
Under review as a conference paper at ICLR 2023

A PROOF OF THEOREM 1

Theorem 1. Ins-Le and Ins-Mo are equivalent to Del-Mo and Del-Le up to AUCs, respectively.

Proof : By representing deleting the most important k feature, we have equivalently that x\σ′[:k] =

xσ[:d−k]. Thus
∑d

k=0 f(x\σ′[:k]) =
∑d

k=0 f(xσ[:d−k]) =
∑d

k=0 f(xσ[:k]). That is, Del-Mo ⇔
Ins-Le. Similarly, deleting the least important k features can be equivalently represented by x\σ[:k]

and xσ′[:d−k]. Hence
∑d

k=0 f(x\σ[:k]) =
∑d

k=0 f(xσ′[:d−k]) =
∑d

k=0 f(xσ′[:k]), which means
Del-Le ⇔ Ins-Mo.□

B THE NUMBER OF SUPERPIXEL PATCHES

The Connection with Adversarial Perturbation. Due to the high nonlinearity, DNNs are widely
known as fragile to adversarial attacks, where they can be easily fooled by slightly but maliciously
perturbed input samples. This suggests that the optimum of TRACE-Del-Mo may not be the se-
mantically important features. An illustration of an image from ILSVRC2012 is shown in fig. 8.
Optimized trajectories are visualized as attribution maps (fig. 8). From the TRACE-Del-Mo results,
we can find that in order to solve for TRACE-Del-Mo (i.e., {minσ

∑d
k=0 f(x\σ′[:k])}), patches are

deleted in an adversarial manners instead of the semantically meaningful way. Especially when
t = 196, the deletion trajectory almost completely becomes an adversarial attack to the input im-
age. In contrast, by trying to keep the highest prediction probability/logit with the gradual deletion
process, TRACE-Del-Le and TRACE-Del-(Le−Mo) both highlight the long arms of the crane (i.e.
keeps this area to the last moment), and are more robust to the number of feature groups.

" Crane" : 100.00%

t=196t=49t=16

TRACE-Le

TRACE-(Le-Mo)

TRACE- y TRACE- p TRACE- y TRACE- p TRACE- y TRACE- p

TRACE-Le

Figure 8: Demonstration of explanations of the image of a “crane” from ILSVRC2012 validation
set. A ResNet-18 predicts it correctly with the confidence 99.999%≈ 100.00%. The smooth factor
α = 2. We present results of resolutions t = 4×4 (left), t = 7×7 (middle) and t = 14×14 (right).
Here t is the number of square patches of pixels for one image. The top, middle and bottom rows are
TRACE-(Le−Mo), TRACE-Le and TRACE-Mo, respectively. Given t, the left column is TRACE-y
and the right column is TRACE-p.

C PROOF OF THEOREM 2

Theorem 2. The optimization problem TRACE-Mo ({minσ
∑d

k=0 f(x\σ′[:k])}) is NP-hard.

Proof : Note that f(x\σ′[:k]) = f(x) is constant w.r.t. σ when k = 0, it sufficies to minimize∑t
k=1 f(x\σ′[:k]). Here we show this by demonstrating the corresponding decision problem “Given

a cost f∗ ∈ R, is there a trajectory σ s.t.
∑t

k=1 f(x\σ′[:k]) ≤ f∗.”

13

Under review as a conference paper at ICLR 2023

Now assume that there’s a polynomial time algorithm for TRACE. Note that f(x) is a black-box
neural network and thereby can be any continuous function, and also ∀i ̸= j we have x\σ′[:i] ̸=
x\σ′[:j], therefore, we define for any trajectory σ of length t and ∀i ∈ N, 1 ≤ i ≤ t,

f(x\σ′[:i]) := δσ[i]σ[i+1] (6)
In this way for any trajectory σ, we have

ftsp(σ) =

p−1∑
i=1

δσ[i]σ[i+1] =

t∑
i=1

f(x\σ′[:k]) (7)

Therefore, this polynomial time algorithm also serves as an algorithm for TSP, a contradiction. □

