
Under review as a conference paper at ICLR 2021

Supplementary material for
“Powers of layers for image-to-image translation”

Anonymous Author(s)

In this supplementary material we report additional analyses, results and examples that complement
our paper. In Appendix A we consider the training phase, which supports the importance of our
progressive training strategy compared to one with a fixed number of iterations. Appendix B
considers the inference-time choices, in particular possible strategies to select the number of iterations.
Appendix C provides additional comparison to CycleGAN and makes a comparison with the Fader
network. Finally we present additional visual results for high resolution images and illustrate the
progressive evaluation of results along iterations in the appendix D.

A ANALYSIS OF OUR PROGRESSIVE TRAINING STRATEGY

Figure 9 shows the different training strategies we explore. The degree of freedom that we can adjust
is the number of compositions. It can be set independently per training mini-batch.

Progressive training versus fixed training. Figure 10 illustrates the modulation of the horse!zebra
transformation. This is effective only with our progressive learning, which forces the network to
produce acceptable intermediate states.

If the network is trained with a fixed number of compositions, the intermediate states do not correspond
to modulations of the transformation. The output is satisfactory only when the nte = ntr. In all other
cases we observe artifacts in images, which therefore do not qualify as natural images. The generated
images do not look right, and the source and target discriminators would not accept them as real
images.

In contrast, with our progressive training, each number of iterations produces a satisfactory output.
Iterating the residual block gradually transforms the horse into a zebra.

Warm-up phase. Figure 11 compares the performance obtained during the first three epochs of
learning with and without progressive training, with different maximum number of compositions
ntr. We compare this way of stabilizing the training with another classical approach: reducing
the ranges of initialization of the residual blocks. Figure 11 shows that changing the initialization
improves the performance during the first epoch, but that a warm-up phase with progressive training

Augmentation 
step

Warm-up

Figure 9: Number of compositions at training time for different training strategies. The number of
compositions is adjusted per batch.

13



Under review as a conference paper at ICLR 2021

Table 2: PSNR on Urban-100. Comparison between our choice (PoL) and independent blocks.

Number Gaussian noise (std 30) Gaussian blur (sigma 4)
of blocks POL independent POL independent

1 23.26 ±0.15 23.26 ±0.15 18.61 ±0.13 18.61 ±0.13

2 23.28 ±0.07 23.21 ±0.05 18.48 ±0.25 18.64 ±0.21

4 24.41 ±0.27 23.16 ±0.09 19.19 ±0.04 19.17 ±0.51

8 23.91 ±0.23 22.27 ±0.02 18.95 ±0.14 19.33 ±0.29

12 23.91 ±0.10 22.48 ±0.32 19.70 ±0.21 18.76 ±0.09

16 23.88 ±0.14 22.54 ±0.48 19.00 ±0.30 18.11 ±0.41

is more effective to improve the optimization stability. Figure 9 shows the evolution of the number of
compositions for different training strategies.

Block composition or independent successive blocks? Table 2 provides results that complement
Table 1 in the main paper. It compares the performance with (1) the composition of the same block
or (2) using independent residual blocks. In particular, we report standard deviations that assess the
statistical significance of our improvement.

Choice of the maximum number of compositions. Table 3 compares the PSNR obtained for
denoising and deblurring and NIQE for JPEG deblocking task on Urban-100 Huang et al. (2015).
We report more results and standard deviations compared to the main paper. Note that these tasks
work well with a relatively low maximum of iterations, in contrast to style transfer image-to-image
translations, which require more complex functions.

Composition step. Table 4 compares different choices for the number of steps of augmentation
associated with the number of compositions ntr. As we can see, taking too large steps tends to affect
performance, it is better to ramp up the number of compositions quickly during the warm-up phase.

Comparison between randomised and fixed number of compositions ntr. Figure 12 compares
the trajectories of PSNRs as a function of the number of Powers-of-layers composition. We get a
better average performance if we randomly draw the maximum number of composition. The different
positions of the maxima in the adaptive case also suggests that it is necessary to adjust the amount of
transformation to each image, as discussed below.

B ANALYSIS OF CHOICES AT INFERENCE TIME

Stopping criterion: fixed, discriminator, versus an oracle. At inference time the number of
composition nte applied to each image can be set using several strategies. We can choose to apply a

Pr
og

re
ss

iv
e

tra
in

in
g

0 5 10 15 20 25 30 35 40

fix
ed

tra
in

in
g

0 5 10 15 20 25 30 35 40

Figure 10: Comparison between our progressive training approach and a non progressive approach.
We represent the images obtained by varying the number of iterations at inference time nte in the
network that transforms from domain A (horse) into domain B (zebra). The first image (nte=0) is
the original image. Since our method was learned with ntr=30 compositions the last two images are
extrapolations. Our progressive training is key to ensure that all outputs look like natural images and
therefore that we can modulate transformation strength at inference time.

