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Abstract
Knotted proteins represent a rare but functionally
important class of proteins with complex topolog-
ical features. While previous work demonstrated
the generation of artificial knotted proteins us-
ing diffusion models and sequence design tools,
these approaches suffered from low success rates
( 0.5%). We present a novel approach leveraging
ESM3, a multi-modal protein language model,
to achieve guided generation of knotted proteins
with an 87% success rate. We introduce a con-
tinuous knot score metric that captures the ro-
bustness of protein knots, revealing that approxi-
mately 85% of a protein sequence must be altered
to break its knot. Using ESM3 embeddings, we
achieve 93% accuracy in knotted protein classi-
fication and demonstrate the ability to convert
unknotted proteins to knotted variants through
iterative modifications (31% success rate). Our
work showcases the power of multi-modal models
in tackling complex protein design challenges.

1. Introduction
Proteins with knotted topologies represent one of nature’s
most intriguing structural motifs, occurring in less than 1%
of known protein structures (Virnau et al., 2006). Despite
their rarity, knotted proteins exhibit enhanced stability and
unique functional properties that make them attractive tar-
gets for protein engineering and drug design (Strassler et al.,
2022). The ability to design and manipulate knotted pro-
teins could unlock new therapeutic and biotechnological
applications.

Knotted proteins are a unique class of proteins in which the
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Figure 1. Example of a knotted protein: A0A165M1R5 protein
(Acidovorax sp.), featuring a 71 knot, as predicted by ESMFold
(Lin et al., 2023).

backbone forms a knot-like structure, example on Figure 1.
Imagine pulling on both ends of a protein chain like a piece
of string—if the protein is knotted, it won’t come apart
(Takusagawa & Kamitori, 1996; Mishra & Bhushan, 2012).
Such structures offer several advantages:

Enhanced stability: The formation of knots in proteins can
significantly enhance the kinetic stability of proteins during
folding and unfolding processes (Lua, 2012), (Beccara et al.,
2013). Knotted proteins are often more resistant to mechani-
cal degradation by proteolytic machines like ClpP/X, which
could provide a survival benefit in various cellular contexts
(Soler & Faisca, 2013).

Unique functional properties: The complex topology cre-
ates distinctive active sites and binding pockets, contributing
to enzymatic activity and substrate specificity (King et al.,

1



Advancing Knotted Protein Design with ESM3

2007). For example, the enzyme N-acetylornithine transcar-
bamylase (AOTCase), which possesses a knot, showcases
how topology can affect enzymatic pathways, leading to
different substrate processing compared to its homologues
without knot (Brems et al., 2022).

Evolutionary conservation: The preservation of knots
across species and within protein families suggests func-
tional importance, indicating these complex topologies pro-
vide selective advantages (Brems et al., 2022), (Begun et al.,
2024), (Puri & Hsu, 2022).

Despite these intriguing properties, the rarity of knotted
proteins in nature poses challenges for their study. Recent
advances in AI-driven protein design have demonstrated
the possibility of generating knotted proteins: (Klimentová
& Simecek, 2024) combined RFdiffusion & ProteinMPNN
together with EvoDiff, discovering three knot types (51,
74, and 819) not previously observed in natural proteins,
(Watson et al., 2023), (Dauparas et al., 2022), (Alamdari
et al., 2023). However, these approaches suffered from low
success rates (∼ 0.5% success rate for generating knotted
proteins) and lacked control over the generation process.

The recent release of ESM3 (Hayes et al., 2025), a frontier-
scale multi-modal protein language model, offers new oppor-
tunities for controlled protein design. ESM3 unifies multiple
protein modalities—sequence, structure, and function—in
a single framework, enabling capabilities that previously
required multiple specialized tools: structure prediction (Al-
phaFold2), inverse folding (ProteinMPNN), and structure
generation (RFdiffusion). Its ability to perform guided gen-
eration based on scoring functions makes it particularly
suitable for targeting rare protein features like knots.

In this work, we leverage ESM3 to address the challenge
of knotted protein design through three key contributions:
(1) We introduce a continuous knot score metric that quanti-
fies the robustness of protein knots, moving beyond binary
classification; (2) We demonstrate ESM3-guided generation
achieving 87% success rate in producing knotted proteins, a
dramatic improvement over previous methods; (3) We show
that ESM3 embeddings enable highly accurate classification
and facilitate the transformation of unknotted proteins into
knotted variants through iterative modifications.