D PSUEDO-CODE FOR TRACE WITH SIMULATED ANNEALING

Algorithm 1 Simulated Annealing for TRACE
Require: black box f , input x, number of patches t, max iteration K, neighbor set

function neighbor(), initial temperature T0, cooling rate η
T ← T0

σ0 ← RandomInitialTrajectory
auc0 ←

∑t
k=1

(
f(x\σ0[:k])− f(x\σ′

0[:k]
)
)

k ← 0
while k < K do

σ1 ← RandomChoice(neightbor(σ0))
auc1 ←

∑t
k=1

(
f(x\σ1[:k])− f(x\σ′

1[:k]
)
)

δ = auc1 − auc0
if δ > 0 then

σ0 ← σ1

auc0 ← auc1
else

r ← RandomUniform(0, 1)
if r < exp(δ/T) then

σ0 ← σ1

auc0 ← auc1
end if

end if
k ← k + 1
T ← ηT

end while
return σ0

E COMPARISONS AMONG DIFFERENT ALGORITHMS ON TRACE

As a supplementary, we test TRACE with several other popular algorithms for combinatorial opti-
mizations. We include local search algorithms such as Hill Climbing, Tabu Search (GS) (Glover,
1986), and global search algorithms such as Genetic Algorithm (GA) (Holland, 1992). Note that
these algorithms can have different complexity per iteration. Therefore, we compare the average
optimization process within the same amount of time. As the benchmark, SA takes ∼ 200 seconds
for 5000 iterations when t = 49. Hence here we compare the results of these algorithms within 200
seconds, no matter how many iterations there are.

The results are shown in fig. 9, where Simulated Annealing outperform other algorithms in the
experiments. It should be noticed that one of the most important factor in TRACE is that the objective
function is more expensive to evaluate than common combinatorial optimization problems like TSP.
Thereby, an algorithm that fits TRACE well should require less evaluation times. For instance, Tabu
Search requires to evaluate the all neighbors to update the tabu list, which means the complete graph
cannot be applied as the neighbor size is t(t−1)

2 = 49 × 48/2 = 1176. The bubble-sort graph is
applied instead, which is the reason why it is the slowest. This also corresponds to the results of the
neighbor comparison experiments shown in fig. 2. Another interesting result is that Hill Climbing,
which is not a meta-heuristic algorithm but a simple heuristic method instead, has the second best
result. This may suggest TRACE do not have many local optimum in the feasible set St.

14

Under review as a conference paper at ICLR 2023

0 50 100 150 200
time (s)

0

100

200

300

400

500

600
Ob

je
ct

iv
e

Va
lu

e

TRACE-y

Simulated Annealing Hill Climbing Genetic Algorithm Tabu Search

0 50 100 150 200
time (s)

0

5

10

15

20

25

30

Ob
je

ct
iv

e
Va

lu
e

TRACE-p

Figure 9: The comparison of different algorithms on solving TRACE.

F PROOF OF THEOREM 3

Theorem 3. diam(Cay(St, Scomplete)) ≤ t− 1.

Proof: Given any two permutations of length t: ∀σ1, σ2 ∈ St, σ1 ̸= σ2, we have
σ2 = (t− 1 σ−1

1 [σ2[t− 1]]) · · · (2 σ−1
1 [σ2[2]]) ◦ (1 σ−1

1 [σ2[1]]) ◦ σ1 (8)
where t − 1 transpositions are applied to σ1. Note that ∀i ∈ N, i < t, if i = σ−1

1 [σ2[i]], then the
operation can be skipped. Therefore, there is always a path of length at most t − 1 connecting any
two vertices in Cay(St, Scomplete).□

G DELETION TRAJECTORIES

Here we visualize the trajectories in the form of gradual deletion of patches for images form ILSVRC
2012 validation sets. The results are shown in fig. 10. We include the three figures demonstrated in
the previous experiments and two other images. It can be found that by solving for TRACE, we can
find a deletion trajectory that preserve the model’s prediction with semantically meaningful features.
Compared with heatmaps, such visualization is much more meaningful – it clearly illustrates how
the explanations of TRACE are obtained how how the black-box model is explained.

H SANITY CHECK

Here we present the sanity check visualizations for the first image of ILSVRC 2012 validation set
same as the previous experiment. But we also include attribution explanation methods as bench-
marks. The results are shown in fig. 11.

