F̃t,j , j ∈ {1, . . . , F} in Eq. (10) is a ‘feedback’ feature for the j-th face in the high-
resolution mesh. It is acquired by first interpolating F̃ ↓

t,i, i ∈ {1, . . . , V ↓} to get vertex features in
the high-resolution mesh and then concatenating the 3 vertices’ features belonging to the j-th face.
To preserve details, we also concatenate source image features {Fn,t,j}Nn=1 which are obtained by
projecting the mean of the j-th Gaussian at step t to the n-th view.

To compute the ‘feedback’ feature F̃ ↓
t,i, i ∈ {1, . . . , V ↓}, we first render the source views using the

canonical representation from the last iteration via

Ipred
n,t−1,M

pred
n,t−1 = Renderer(GoMc

t−1, Pn, En,Kn), n ∈ {1, . . . , N}. (11)

Then we extract image features from {Ipred
n,t−1}Nn=1. For each vertex vc↓t,i−1 in the low-resolution

mesh, we extract pixel-aligned source image features and predicted image features. We concatenate
both and feed them into an iterative feedback network. The iterative feedback network consists of a
multi-source fusion block that mixes the information from N sources, and a Point Transformer that
encodes all the vertices. Its output feature is {F̃ ↓

t,i}V
↓

i=1. Please refer to Appendix B for more details.

3.4 TRAINING

Both rendering and reconstruction using our iterative feedback network and coupled representa-
tion are end-to-end differentiable. To learn the network parameters, we use a training loss com-
posed of L1 and perceptual losses, comparing predicted and ground-truth RGB images, L1 loss
for masks as well as a Laplacian loss for regularization. The loss is averaged over all source and
target images, as well as all T iterative feedback steps. Formally, we minimize the average of
Lossn,t, n ∈ {1, . . . , N, tg}, t ∈ {1, . . . , T} and

Lossn,t = L1(In, I
pred
n,t) + λperPerceptual(In, I

pred
n,t) + λML1(Mn,M

pred
n,t) + λlapLap(GoMc

t). (12)

Here, L1(·, ·) is the L1 loss. Perceptual(·, ·) is the perceptual loss between predictions and ground-
truths, e.g., SSIM or LPIPS. Lap(·) is the Laplacian loss applied on the low-resolution mesh of the
canonical GoM representation. λper, λM and λlap are user-specified hyperparameters.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Representation details. We initilize the low-resolution mesh
{
{vc↓0,i}V

↓

i=1, {f
↓
j }F

↓

j=1

}
in GoMc

0 with
SMPL or SMPL-X, depending on the human pose representation used in the dataset. The high-
resolution mesh is obtained by subdividing the low-resolution mesh.

Architecture details. We provide the detailed architecture in Appendix B.

Training details. We set λper = 1.0, λM = 5.0 and λlap = 100 in Eq. (12) on THuman2.0
and λper = 1.0, λM = 0 and λlap = 100 in Eq. (12) on AIST++. We use the SSIM loss in
THuman2.0 and the LPIPS loss in AIST++ following the baselines. We use Adam as the optimizer.
On THuman2.0, the learning rates of the image encoder and the rest of the model are 1e−4 and
5e−5 respectively. On AIST++, we set the learning rate of all parameters to 5e−5. We optimize the
model for 200K iterations on THuman2.0 and 100K iterations on AIST++.

7

Published as a conference paper at ICLR 2025

Table 1: Comparison on THuman2.0. The proposed method improves state-of-the-art in PSNR,
LPIPS∗ and FID. We highlight the best result in bold font. Methods marked in gray are per-scene
optimized methods.

Number of
source views Method PSNR↑ LPIPS*↓ FID↓

3

GoMAvatar (Wen et al., 2024) 23.05 133.98 87.51
3DGS-Avatar (Qian et al., 2024b) 21.25 160.48 157.21
iHuman (Paudel et al., 2024) 22.77 131.67 101.70
NHP (Kwon et al., 2021) 23.32 184.69 136.56
NIA (Kwon et al., 2023) 23.20 181.82 127.30
GHG (Kwon et al., 2024) 21.90 133.41 61.67
LIFe-GoM (Ours) 24.65 110.82 51.27

5 GPS-Gaussian (Zheng et al., 2024) 20.39 152.34 65.90
LIFe-GoM (Ours) 25.57 105.39 38.57

Table 2: Comparison on XHuman. We evaluate on XHuman to prove the ability of cross-domain
generalization. The proposed method improves state-of-the-art in PSNR, LPIPS∗ and FID. We
highlight the best result in bold font.

Method PSNR↑ LPIPS*↓ FID↓

GHG (Kwon et al., 2024) 23.52 112.91 50.51
LIFe-GoM (Ours) 25.32 99.32 42.90

4.2 EXPERIMENTAL SETUP

We evaluate our approach in two settings: 1) Multiview source images. Our approach can take
multiview images as input to produce a canonical representation; 2) Multi-frame source images.
Since our approach directly learns a 3D representation in the canonical space instead of a posed
space, our method can also operate on images showing various human poses, e.g., frames sampled
from a monocular video. Our approach can synthesize both novel views and novel poses.

Datasets. We validate our approach on THuman2.0 (Yu et al., 2021), XHuman (Shen et al., 2023)
and AIST++ (Li et al., 2021) quantitatively. We use THuman2.0 to evaluate our approach in the
setting of multiview source images. XHuman is used to validate the cross-domain generalization
of our approach. In other words, we train our model on THuman2.0 and test on XHuman without
fine-tuning. The AIST++ dataset is used to evaluate the multi-frame source image setting. Please
see Appendix C for detailed dataset setup.