14



Under review as a conference paper at ICLR 2021

Figure 11: Difference in PSNR between
fixed learning and progressive learning
during the first training epochs, evalu-
ated on a denoising task.
Green: ntr=30
orange: ntr=16
red: ntr=4

Table 3: Comparison between different maximum number of compositions. We report the most
adapted metric on Urban-100: PSNR for the Gaussian noise and blur, NIQE for JPEG deblocking.

PSNR (higher=better) NIQE (lower=better)
ntr Gaussian noise (std 30) Gaussian blur (�=4) JPEG (quality=25)

1 23.26 ±0.15 18.61 ±0.13 10.17 ±0.55

2 23.28 ±0.07 18.48 ±0.25 10.78 ±0.39

3 23.89 ±0.07 19.13 ±0.08 10.57 ±0.21

4 24.41 ±0.27 19.19 ±0.04 10.43 ±0.25

5 23.79 ±0.59 19.06 ±0.21 10.65 ±0.52

6 23.80 ±0.31 19.09 ±0.08 10.42 ±0.19

7 23.64 ±0.27 19.12 ±0.13 10.93 ±0.61

8 23.91 ±0.23 18.95 ±0.14 10.34 ±0.61

12 23.91 ±0.10 19.70 ±0.21 9.74 ±0.41

16 23.88 ±0.14 19.00 ±0.30 8.51 ±0.19

17 23.97 ±0.17 18.83 ±0.21 8.36 ±0.32

18 24.17 ±0.18 18.97 ±0.13 7.49 ±0.63

24 23.83 ±0.20 18.56 ±0.16 7.22 ±0.45

27 23.62 ±0.02 18.48 ±0.36 7.25 ±0.36

30 23.45 ±0.10 19.09 ±0.31 8.15 ±0.64

Table 4: PSNR on Urban-100 Huang et al. (2015) – Gaussian noise (std=30). Comparison between
augmentation steps during the warm-up phase. The augmentation step is to the number of epochs
performed with the same number of compositions (1 epoch corresponds to 800 backward passes).

ntr augmentation step
1 2 4 8 16

4 24.41 ±0.27 24.44 ±0.11 23.62 ±0.16 23.93 ±0.10 23.22 ±0.07

16 23.88 ±0.14 23.97 ±0.22 23.57 ±0.06 23.52 ±0.1 23.19 ±0.02

30 23.45 ±0.10 23.77 ±0.14 23.95 ±0.17 23.14 ±0.04 23.17 ±0.04

15



Under review as a conference paper at ICLR 2021

fixed ntr = 30 Random ntr 2 [[20, 30]]

Figure 12: Evolution of the average PSNR for different individual images according to the number
of compositions nte. The maximum number of compositions used for training is ntr = 30 and the
Gaussian Noise standard deviation is 30.

Table 5: Effect of setting the number of compositions ntr randomly on the PSNR on Urban-100 with
two types of noise. We compare (Constant) a fixed nte = 30 and (Adaptive) value nte maximizing
the target discriminator error for each image. Oracle: nte minimizing PSNR for each image.

Gaussian Noise (std=30) Gaussian Blur (�=4)
Random range Constant Adaptive Oracle Constant Adaptive Oracle

[[0, 30]] 21.41 ±3.33 22.11 ±0.56 23.86 ±0.27 16.95 ±1.29 16.16 ±1.33 19.43 ±0.09

[[7, 30]] 22.56 ±1.94 22.84 ±0.67 23.73 ±0.98 16.39 ±2.00 15.42 ±2.26 19.58 ±0.14

[[10, 30]] 21.99 ±1.20 23.14 ±0.21 23.42 ±0.32 17.48 ±1.56 18.10 ±0.70 19.65 ±0.10

[[15, 30]] 21.41 ±1.71 23.47 ±0.69 23.77 ±0.61 18.14 ±0.54 18.81 ±0.61 19.42 ±0.07

[[20, 30]] 21.53 ±1.90 23.68 ±0.17 23.99 ±0.06 18.58 ±0.10 19.22 ±0.37 19.56 ±0.09

[[22, 30]] 21.16 ±0.99 23.08 ±0.37 23.42 ±0.28 17.55 ±1.32 19.06 ±0.39 19.52 ±0.05

[[30, 30]] 23.45 ±0.10 23.46 ±0.40 23.81 ±0.48 19.09 ±0.31 18.87 ±0.41 19.49 ±0.08

constant number of composition or use the discriminator to choose the nte for which it gets the best
response.

Table 5 compares the performance of two strategies at test time for different random ranges at training
time, and compare it to the upper bound achieved by an oracle (i.e,. the performance attained when
the optimal number of iteration is known for each image).

With ntr =30, we have chosen different ranges of the form [[d ⇥ 30, 30]] for d 2
{100%, 75%, 66%, 50%, 33%, 25%, 0%}. The optimal range for debluring and denoising is with
d = 66%

C ADDITIONAL COMPARISONS WITH CYCLEGAN AND THE FADER NETWORK

Table 6 compares the results obtained with PoL and CycleGAN for different noise levels. Table 7
compares the results obtained with PoL and CycleGAN for different amounts of data. These numbers
are the same as Figure 3, with standard deviations. In most cases, whether with different amounts of
data or different noise, our method is better than CycleGAN. This is mainly due to its smaller number
of parameters and the flexibility brought by the adaptive criterion.

