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Abstract

We consider the problem of identifying the best arm in stochastic Multi-Armed
Bandits (MABs) using a fixed sampling budget. Characterizing the minimal
instance-specific error probability for this problem constitutes one of the important
remaining open problems in MABs. When arms are selected using a static sampling
strategy, the error probability decays exponentially with the number of samples
at a rate that can be explicitly derived via Large Deviation techniques. Analyzing
the performance of algorithms with adaptive sampling strategies is however much
more challenging. In this paper, we establish a connection between the Large
Deviation Principle (LDP) satisfied by the empirical proportions of arm draws and
that satisfied by the empirical arm rewards. This connection holds for any adaptive
algorithm, and is leveraged (i) to improve error probability upper bounds of some
existing algorithms, such as the celebrated SR (Successive Rejects) algorithm
(Audibert et al., 2010), and (ii) to devise and analyze new algorithms. In particular,
we present CR (Continuous Rejects), a truly adaptive algorithm that can reject
arms in any round based on the observed empirical gaps between the rewards of
various arms. Applying our Large Deviation results, we prove that CR enjoys
better performance guarantees than existing algorithms, including SR. Extensive
numerical experiments confirm this observation.

1 Introduction

We study the problem of best-arm identification in stochastic bandits in the fixed budget setting. In this
problem, abbreviated by BAI-FB, a learner faces K distributions or arms ν1, . . . , νK characterized
by their unknown means µ = (µ1, . . . , µK) (we restrict our attention to distributions taken from
a one-parameter exponential family). She sequentially pulls arms and observes samples of the
corresponding distributions. More precisely, in round t ≥ 1, she pulls an arm At = k selected
depending on previous observations and observes Xk(t) a sample of a νk-distributed random variable.
(Xk(t), t ≥ 1, k ∈ [K]) are assumed to be independent over rounds and arms. After T arm draws,
the learner returns ı̂, an estimate of the best arm 1(µ) := argmaxk µk. We assume that the best
arm is unique, and denote by Λ the set of parameters µ such that this assumption holds. The
objective is to devise an adaptive sampling algorithm minimizing the error probability Pµ [̂ı ̸= 1(µ)].
This learning task is one of the most important problems in stochastic bandits, and despite recent
research efforts, it remains largely open (Qin, 2022). In particular, researchers have so far failed
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at characterizing the minimal instance-specific error probability. This contrasts with other basic
learning tasks in stochastic bandits such as regret minimization (Lai and Robbins, 1985) and BAI
with fixed confidence (Garivier and Kaufmann, 2016), for which indeed, asymptotic instance-specific
performance limits and matching algorithms have been derived. In BAI-FB, the error probability
typically decreases exponentially with the sample budget T , i.e., it scales as exp(−R(µ)T ) where
the instance-specific rate R(µ) depends on the sampling algorithm. Maximizing this rate over the set
of adaptive algorithms is an open problem.

Instance-specific error probability lower bound. To guess the maximal rate at which the error
probability decays, one may apply the same strategy as that used in regret minimization or BAI in
the fixed confidence setting: (i) derive instance-specific lower bound for the error probability for
some notion of uniformly good algorithms; (ii) devise a sampling strategy mimicking the optimal
proportions of arm draws identified in the lower bound. Here the notion of uniformly good algorithms
is that of consistent algorithms. Under such an algorithm, for any µ ∈ Λ, Pµ [̂ı = 1(µ)] → 1 as
T →∞. (Garivier and Kaufmann, 2016) conjectures the following asymptotic lower bound satisfied
by any consistent algorithm (refer to Appendix J for details): as T →∞,

1

T
log

1

Pµ [̂ı ̸= 1(µ)]
≤ max

ω∈Σ
inf

λ∈Alt(µ)
Ψ(λ,ω), (1)

where Σ is the (K − 1)-dimensional simplex, Ψ(λ,ω) =
∑K
k=1 ωkd(λk, µk), Alt(µ) = {λ ∈ Λ :

1(µ) ̸= 1(λ)} is the set of confusing parameters (those for which 1(µ) is not the best arm), and
d(x, y) denotes the KL divergence between two distributions of parameters x and y. Interestingly, the
solution ω⋆ ∈ Σ of the optimization problem maxω∈Σ infλ∈Alt(µ) Ψ(λ,ω) provides the best static
proportions of arm draws. More precisely, an algorithm selecting arms according to the allocation
ω⋆, i.e., selecting arm k ω⋆kT times and returning the best empirical arm after T samples, has an
error rate matching the lower bound (1). This is a direct consequence of the fact that, under a
static algorithm with allocation ω, the empirical reward process {µ̂(t)}t≥1 satisfies a LDP with rate
function λ 7→ Ψ(λ,ω), see (Glynn and Juneja, 2004) and refer to Section 3 for more details.

Adaptive sampling algorithms and their analysis. The optimal allocation ω⋆ depends on the
instance µ and is initially unknown. We may devise an adaptive sampling algorithm that (i) estimates
ω⋆ and (ii) tracks this estimated optimal allocation. In the BAI with fixed confidence, such tracking
scheme exhibits asymptotically optimal performance (Garivier and Kaufmann, 2016). Here however,
the error made estimating ω⋆ would inevitably impact the overall error probability of the algorithm.
To quantify this impact or more generally to analyze the performance of adaptive algorithms, one
would need to understand the connection between the statistical properties of the arm selection
process and the asymptotic statistics of the estimated expected rewards.