Baselines. We compare with GoMAvatar (Wen et al., 2024), 3DGS-Avatar (Qian et al., 2024b),
iHuman (Paudel et al., 2024), NHP (Kwon et al., 2021), NIA (Kwon et al., 2023), GHG (Kwon
et al., 2024) and GPS-Gaussian (Zheng et al., 2024) on THuman2.0. On AIST++, we compare with
HumanNeRF (Weng et al., 2022), GoMAvatar (Wen et al., 2024), 3DGS-Avatar (Qian et al., 2024b),
iHuman (Paudel et al., 2024) and ActorsNeRF (Mu et al., 2023). Please refer to Appendix D for
details.

Evaluation metrics. We report PSNR, LPIPS∗(= LPIPS × 1000) and FID on THuman2.0 fol-
lowing GHG (Kwon et al., 2024). We report PSNR, SSIM and LPIPS∗ on AIST++ following Ac-
torsNeRF (Mu et al., 2023).

4.3 QUANTITATIVE RESULTS

THuman2.0. We summarize our results in Table 1 for both the three-view and the five-view setting.

In the three-view setting, our method significantly outperforms per-scene optimized methods includ-
ing GoMAvatar, 3DGS-Avatar and iHuman, and generalizable approaches including NHP, NIA, and
GHG in PSNR, LPIPS∗, and FID. Our approach achieves 24.65/110.82/51.27 in PSNR/LPIPS∗/FID,
compared to GHG’s 21.90/133.41/61.67. Importantly, we use 330K Gaussians for splatting, 7.5×
fewer than GHG’s 2.8M, resulting in faster rendering (10.52ms vs. GHG’s 20.30ms) at 1024×1024
resolution on a NVIDIA A100 GPU. Our method takes 907.92ms to reconstruct the coupled-multi-
resolution Gaussians-on-Mesh in canonical space, significantly faster than scene-specific methods
but slower than GHG. That said, reconstruction only needs to be done once per input subject, as the
reconstructed avatar will be cached and reused for articulation and rendering, which runs at 95 FPS.

8

Published as a conference paper at ICLR 2025

Table 3: Comparison on AIST++. We achieve comparable quality as ActorsNeRF while requiring
much less time in reconstruction or optimization. We highlight the best result in bold font. Methods
marked in gray are per-scene optimized methods.

Method PSNR↑ SSIM↑ LPIPS*↓ Reconstruction or
optimization time↓

HumanNeRF (Weng et al., 2022) 24.21 0.9760 29.66 ∼2h
GoMAvatar (Wen et al., 2024) 24.34 0.9780 25.34 ∼10h
3DGS-Avatar (Qian et al., 2024b) 25.14 0.9784 27.17 ∼2min
iHuman (Paudel et al., 2024) 25.17 0.9805 22.90 6.61s
ActorsNeRF (Mu et al., 2023) 25.23 0.9809 22.45 ∼4h
LIFe-GoM (Ours) 25.25 0.9812 21.61 589.27ms

(a) Reference
image

(b) Novel view
synthesis

Figure 4: Cross-domain generalization on
DNA-Rendering dataset w/o finetuning.

(a) Reference
image

(b) Novel pose
synthesis

Figure 5: Novel pose synthesis. Poses are
from BEDLAM dataset.

We compare our approach to GPS-Gaussian using five images. As GPS-Gaussian relies on depth
prediction between adjacent views, five images are the minimum it needs. Despite that, it still fails
in non-overlapping regions. Our approach significantly improves upon GPS-Gaussian in this setting.

XHuman. We summarize the cross-dataset generalization results in Table 2. We directly apply
GHG and our approach trained on THuman2.0 in the setting of 3 source views to the XHuman
dataset without any finetuning. Our approach achieves PSNR/LPIPS*/FID of 25.32/99.32/42.90,
significantly outperforming GHG’s 23.52/112.91/50.51.

AIST++. Table 3 summarizes quantitative results on AIST++. Our method achieves
25.25/0.9812/21.61 in PSNR/SSIM/LPIPS*, matching ActorsNeRF’s 25.23/0.9809/22.11 and sur-
passing per-scene optimized methods. Importantly, our method needs only 589 ms for 3D recon-
struction, whereas iHuman, the fastest scene-specific method, requires 6.61s and other baselines
take minutes to hours.

4.4 QUALITATIVE RESULTS

Please refer to Appendix E for more qualitative results, including a comparison to baselines.

Cross-domain generalization. We demo our approach on cross-domain generalization in Fig. 4, us-
ing the DNA-Rendering data (Cheng et al., 2023). Without fine-tuning, our approach can generalize
to challenging subjects, e.g., loose clothes.

Novel pose synthesis. Instead of directly reconstructing human avatars in the pose of the source
images, our approach outputs the canonical representation in T-pose via the Reconstructor.
Benefitting from this choice, we can synthesize novel poses without postprocessing such as binding
the skeletons. In Fig. 5, we retarget the avatar to challenging new pose sequences from the BEDLAM
dataset (Black et al., 2023). The avatar is reconstructed using the model which was used to report
results in the 3 source view setting of Table 1.

4.5 ABLATION STUDIES

Analysis of iterative step choice. We study how the number of iterations (T) influences the recon-
struction time and rendering quality. Results are summarized in Table 4 and Fig. 6(a). Note that
T = 1 means a single feed-forward pass, i.e., iterative updates are disabled. Using more iterations
improves the rendering quality at the expense of more reconstruction time (∼290ms per iteration).
The PSNR improves by +0.78 and +0.91 when T = 2 and T = 3 respectively compared to T = 1.
Starting with T = 4, the benefit of more iterations diminishes. We choose T = 3 in our final model
to balance rendering quality and reconstruction time.