I THE AREA BETWEEN MORF AND LERF

We visualize the results from fig. 5 and table 2 in the form introduced by (Schulz et al., 2020).
As shown in fig. 12, MoRF and LeRF curves are plotted in blue solid and orange dashed fashions
respectively. The gray areas between them (i.e. Mo−Le) are used to measure the explanations. This
clearly visualize the significant improvement of TRACE in the deletion test.

15

Under review as a conference paper at ICLR 2023

TRACE- y TRACE- p

Figure 10: The deletion trajectories of 5. The left column is the results of TRACE-y and the right
column is TRACE-p. From the deletion trajectory, we can gain more insights of how specific features
are ranked than simple attribution heatmaps.

16

Under review as a conference paper at ICLR 2023

(a) Independent

E
x

ci
ta

ti
o

n
-B

P

B4C4

G
ra

d
ie

n
t

G
ra

d
C

A
M

In
te

gr
a

te
d

G

ra
d

ie
n

t
In

p
u

t
x

G

ra
d

ie
n

g

B4C3
B4C2

B4C1
B3C4

B3C3
B3C2

B3C1
B2C4

B2C3
B2C2

B2C1
B1C4

B1C3
B1C2

B1C1

R
IS

E
E

x
tr

em
a

l
P

er
tu

rb
a

ti
o

n
IB

A

Or igin

Input

T
R

A
C

E
-

y
T

R
A

C
E

-
p

(b) Cascading

Figure 11: Sanity check using cascading randomization for TRACE and other tested explanation
methods. (a) Convolutional layers of pre-trained ResNet-18 are randomized in the independent man-
ners. That is, other layers are kept at the pre-trained values. (b) Convolutional layers of pre-trained
ResNet-18 are randomized in the cascading manners, where layers are progressively randomized
from left to right. Here “BaCb” means the b-th convolutional layer in the a-th block.

17

Under review as a conference paper at ICLR 2023

0 20 40

0

5

10

15

20
TRACE-y: 641.99

0 20 40

0

5

10

15

20
TRACE-p: 480.69

0 20 40

0

5

10

15

20
Gradient: 236.49

0 20 40

0

5

10

15

20
GradCAM: 340.21

0 20 40

0

5

10

15

20
IBA: 355.72

0 20 40

0

5

10

15

20
RISE: 312.70

0 20 40

0

5

10

15

20
Extremal Perturbation: 263.24

0 20 40

0

5

10

15

20
Excitation BP: 322.52

0 20 40

0

5

10

15

20
Integrated Gradient: 215.56

0 20 40

0

5

10

15

20
Input x Gradient: 168.14

(a) The results w.r.t. the output logit

0 20 40
0.0

0.2

0.4

0.6

0.8

TRACE-y: 24.27

0 20 40
0.0

0.2

0.4

0.6

0.8

TRACE-p: 31.50

0 20 40
0.0

0.2

0.4

0.6

0.8

Gradient: 10.65

0 20 40
0.0

0.2

0.4

0.6

0.8

GradCAM: 15.62

0 20 40
0.0

0.2

0.4

0.6

0.8

IBA: 17.04

0 20 40
0.0

0.2

0.4

0.6

0.8

RISE: 13.18

0 20 40
0.0

0.2

0.4

0.6

0.8

Extremal Perturbation: 13.27

0 20 40
0.0

0.2

0.4

0.6

0.8

Excitation BP: 14.76

0 20 40
0.0

0.2

0.4

0.6

0.8

Integrated Gradient: 9.80

0 20 40
0.0

0.2

0.4

0.6

0.8

Input x Gradient: 7.65

(b) The results w.r.t. the probability

Figure 12: The visualizations of the results in fig. 5 and table 2 in the form introduced by (Schulz
et al., 2020). MoRF and LeRF curves are plotted in blue solid and orange dashed fashions respec-
tively. The gray areas between them (i.e. Mo−Le) are used to measure the explanations. The value
in each subtitle is the corresponding area (same as table 2).

18

	Introduction
	Related Work
	Methodology
	Remarks on Trajectory Explanations and TRACE
	Algorithms for TRACE
	Experiments
	Conclusion
	Proof of thm:equivalence
	The Number of Superpixel Patches
	Proof of thm:nphard
	Psuedo-Code for TRACE with Simulated Annealing
	Comparisons among Different Algorithms on TRACE
	Proof of thm:completegraph
	Deletion Trajectories
	Sanity Check
	The Area between MoRF and LeRF