16



Under review as a conference paper at ICLR 2021

Table 6: Comparison between our approach (PoL) and CycleGAN. We three tasks, all computed
with the Urban-100 dataset: PSNR (higher is better) with different amount of Gaussian noise and
Gaussian blur, and NIQE (lower is better) measured for different JPEG compression quality.

Noise Noisy Denoising Sigma Blur Debluring JPEG JPEG Deblocking
(std) images CycleGAN PoL Blur images CycleGAN PoL quality images CycleGAN PoL

15 24.9 22.37 ±0.19 27.37 ±0.26 2 21.58 20.37 ±0.26 22.14 ±0.21 15 9.01 7.89 ±1.14 7.90 ±0.32

30 19.2 21.93 ±0.04 23.68 ±0.17 4 19.20 18.55 ±0.37 19.22 ±0.37 25 8.94 7.45 ±0.63 7.10 ±0.58

50 15.2 21.57 ±0.04 22.52 ±0.37 8 17.48 16.09 ±0.14 17.53 ±0.34 30 8.90 7.46 ±0.32 6.76 ±0.83

70 12.7 21.02 ±0.17 20.94 ±0.24 16 16.13 16.11 ±0.31 16.16 ±0.14 50 8.99 6.96 ±0.55 6.56 ±0.48

100 10.4 20.00 ±0.12 19.42 ±0.22 24 15.50 12.88 ±0.24 15.48 ±0.07 70 8.94 7.11 ±0.21 6.81 ±0.39

Table 7: Comparison between CycleGAN and Powers-of-layers on Urban-100 (Huang et al., 2015)
with different amount of training data. We use PSNR to compare methods for Gaussian noise and
Gaussian blur.

Number of data Denoising (std=30) Debluring (sigma=4)
training images CycleGAN PoL CycleGAN PoL

1 14.50 ±0.24 22.27 ±0.16 14.36 ±0.12 18.68 ±0.27

5 16.57 ±0.04 23.13 ±0.18 16.72 ±0.15 18.76 ±0.23

10 20.88 ±0.36 23.19 ±0.58 17.03 ±0.07 18.82 ±0.56

100 21.03 ±0.76 23.39 ±0.33 18.17 ±0.15 18.97 ±0.23

400 21.78 ±0.12 23.60 ±0.32 18.21 ±0.11 19.01 ±0.31

800 21.93 ±0.04 23.88 ±0.14 18.55 ±0.37 19.22 ±0.37

Experiments on transformation adjustment As baseline we use the Fader network Lample et al.
(2017) for transformation adjustment. The Fader Network is a neural network composed of an
encoder and a decoder, for which it it is possible to modulate a transformation. This is done by
removing the factors of variations related to this transformation in the latent space resulting from the
encoder, and in turn by choosing the factors to be added to the embedding going into the decoder.

To interpolate between domain A and domain B, the Fader network has a latent representation where
the attributes relative to each domain have been disentangled. The Fader network has been applied to
faces, for instance to add glasses on a face, to age a person, etc. We observe experimentally with
smaller datasets, where the variability from one image to another is larger than with faces, that the
Fader’s results are not as good. In contrast, our approach, like CycleGAN, does not have limitations
incurred by a latent space disentanglement because it exploits a cyclic loss.

Figure 13 shows the results obtained with the Fader network and with our method on the Horse!Zebra
transformation adjustment. The Fader network is unable to significantly transform the source when
the network is too shallow (3 layers) and destroys the image when it is deep (6 layers). In contrast,
Powers-of-layers convincingly hybridizes a horse and a zebra. In terms of FID for the Horse to Zebra
task, the Fader network is significantly worse: it obtains a FID greater than 163.0 in the both case
against 53.0 for our method (lower is better).

D ADDITIONAL RESULTS: VISUALIZATIONS OF TRANSFORM MODULATION
AND HIGH RESOLUTION

Progressive results

Results in high resolution. Figure 14 shows the high-resolution results of the section 5, along with
the original images.

17



Under review as a conference paper at ICLR 2021

Transformation rate
Original 0% 25% 50% 75% 100%

Fa
de

r,
3

la
ye

rs
Fa

de
r,

6
la

ye
rs

Po
L

Figure 13: Visual comparison between Fader networks Lample et al. (2017) and our power-of-layers
on the task Horse to Zebra.

18



Under review as a conference paper at ICLR 2021

Powers-of-Layers Transformations
Photo ! Van Gogh Photo ! Monet Horse ! Zebra

Original images

Figure 14: Top: Differents visuals results with high resolution image. Bottom: Original images

19


	Introduction
	Related work
	Power of layers
	Network architecture
	Optimization in a residuals blocks weight sharing context
	Progressive training

	Analysis
	Experiments
	Conclusion
	Analysis of our progressive training strategy
	Analysis of choices at inference time
	Additional comparisons with CycleGAN and the Fader Network
	Additional results: visualizations of transform modulation and high resolution