9

Published as a conference paper at ICLR 2025

Table 4: Iterative step choice. More iterations lead to better rendering at the expense of longer
reconstruction. We use 3 iterations for the best quality-speed tradeoff, as highlighted in gray.

iterations PSNR↑ LPIPS*↓ FID↓ Reconstruction
time (ms)↓

1 23.74 124.58 64.59 328.79
2 24.52 112.47 52.16 618.67
3 24.65 110.82 51.27 907.92
4 24.69 110.46 51.25 1198.14
5 24.70 110.38 51.02 1563.92

(a) T=1 (b) T=2 (c) T=3 (a) Subdivide
×0

(d) Ground
truth

(b) Subdivide
×1

(c) Subdivide
×2

(d) Ground
truth

Figure 6: Ablation studies. We study the effect of iterative feedback (left). The geometry improves
as the number of iterations increases. We show the importance of linking Gaussians to the high-
resolution mesh (right). The high-resolution mesh is subdivided from the low-resolution counterpart.
A higher resolution yields better texture details.

Table 5: Coupled-multi-resolution Gaussians-on-Mesh. Increasing the number of subdivisions
improves rendering quality at the cost of longer reconstruction and rendering times. We subdivide
twice in our final model to ensure quality while maintaining real-time, as highlighted in gray.

subdivision PSNR↑ LPIPS*↓ FID↓ Reconstruction
time (ms)↓

Rendering
time (ms)↓

0 24.76 140.60 93.44 538.02 3.20
1 24.88 118.64 58.45 607.49 3.93
2 24.65 110.82 51.27 907.92 10.52

Coupled-multi-resolution Gaussians-on-Mesh. As mentioned in Section 3.2.1 and Section 3.3,
we update the vertices of the low-resolution mesh, while the Gaussians are associated with the
high-resolution mesh. Both are updated jointly. This choice is necessary for two reasons: 1)
simply updating the vertices of the high-resolution mesh increases the reconstruction time from
907.92ms to 12.45s, making it too slow for both training and inference; 2) learning Gaussians in
the high-resolution mesh guarantees good rendering quality. Note that the high-resolution mesh is
obtained by subdividing the low-resolution mesh. In Table 5, we show that the rendering improves
to 118.64/58.45 and 110.82/51.27 in LPIPS∗/FID when subdividing once and twice respectively
from 140.60/93.44 without subdivision. The improvement can also be observed in Fig. 6(b). Note
that we do not observe consistent improvement in PSNR. This is because PSNR sometimes prefers
blurry results. The resolution of the high-resolution mesh affects both the reconstruction speed
and the rendering speed since we render the source images during the reconstruction stage. As the
reconstruction time is still less than 1s, we choose to subdivide twice for better rendering quality.

5 CONCLUSIONS

We tackle the problem of generalizable reconstruction of an animatable human avatar from sparse
inputs. We propose a feed-forward network featuring iterative updates with iterative feedback and
coupled-multi-resolution Gaussians-on-Mesh representation. Our method achieves state-of-the-art
rendering quality. It requires less than 1s for avatar reconstruction and renders at 95 FPS.

Acknowledgements. Work supported in part by NSF grants 2008387, 2045586, 2106825, MRI
1725729, and NIFA award 2020-67021-32799.

10

Published as a conference paper at ICLR 2025

REFERENCES

Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using iterative deep neural net-
works. Inverse Problems, 2017.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. NeurIPS, 2016.

David Belanger and Andrew McCallum. Structured prediction energy networks. In ICML, 2016.

Michael J. Black, Priyanka Patel, Joachim Tesch, and Jinlong Yang. BEDLAM: A synthetic dataset
of bodies exhibiting detailed lifelike animated motion. In CVPR, 2023.

Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and Jitendra Malik. Human pose estimation
with iterative error feedback. In CVPR, 2016.

Jinnan Chen, Chen Li, Jianfeng Zhang, Hanlin Chen, Buzhen Huang, and Gim Hee Lee. Generaliz-
able human gaussians from single-view image. arXiv, 2024.

Wei Cheng, Ruixiang Chen, Siming Fan, Wanqi Yin, Keyu Chen, Zhongang Cai, Jingbo Wang,
Yang Gao, Zhengming Yu, Zhengyu Lin, et al. Dna-rendering: A diverse neural actor repository
for high-fidelity human-centric rendering. In ICCV, 2023.

John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan Overbeck, Noah
Snavely, and Richard Tucker. Deepview: View synthesis with learned gradient descent. In CVPR,
2019.

Chen Geng, Sida Peng, Zhen Xu, Hujun Bao, and Xiaowei Zhou. Learning neural volumetric
representations of dynamic humans in minutes. In CVPR, 2023.

Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d
mesh reconstruction and high-quality mesh rendering. In CVPR, pp. 5354–5363, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Liangxiao Hu, Hongwen Zhang, Yuxiang Zhang, Boyao Zhou, Boning Liu, Shengping Zhang, and
Liqiang Nie. Gaussianavatar: Towards realistic human avatar modeling from a single video via
animatable 3d gaussians. In CVPR, 2024.

Shoukang Hu, Fangzhou Hong, Liang Pan, Haiyi Mei, Lei Yang, and Ziwei Liu. Sherf: Generaliz-
able human nerf from a single image. In ICCV, 2023.

Tianjian Jiang, Xu Chen, Jie Song, and Otmar Hilliges. Instantavatar: Learning avatars from monoc-
ular video in 60 seconds. In CVPR, 2023.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian Splat-
ting for Real-Time Radiance Field Rendering. ACM TOG, 2023.

Muhammed Kocabas, Jen-Hao Rick Chang, James Gabriel, Oncel Tuzel, and Anurag Ranjan. Hugs:
Human gaussian splats. In CVPR, 2024.