2. Methods
We took advantage of previously published data on
1,000 knotted and 4,000 unknotted real proteins from
EvaKlimentova/Diffusion-all knots dataset
stored at HuggingFace Hub1. The code used for the
analysis was uploaded to GitHub repository https://

1https://huggingface.co/datasets/
EvaKlimentova/Diffusion-all_knots

github.com/ML-Bioinfo-CEITEC/KPDwESM3.
Experiments were conducted on a virtual machine equipped
with an NVIDIA A100 GPU, 16 CPU cores, and 64 GB of
memory.

2.1. ESM3 Model and Guided Generation

We employed the open-source ESM3-SM (1.4B parameters)
model. While larger models may exhibit higher fidelity in
structure generation, the ESM3-SM provides an effective
platform for demonstrating the key capabilities of the multi-
modal architecture:

• Structure prediction: sequence → structure

• Inverse folding: structure → sequence

• Masked sequence prediction: partially masked se-
quence → sequence

• Embeddings: sequence → learned representations

• Guided generation: conditional sampling with custom
scoring functions

The methods presented here are model-agnostic and are
expected to show continued success when applied to larger-
scale models as they become publicly available (like EMS3
7B and 98B models).

For guided generation of knotted proteins, we implement
a scoring function s(x) that evaluates the knottedness
of generated structures using the Topoly Python package
with Alexander polynomials https://github.com/
ilbsm/topoly_tutorial. The generation process
follows:

p(x|c) ∝ p(x) · exp(λ · s(x)) (1)

where p(x) is the base ESM3 distribution, c represents con-
ditioning information, s(x) is the knot metric (either original
or smoothed) and λ controls the strength of guidance.

2.2. Continuous Knot Score

Traditional knot detection provides binary labels (knot-
ted/unknotted). To quantify knottiness, we first process
Topoly output by extracting probabilities for all predicted
topologies and calculating the proportion of trivial topology
(0 1, unknotted).

We then propose a continuous knot score that captures the
robustness of protein knots through randomized masking -
see Algorithm 1.

For our analysis, we use X = 10% masking and N = 16
trials. The knot score is then defined as:

knot score =
1

N

N∑
i=1

P[topologyi ̸= 0 1] (2)

2

https://github.com/ML-Bioinfo-CEITEC/KPDwESM3
https://github.com/ML-Bioinfo-CEITEC/KPDwESM3
https://huggingface.co/datasets/EvaKlimentova/Diffusion-all_knots
https://github.com/ML-Bioinfo-CEITEC/KPDwESM3
https://huggingface.co/datasets/EvaKlimentova/Diffusion-all_knots
https://github.com/ML-Bioinfo-CEITEC/KPDwESM3
https://github.com/ilbsm/topoly_tutorial
https://github.com/ilbsm/topoly_tutorial


Advancing Knotted Protein Design with ESM3

Algorithm 1 Randomized Knot Score Calculation
Input: protein sequence s, masking perc. X , trials N
Output: knot score ∈ [0, 1]
Initialize knotted sum = 0
for i = 1 to N do

Randomly mask X% of sequence s→ smasked

Generate masked regions using ESM3 → sgenerated
Predict structure of sgenerated using ESM3
Calculate topology using Topoly
knotted sum = knotted sum+P (topology ̸= 0 1)

end for
Return knot score = knotted sum/N

where P[topologyi ̸= 0 1] is the probability of knottiness.
This score ranges from 0 (robustly unknotted) to 1 (robustly
knotted), providing nuanced information about borderline
cases.

2.3. Knot Stability Analysis

To assess knot stability, we systematically analyze how
much sequence modification is required to break a knot. For
each of 1,000 knotted proteins, we apply masking percent-
ages from 5% to 95% in 5% increments. For each masking
percentage, we perform 16 independent trials and calculate
the randomized knot score. We define the ”breaking point”
as the masking percentage where the knot score falls below
0.75.

2.4. Guided Protein Generation and Transformation

We implement two distinct protocols for working with knot-
ted proteins:

(a) De novo generation of knotted proteins: Starting from
a fully masked sequence, we use guided generation with
λ = 1.0 and the knot score as the objective function to
directly generate knotted proteins.

(b) Unknotted-to-knotted transformation: We start with
an unknotted protein sequence and iteratively modify it
through guided generation. In each iteration, we randomly
mask 5% of the sequence and apply guided regeneration
to these masked regions using the knot score as the objec-
tive. This process continues for up to 10 iterations or until
the protein achieves a knot score above 0.8, indicating a
successful transformation to a knotted structure.