Nikos Kolotouros, Thiemo Alldieck, Enric Corona, Eduard Gabriel Bazavan, and Cristian Smin-
chisescu. Instant 3d human avatar generation using image diffusion models. In ECCV, 2024.

Youngjoong Kwon, Dahun Kim, Duygu Ceylan, and Henry Fuchs. Neural human performer: Learn-
ing generalizable radiance fields for human performance rendering. NIPS, 2021.

Youngjoong Kwon, Dahun Kim, Duygu Ceylan, and Henry Fuchs. Neural image-based avatars:
Generalizable radiance fields for human avatar modeling. ICLR, 2023.

Youngjoong Kwon, Baole Fang, Yixing Lu, Haoye Dong, Cheng Zhang, Francisco Vicente Car-
rasco, Albert Mosella-Montoro, Jianjin Xu, Shingo Takagi, Daeil Kim, et al. Generalizable human
gaussians for sparse view synthesis. ECCV, 2024.

11

Published as a conference paper at ICLR 2025

Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, and Kostas Daniilidis. Gart: Gaussian
articulated template models. In CVPR, 2024.

Chen Li, Jiahao Lin, and Gim Hee Lee. Ghunerf: Generalizable human nerf from a monocular
video. In 3DV, 2024.

Mingwei Li, Jiachen Tao, Zongxin Yang, and Yi Yang. Human101: Training 100+ fps human
gaussians in 100s from 1 view. arXiv, 2023.

Ruilong Li, Shan Yang, David A Ross, and Angjoo Kanazawa. Learn to dance with aist++: Music
conditioned 3d dance generation. In ICCV, 2021.

Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and Javier Romero. Learning a model of facial
shape and expression from 4D scans. SIGGRAPH Asia, 2017.

Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. Deepim: Deep iterative matching for 6d
pose estimation. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
683–698, 2018.

Tingting Liao, Xiaomei Zhang, Yuliang Xiu, Hongwei Yi, Xudong Liu, Guo-Jun Qi, Yong Zhang,
Xuan Wang, Xiangyu Zhu, and Zhen Lei. High-fidelity clothed avatar reconstruction from a
single image. In CVPR, 2023.

Tingting Liao, Hongwei Yi, Yuliang Xiu, Jiaxiang Tang, Yangyi Huang, Justus Thies, and Michael J
Black. Tada! text to animatable digital avatars. In 3DV, 2024.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
SMPL: A skinned multi-person linear model. ACM TOG, 2015.

Wei-Chiu Ma, Shenlong Wang, Jiayuan Gu, Sivabalan Manivasagam, Antonio Torralba, and Raquel
Urtasun. Deep feedback inverse problem solver. In ECCV, 2020.

Fabian Manhardt, Wadim Kehl, Nassir Navab, and Federico Tombari. Deep model-based 6d pose
refinement in rgb. In ECCV, 2018.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV,
2020.

Jiteng Mu, Shen Sang, Nuno Vasconcelos, and Xiaolong Wang. Actorsnerf: Animatable few-shot
human rendering with generalizable nerfs. In ICCV, pp. 18391–18401, 2023.

Panwang Pan, Zhuo Su, Chenguo Lin, Zhen Fan, Yongjie Zhang, Zeming Li, Tingting Shen, Yadong
Mu, and Yebin Liu. Humansplat: Generalizable single-image human gaussian splatting with
structure priors. arXiv, 2024.

Xiao Pan, Zongxin Yang, Jianxin Ma, Chang Zhou, and Yi Yang. Transhuman: A transformer-based
human representation for generalizable neural human rendering. In CVPR, 2023.

Pramish Paudel, Anubhav Khanal, Ajad Chhatkuli, Danda Pani Paudel, and Jyoti Tandukar. ihuman:
Instant animatable digital humans from monocular videos. arXiv, 2024.

Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, and Xiaowei
Zhou. Neural body: Implicit neural representations with structured latent codes for novel view
synthesis of dynamic humans. In CVPR, 2021.

Shenhan Qian, Tobias Kirschstein, Liam Schoneveld, Davide Davoli, Simon Giebenhain, and
Matthias Nießner. Gaussianavatars: Photorealistic head avatars with rigged 3d gaussians. CVPR,
2024a.

Zhiyin Qian, Shaofei Wang, Marko Mihajlovic, Andreas Geiger, and Siyu Tang. 3dgs-avatar: Ani-
matable avatars via deformable 3d gaussian splatting. In CVPR, 2024b.

12

Published as a conference paper at ICLR 2025

Edoardo Remelli, Timur Bagautdinov, Shunsuke Saito, Chenglei Wu, Tomas Simon, Shih-En Wei,
Kaiwen Guo, Zhe Cao, Fabian Prada, Jason Saragih, and Yaser Sheikh. Drivable volumetric
avatars using texel-aligned features. In SIGGRAPH, 2022.

Alexander G Schwing and Raquel Urtasun. Fully connected deep structured networks. arXiv, 2015.

Kaiyue Shen, Chen Guo, Manuel Kaufmann, Juan Zarate, Julien Valentin, Jie Song, and Otmar
Hilliges. X-avatar: Expressive human avatars. In CVPR, 2023.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In ECCV,
2020.

Shenlong Wang, Sanja Fidler, and Raquel Urtasun. Proximal deep structured models. NeurIPS,
2016.

Jing Wen, Xiaoming Zhao, Zhongzheng Ren, Alex Schwing, and Shenlong Wang. GoMAvatar:
Efficient Animatable Human Modeling from Monocular Video Using Gaussians-on-Mesh. In
CVPR, 2024.

Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan, Jonathan T. Barron, and Ira Kemelmacher-
Shlizerman. HumanNeRF: Free-viewpoint Rendering of Moving People from Monocular Video.
In CVPR, 2022.

Zhenzhen Weng, Jingyuan Liu, Hao Tan, Zhan Xu, Yang Zhou, Serena Yeung-Levy, and Jimei Yang.
Single-view 3d human digitalization with large reconstruction models. arXiv, 2024.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo,
Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and gen-
eralize. In ICML, 2017.

Yuxuan Xue, Xianghui Xie, Riccardo Marin, and Gerard Pons-Moll. Human 3diffusion: Realistic
avatar creation via explicit 3d consistent diffusion models. arXiv, 2024.

Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qionghai Dai, and Yebin Liu. Function4d:
Real-time human volumetric capture from very sparse consumer rgbd sensors. In CVPR, 2021.

Zhengming Yu, Wei Cheng, Xian Liu, Wayne Wu, and Kwan-Yee Lin. Monohuman: Animatable
human neural field from monocular video. In CVPR, 2023.

Xuanmeng Zhang, Jianfeng Zhang, Rohan Chacko, Hongyi Xu, Guoxian Song, Yi Yang, and Jiashi
Feng. Getavatar: Generative textured meshes for animatable human avatars. In CVPR, 2023.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
ICCV, 2021.

Shunyuan Zheng, Boyao Zhou, Ruizhi Shao, Boning Liu, Shengping Zhang, Liqiang Nie, and Yebin
Liu. Gps-gaussian: Generalizable pixel-wise 3d gaussian splatting for real-time human novel view
synthesis. In CVPR, 2024.

Yiming Zuo and Jia Deng. Ogni-dc: Robust depth completion with optimization-guided neural
iterations. In ECCV, 2025.

13

Published as a conference paper at ICLR 2025

APPENDIX — LIFE-GOM: GENERALIZABLE HUMAN RENDERING WITH
LEARNED ITERATIVE FEEDBACK OVER MULTI-RESOLUTION
GAUSSIANS-ON-MESH

This appendix is structured as follows:

• Sec. A summarizes mesh representations in human modeling;

• Sec. B provides the detailed architecture of the iterative feedback module;

• Sec. C details the datasets;

• Sec. D shows baseline details on the presented datasets;

• Sec. E provides additional results and analysis. Please visit the project webpage1 for more
qualitative results;

• Sec. F showcases failure cases in our approach.

A ADDTIONAL RELATED WORKS

Mesh representations in human modeling. Meshes as an explicit representation are easy to ani-
mate and can be rendered at a fast speed. Further, meshes can be easily integrated into the classic
graphics pipeline. Therefore, meshes are widely used in human modeling (Liao et al., 2024; Zhang
et al., 2023; Liao et al., 2023). However, as mentioned in GoMAvatar (Wen et al., 2024), it is diffi-
cult to learn to deform the mesh using photometric losses and mesh rasterization. Hence, methods
using meshes as the underlying representation either extract them from other types of representa-
tions such as a signed distance function (SDF) (Zhang et al., 2023; Liao et al., 2023), or apply
explicit supervision on the geometry, e.g., supervising surface normals (Liao et al., 2024; Zhang
et al., 2023; Liao et al., 2023). In contrast, we opt to use the Gaussians-on-Mesh representation
that binds Gaussians on the mesh and uses Gaussian splatting for rendering. This enables us to
overcome the difficulty in optimization. Consequently, our entire model is learned via photometric
losses only. Further, Gaussians-on-Mesh leverages the flexibility of Gaussian Splatting, enabling
more photorealistic rendering than textured meshes.

B DETAILS FOR THE ITERATIVE FEEDBACK MODULE

The detailed architecture of the iterative feedback module is provided in Fig. 7. Given source im-
ages and rendered images, we first extract image features via an image encoder. Then we apply
multi-source fusion which samples aligned image features for each of the low-resolution vertices
{vc↓t−1,i}V

↓

i=1 and mixes the features from N sources. After that, a Point Transformer is adopted to
encode all vertices. Note that the iterative feedback module operates on the low-resolution mesh.

Image encoder. We use ResNet-18 (He et al., 2016) with ImageNet pretrained weights as the image
encoder. The image feature is the concatenation of features from 5 intermediate layers and therefore
has a dimension of 1192, i.e., C = 1192 in Fig. 7. Concatenating multi-level features ensures a
large receptive field and is essential for iterative updates.

Multi-source fusion. Multi-source fusion first samples image features for all vertices in the low-
resolution mesh. Concretely, the i-th vertex vc↓i , i ∈ {1, . . . , V ↓} is first articulated via the available
source human poses {Pn}Nn=1 and then projected onto images via the available camera intrinsics
{Kn}Nn=1 and extrinsics {En}Nn=1. The aligned features are sampled at the projected points from
each of the N source images. Subsequently we mix the sampled features from the N source images
using two Transformer encoder layers. The query matrix Q, key matrix K and value matrix V for
each Transformer encoder are illustrated in Fig. 8. The input, intermediate and output dimensions are
C = 1192. We use 6 heads in the attention layers. Note that in the second Transformer encoder layer,
we use a learnable vertex embedding {e↓t−1,i}

V ↓
i=1 as the query. The learnable vertex embedding is

updated in iterative updates together with the low-resolution vertices.