2.5. Knot Classification Using ESM3 Embeddings

To evaluate the discriminative power of ESM3 representa-
tions for knot detection, we train a neural network classifier.
We use 1,000 knotted proteins from our dataset with se-
quences masked and regenerated from 5% to 95%, creating
a dataset of 383,523 training proteins and 42,613 valida-

tion proteins. Different proteins were used for training and
validation masking to prevent data leakage. Both datasets
contain approximately 73% knotted proteins.

We extract ESM3 embeddings (dimension 1,536) using se-
quences only and train a fully connected neural network
with two hidden layers (1,024 and 256 neurons) for binary
classification (knotted vs. unknotted).

3. Results
3.1. ESM3 Embeddings Enable Accurate Knot

Classification

We first evaluated whether ESM3’s learned representations
capture topological information. Training a simple neu-
ral network classifier on ESM3 sequence embeddings, we
achieved 93% accuracy in distinguishing knotted from un-
knotted proteins, see Table 1. This high accuracy suggests
that ESM3 implicitly learns topological features despite not
being explicitly trained on knot labels.

Table 1. Confusion matrix on the validation set. The model
achieves 93% accuracy in identifying knotted proteins.

TRUE VS. PREDICTED UNKNOTTED KNOTTED

UNKNOTTED 10644 866
KNOTTED 1924 29179

3.2. Knot Topology is Robust to Sequence Perturbation

Our analysis showed that knots are remarkably stable under
sequence perturbation. On average, more than 80% of a
protein’s sequence must be altered to disrupt the knot (Fig-
ure 2), indicating that the core topological information is
preserved within a fraction of the original sequence.

Figure 2. Histogram of percentage of sequence that must be
masked to break the knot.

What we originally expected was a smooth decrease in the

3



Advancing Knotted Protein Design with ESM3

knot score from one to zero, as in Figure 3.

Figure 3. Expected dependence of knot probability on percentage
of masking may look like.

In fact, the probability of maintaining the knot drops sharply
around the breaking point, indicating that a critical threshold
is needed for topological stability, see Figure 4.

Figure 4. Observed dependence of knot probability on masking
percentage for a representative protein.

3.3. Guided Generation Achieves 87% Success Rate

Using ESM3’s guided generation capabilities, we achieved
an 87% success rate in generating knotted proteins; see the
example in Figure 5.

This represents ∼ 170-fold improvement over the unguided
approaches (∼ 0.5% success rate) used in previous work.

Our iterative modification protocol successfully converted
31% of unknotted proteins into knotted variants. Successful
transformations typically required 3-5 iterations.

4. Discussion and Conclusion
This work demonstrates the transformative potential of
multi-modal foundation models like ESM3 for complex
protein design tasks. By unifying sequence, structure, and
function modeling in a single framework, ESM3 enables ca-
pabilities that previously required multiple specialized tools,

Figure 5. Example of generated knotted protein.

while adding powerful new features like guided generation.

The finding that a large majority of sequence must be mod-
ified to break the knot has implications for understanding
knot evolution and designing stable knotted proteins for
applications. We verified that ESM3 is not simply memo-
rizing sequences and the generated knotted proteins differ
significantly from their original counterparts.

The dramatic improvement in generation success rate (from
0.5% to 87%) showcases the power of guided generation for
targeting rare protein features. This success was achieved
despite several simplifications in our approach. First, our
random masking strategy did not distinguish between the
knot core and terminal regions. Second, we did not incorpo-
rate secondary structure information or spatial proximity re-
lationships in our generation process. A more sophisticated
masking strategy that accounts for topological importance
could potentially improve both generation success rates and
the functional relevance of designed proteins.

While we acknowledge the limitations of using the smaller
open-source ESM3 model, the techniques presented here are
model-agnostic. Their relevance is underscored by the emer-
gence of powerful new foundation models, such as Boltz
(Wohlwend et al., 2024) and AlphaFold3 (Abramson et al.,
2024), which are increasingly capable of integrating diverse
biological data. The high accuracy (93%) we achieved in
knot classification using only sequence embeddings sug-
gests that these larger models will likely capture even more
subtle topological features with greater fidelity.

Impact Statement
Our results highlight how multi-modal foundation models
are reshaping protein design, enabling precise control over
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complex structural features that were previously accessi-
ble only through undirected sampling. As these models
continue to scale and improve, we anticipate even greater
capabilities for engineering proteins with desired topologi-
cal and functional properties. The ability to generate gen-
uinely novel knotted proteins—rather than minor variants of
known sequences—opens new avenues for creating proteins
with enhanced stability and unique functional properties for
biotechnological applications.
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