1https://wenj.github.io/LIFe-GoM/

14

https://wenj.github.io/LIFe-GoM/

Published as a conference paper at ICLR 2025

Source images
𝐵×𝑁×3×𝐻×𝑊

Rendered images
𝐵×𝑁×3×𝐻×𝑊

Image
Encoder

Image
Encoder

Image feature
𝐵×𝑁×𝐶×𝐻×𝑊

Multi-source
Fusion

Multi-source
Fusion

Point
Transformer//

𝐵×𝑉↓×𝐶

𝐵×𝑉↓×𝐶

𝐵×𝑉↓×𝐶′

GoM"#$
%

Iterative feedback net

Image feature
𝐵×𝑁×𝐶×𝐻×𝑊

Figure 7: Iterative feedback module. The iterative feedback module takes as input the represen-
tation GoMc

t−1 obtained from the previous iteration, the source images and images rendered with
GoMc

t−1. The module is designed to compare the rendered images and source images, and to sum-
marize the result in a feature vector of dimension C ′ for each vertex in the low-resolution mesh.
Here, B denotes the batch size, N refers to the number of source images, and H and W are the
height and weight of the images respectively. Further, V ↓ is the number of vertices in the low-
resolution mesh, C refers to the dimension of the feature vector from the image encoder, and C ′

denotes the dimension of the output feature from the Point Transformer. The entire module operates
on the low-resolution mesh.

Image feature
𝐵×𝑁×𝐶×𝐻×𝑊

GoM!"#
$

Sample Transformer
Encoder Layer

𝐵×𝑁×𝑉↓×𝐶
Rearrange

(𝐵×𝑉↓)×𝑁×𝐶 Transformer
Encoder Layer

Vertex embedding 𝑒!"#,&↓
&(#
)↓

𝐵×𝑉↓×1×𝐶

𝐵×𝑉↓×𝐶

Figure 8: Multi-source fusion. Multi-source fusion first samples the vertex-aligned image features
from the encoded images. Then we use two Transformer encoder layers to fuse the information from
each of the N source images. In the Transformer encoder layers, the three input arrows from top
to bottom represent the query matrix Q, the key matrix K, and the value matrix V of the attention
layer respectively. We additionally associate a learnable vertex embedding with each vertex. Please
check Appendix B for details.

Point Transformer. The Point Transformer (Zhao et al., 2021) is used to encode the vertices and to
produce high-level features for all low-resolution vertices. The output dimension of each vertex is
32, i.e., C ′ = 32 in Fig. 7.

C DATASET DETAILS

THuman2.0 (Yu et al., 2021). We use THuman2.0 to evaluate our approach in the setting of mul-
tiview source images. THuman2.0 has 526 high-quality 3D human scans, texture maps and corre-
sponding SMPL-X parameters. We follow the experimental setup of GHG (Kwon et al., 2024) and
split the dataset into 426 subjects for training and 100 subjects for evaluation. We render multiview
images from the 3D scans. 3 or 5 images are used as source images and the remaining ones are used
for evaluation.

XHuman (Shen et al., 2023). We use XHuman to validate our approach to cross-domain gen-
eralization quantitatively. The dataset provides 20 subjects with high-quality scans and SMPL-X
parameters. We sample three scans (f00001, f00051, f00101) for each subject. We prepare the
dataset in the same way as THuman2.0. To validate the ability of cross-domain generalization, we
only evaluate in this dataset without any finetuning.

15

Published as a conference paper at ICLR 2025

AIST++ (Li et al., 2021). The AIST++ dataset is used to evaluate the setting of multi-frame source
images. The AIST++ dataset consists of multiview dancing videos, camera calibration parameters,
and human motions represented in SMPL poses. We adopt the training and evaluation protocol
of ActorsNeRF (Mu et al., 2023). Specifically, we use subjects 1-15 and 21-30 for training and
leave out subjects 16-20 for evaluation. We choose one motion sequence for each subject. We only
use camera 1 for training. During evaluation, we sample 5 source images from Camera 1 and use
Camera 2-7 to evaluate generalizable novel view and pose synthesis.

D BASELINE DETAILS

We compare with per-scene optimized approaches including GoMAvatar (Wen et al., 2024), 3DGS-
Avatar (Qian et al., 2024b) and iHuman (Paudel et al., 2024), and other generalizable human render-
ing approaches including NHP (Kwon et al., 2021), NIA (Kwon et al., 2023), GHG (Kwon et al.,
2024) and GPS-Gaussian (Zheng et al., 2024) on THuman2.0. We use 3 source images when com-
paring with GoMAvatar, 3DGS-Avatar, iHuman, NHP, NIA and GHG. For the comparison with
GPS-Gaussian, we adopt 5 source images following the setting of GHG (Kwon et al., 2024), since
GPS-Gaussian requires the source views to overlap with each other and thus does not work well
with very sparse views. We compared with the pretrained GHG (Kwon et al., 2024) on XHuman.
On AIST++, we compare with HumanNeRF (Weng et al., 2022), GoMAvatar (Wen et al., 2024),
3DGS-Avatar (Qian et al., 2024b), iHuman (Paudel et al., 2024) and ActorsNeRF (Mu et al., 2023).
HumanNeRF, GoMAvatar, 3DGS-Avatar and iHuman need to be trained per scene. ActorsNeRF
adopts a two-stage training: In the first stage, it learns a categorical prior from large-scale datasets.
In the second stage, it adopts per-scene optimization given the source images. Now we detail the
training setup of each baseline.

NHP (Kwon et al., 2021), NIA (Kwon et al., 2023) and GHG (Kwon et al., 2024). We follow the
same setting as reported in GHG (Kwon et al., 2024) for training and evaluation.

GPS-Gaussian (Zheng et al., 2024). As described in GHG (Kwon et al., 2024), GPS-Gaussian can
work on as few as 5 input views. We render the THuman2.0 dataset to accommodate this setting.
We use the default parameters provided in GPS-Gaussian to train the model.

GoMAvatar (Wen et al., 2024). GoMAvatar originally takes SMPL parameters as inputs. On
THuman2.0, we adjust it to work with SMPL-X parameters. On AIST++, we keep the original
setting and use SMPL. We train the model for 100K iterations on both datasets instead of 200K
iterations as stated in the paper, to avoid overfitting sparse inputs.

3DGS-Avatar (Qian et al., 2024b). Similar to GoMAvatar, we adapt 3DGS-Avatar to take SMPL-
X parameters as inputs on THuman2.0 and keep its original setting on AIST++. We train it for 2K
iterations to avoid overfitting the very sparse inputs.

iHuman (Paudel et al., 2024). We adapt iHuman to work with SMPL-X parameters on the THu-
man2.0 dataset. It requires subdivided SMPL or SMPL-X templates as inputs. For a fair comparison,
we adopt the same subdivision strategy for the SMPL-X template as ours, in which we subdivide all
faces twice. We find that the model cannot converge after 15 epochs, the number of epochs specified
in the original iHuman paper. Instead, we use 150 epochs which takes a longer time for training but
provides better rendering quality. On AIST++, we use the default hyperparameters for training.

HumanNeRF (Weng et al., 2022) and ActorsNeRF (Mu et al., 2023). We follow the same setting
as reported in ActorsNeRF (Mu et al., 2023) for training and evaluation.

E ADDITIONAL ANALYSIS

For additional qualitative results we refer the reader to the project webpage. It contains videos for
freeview rendering, cross-domain generalization and novel pose synthesis.

E.1 ADDITIONAL COMPARISONS ON THUMAN2.0

We compare our approach against GoMAvatar (Wen et al., 2024), iHuman (Paudel et al., 2024), and
GHG (Kwon et al., 2024) in the setting of 3 source images on THuman2.0. Note that GoMAvatar

16

Published as a conference paper at ICLR 2025

(a) Ground truth (b) iHuman (c) GoMAvatar (d) GHG (e) Ours

Figure 9: Comparison to baselines in the setting of 3 source images on THuman2.0. Our method
produces less noise than iHuman and GoMAvatar, and more accurate geometry and sharper details
than GHG.

and iHuman are scene-specific methods while GHG is a generalizable approach, the same as ours.
In Fig. 9, we showcase additional qualitative comparisons to the baselines.

In the setting of very sparse inputs, e.g., 3 views, scene-specific methods suffer from overfitting
and struggle to render uncorrupted novel views. Generalizable approaches, in contrast, constrain
the output space with the data priors learned from large-scale datasets, which leads to more plau-
sible rendering quality. Compared to other generalizable approaches, ours outputs more accurate
geometry and sharper details.

We show the qualitative comparison between ours and GPS-Gaussian in the setting of 5 views on
THuman in Fig. 10. GPS-Gaussian (Zheng et al., 2024) relies on stereo depth estimation to locate
the Gaussians. During inference time, it takes as inputs two adjacent views and interpolates the
novel views in between. Therefore, it requires the adjacent views to overlap with each other. As
mentioned in GHG (Kwon et al., 2024), 5 views are the minimal number of input views that GPS-
Gaussian can work on. Even with 5 views as inputs, we still find that it fails in the non-overlapped
regions, leaving incomplete silhouettes in rendering. In contrast, ours outperforms GPS-Gaussian
qualitatively and quantitatively in the setting of 5 views and can work on as few as 3 views. Another
key difference between GPS-Gaussian and our approach is that we reconstruct the human subject
in the canonical T-pose while the representation of GPS-Gaussian is in the same pose as the source
images. Therefore, ours can take images in unaligned poses as inputs and render novel poses without
extra effort, as demonstrated in Fig. 5.

17

Published as a conference paper at ICLR 2025

(a) Ground truth (b) GPS-Gaussian (c) Ours (a) Ground truth (b) GPS-Gaussian (c) Ours

Figure 10: Comparison to GPS-Gaussian in the setting of 5 source images on THuman2.0. Our
method produces more complete shape and sharper details.

Table 6: Per-scene breakdown on AIST++. We use lighter gray for scene-specific methods, while
the others are generalizable methods.

PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓
d16 d17 d18

HumanNeRF 24.37 0.9752 29.59 24.86 0.9762 29.39 22.77 0.9738 33.02
GoMAvatar 24.35 0.9769 24.80 25.12 0.9780 25.17 23.18 0.9771 27.57
3DGS-Avatar 25.22 0.9776 26.01 25.71 0.9787 27.70 23.75 0.9757 29.98
iHuman 25.41 0.9804 21.79 25.59 0.9805 23.69 24.25 0.9786 24.37
ActorsNeRF 25.22 0.9796 22.03 25.88 0.9808 22.85 24.50 0.9811 22.38
Ours 25.43 0.9801 21.48 25.73 0.9812 21.94 24.46 0.9810 22.21

d19 d20 Average
HumanNeRF 24.51 0.9759 28.68 24.55 0.9791 27.63 24.21 0.9760 29.66
GoMAvatar 24.36 0.9773 25.24 24.68 0.9806 23.95 24.34 0.9780 25.34
3DGS-Avatar 25.32 0.9783 27.70 25.70 0.9819 24.44 25.14 0.9784 27.17
iHuman 25.11 0.9800 23.29 25.48 0.9829 21.37 25.17 0.9805 22.90
ActorsNeRF 25.24 0.9801 22.87 25.30 0.9827 21.34 25.23 0.9809 22.29
Ours 25.19 0.9805 21.42 25.43 0.9829 20.98 25.25 0.9812 21.61

E.2 ADDITIONAL COMPARISONS ON AIST++

Following ActorsNeRF, we also list the per-scene breakdown on 5 evaluation scenes on AIST++ in
Table 6.

Next, we present the qualitative comparison to GoMAvatar, iHuman and ActorsNeRF in Fig. 11.
AIST++ is challenging for two reasons: 1) The subjects perform challenging and diverse poses in
the videos. 2) The poses provided by the dataset are less accurate and the masks are predicted from
off-the-shelf tools which are also less accurate. Due to the explicit nature of the Gaussians-on-Mesh
representation, our method produces fewer floaters than NeRF-based ActorNeRF. Meanwhile, we
capture better silhouettes and produce less noise compared to iHuman and GoMAvatar, the two
scene-specific methods.

E.3 INPUT POSE SENSITIVITY

We quantitatively compare the sensitivity to input pose accuracy for our approach and GHG (Kwon
et al., 2024). In this experiment, we add Gaussian noise of increasing standard deviation
(0.1, 0.3, 0.5) to the poses provided by THuman2.0. The results are summarized in Table 7. Both
methods are affected by the accuracy of the input poses. However, our approach improves upon
GHG in all noise levels.

To make our approach less sensitive to the accuracy of input poses, we can explore a pose refinement
network that is jointly trained with the iterative feedback. We leave it for future work.

18

Published as a conference paper at ICLR 2025

(a) Ground truth (b) GoMAvatar (c) iHuman (d) ActorsNeRF (e) Ours

Figure 11: Comparisons on baselines on AIST++. Our method has fewer floaters compared to
ActorsNeRF and produces more complete shape than GoMAvatar and iHuman. Meanwhile, ours is
11× faster than iHuman in reconstruction.

Table 7: Comparison regarding inaccurate input poses. We add random Gaussian noise of dif-
ferent standard deviations to the poses provided by THuman2.0. Our method outperforms GHG for
all noise levels.

Noise std=0.1 std=0.3 std=0.5

Method PSNR↑ LPIPS*↓ FID↓ PSNR↑ LPIPS*↓ FID↓ PSNR↑ LPIPS*↓ FID↓

GHG 21.25 136.87 62.03 19.66 149.73 64.15 18.53 163.48 68.57
Ours 23.96 113.80 53.15 22.02 123.15 57.22 20.43 134.86 62.84

Table 8: Importance of SMPL-X shape input. We compare our method w/ and w/o SMPL-X
shape input for mesh initialization. We only observe a slight drop in performance if the SMPL-X
shape is not used.

Method PSNR↑ LPIPS*↓ FID↓

Ours w/o SMPL-X shape 24.15 112.88 52.01
Ours w/ SMPL-X shape 24.65 110.82 51.27

E.4 INPUT SHAPE SENSITIVITY

We quantitatively evaluate the sensitivity to input SMPL-X shape accuracy for our approach in
Table 8. In this experiment, we initialize the canonical mesh with the average SMPL shape by
setting the beta parameter to a tensor of all zeros for all subjects. Neither ground-truth nor predicted
SMPL shapes are used for any subject. We call this setting “Ours w/o SMPL-X shape” in the table.

Our method attains PSNR/LPIPS*/FID of 24.15/112.88/52.01 w/o SMPL shapes as input. Com-
pared to 24.65/110.82/51.27 with SMPL shapes as input, we only observe a small drop, which
shows the robustness of our method to the accuracy of SMPL-X shapes. Even without SMPL-X
shapes, our method still significantly outperforms GHG’s 21.90/133.41/61.67 with SMPL-X shapes
as input. We further demonstrate the robustness in Fig. 12. Although the average shape is smaller
than the ground-truth shape, our method still captures the correct shape.

19

Published as a conference paper at ICLR 2025

(a) Ground-truth SMPL-X shape on input images

(c) Average SMPL-X shape on input images

(b) Rendered image w/ (a)

(d) Rendered image w/ (c)

Figure 12: Robustness to SMPL-X shape accuracy. We use the ground-truth SMPL-X shape and
the average shape as initialization of the canonical mesh. Although the average shape is smaller than
the ground-truth shape, our method still captures the correct shape.

(a)
Reference image Rendered image

(c)

Figure 13: Examples of failure cases.

F LIMITATIONS

We present three types of failure cases in our method and discuss the possible next steps to resolve
the issues.

Failure in hallucination large regions. Without an explicit hallucination module, our method is
unable to inpaint large invisible regions in source images, as is shown in Fig. 13(a). A possible
solution is to render the invisible parts and update our canonical representation using priors from
image inpainting models.

Wrong underlying topology. Our coupled-multi-resolution Gaussians-on-Mesh representation as-
sociates the Gaussians with the underlying mesh. Analogously to the original Gaussians-on-Mesh
representation, since the underlying mesh is deformed from human parametric models such as SMPL
and SMPL-X, it cannot change vertex connectivities to fit the topology of clothes such as dresses and
coats. Although the wrong topology will not affect the rendering, it is a future direction to correct
the underlying mesh for use in other downstream tasks.

Failures for unseen clothing types. We observe failures for unseen clothing such as dresses, as
shown in Fig. 13(b). As a generalizable method, a more comprehensive training set containing
different clothings and more diverse subjects is needed. We leave it for future work.

20

	Introduction
	Related Work
	Method
	Overview
	Coupled-multi-resolution Gaussians-on-Mesh representation
	Canonical representation
	Articulation
	Rendering with Gaussian splatting

	Reconstruction with iterative feedback
	Training

	Experiments
	Implementation details
	Experimental setup
	Quantitative results
	Qualitative results
	Ablation studies

	Conclusions
	Addtional Related Works
	Details for the Iterative Feedback Module
	Dataset Details
	Baseline Details
	Additional Analysis
	Additional comparisons on THuman2.0
	Additional comparisons on AIST++
	Input pose sensitivity
	Input shape sensitivity

	Limitations