To be more specific, any adaptive algorithm generates a stochastic process {Z(t)}t≥1 =
{(ω(t), µ̂(t))}t≥1. ω(t) = (ω1(t), . . . , ωK(t)) represents the allocation realized by the algorithm
up to round t (ωk(t) = Nk(t)/t and Nk(t) denotes the number of times arm k has been selected up
to round t). µ̂(t) = (µ̂1(t), . . . , µ̂K(t)) denotes the empirical average rewards of the various arms up
to round t. Now assuming that at the end of round T , the algorithm returns the arm with the highest
empirical reward, the error probability is Pµ [̂ı ̸= 1(µ)] = Pµ[µ̂(T ) ∈ Alt(µ)]. Assessing the error
probability at least asymptotically requires understanding the asymptotic behavior of µ̂(t) as t grows
large. Ideally, one would wish to establish the Large Deviation properties of the process {Z(t)}t≥1.
This task is easy for algorithms using static allocations (Glynn and Juneja, 2004), but becomes
challenging and open for adaptive algorithms. Addressing this challenge is the main objective of this
paper.

Contributions. In this paper, we develop and leverage tools towards the analysis of adaptive sampling
algorithms for the BAI-FB problem. More precisely, our contributions are as follows.

(a) We establish a connection between the LDP satisfied by the empirical proportions of arm draws
{ω(t)}t≥1 and that satisfied by the empirical arm rewards. This connection holds for any adaptive
algorithm. Specifically, we show that if the rate function of {ω(t)}t≥1 is lower bounded by ω 7→
I(ω), then that of (µ̂(t))t≥1 is also lower bounded by λ 7→ minω∈Σ max{Ψ(λ,ω), I(ω)}. This
result has interesting interpretations and implies the following asymptotic upper bound on the error
probability of the algorithm considered: as T →∞,

1

T
log

1

Pµ [̂ı ̸= 1(µ)]
≥ inf

ω∈Σ,λ∈Alt(µ)
max{Ψ(λ,ω), I(ω)}. (2)
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The above formula, when compared to the lower bound (1), quantifies the price of not knowing ω⋆

initially, and relates the error probability to the asymptotic statistics of the sampling process used by
the algorithm.

(b) We show that by simply applying our generic Large Deviation result, we may improve the error
probability upper bounds of some existing algorithms, such as the celebrated SR algorithm (Audibert
et al., 2010). Our result further opens up opportunities to devise and analyze new algorithms with a
higher level of adaptiveness. In particular, we present CR (Continuous Rejects), an algorithm that,
unlike SR, can eliminate arms in each round. This sequential elimination process is performed by
comparing the empirical rewards of the various candidate arms using continuously updated thresholds.
Leveraging the LDP tools developed in (a), we establish that CR enjoys better performance guarantees
than SR. Hence CR becomes the algorithm with the lowest instance-specific and guaranteed error
probability. We illustrate our results via numerical experiments, and compare CR to other BAI
algorithms.

2 Related Work

We distinguish two main classes of algorithms to solve the best arm identification problem in the
fixed budget setting. Algorithms from the first class, e.g. Successive Rejects (SR) (Audibert et al.,
2010) and Sequential Halving (SH) (Karnin et al., 2013), split the sampling budget into phases of
fixed durations, and discard arms at the end of each phase. Algorithms from the second class, e.g.
UCB-E (Audibert et al., 2010) and UGapE (Gabillon et al., 2012) sequentially sample arms based
on confidence bounds of their empirical rewards. It is worth mentioning that algorithms from the
second class usually require some prior knowledge about the problem, for example, an upper bound
of H =

∑
k ̸=1(µ)

1
(µ1(µ)−µk)2

. Without this knowledge, the parameters can be chosen in a heuristic
way, but the performance gets worse.

Algorithms from the first class exhibit better performance numerically and are also those with the
best instance-specific error probability guarantees. SR had actually the best performance guarantees
so far: for example, when the reward distributions are supported on [0, 1], the error probability of
SR satisfies: lim infT→∞

1
T log 1

Pµ [̂ı̸=1(µ)] ≥
1

H2 logK , where H2 = maxk ̸=1(µ)
k

(µ1(µ)−µk)2
. In this

paper, we strictly improve this guarantee (see Section 3.4). Recently, (Barrier et al., 2022) also
refined and extended the analysis of (Audibert et al., 2010) by replacing, in the analysis, Hoeffding’s
inequality by a large deviation result involving KL-divergences. Again here, we further improve
this new guarantee. We also devise CR, an algorithm with error probability provably lower than our
improved guarantees for SR.

Fundamental limits on the error probability have also been investigated. In the minimax set-
ting, (Carpentier and Locatelli, 2016) established that for any algorithm, there exists a problem
within the class of instances with given complexity H such that the error probability is greater than
exp(− 400T

H logK ) ≥ exp(− 400T
H2 logK ). Up to a universal constant (here 400), SR is hence minimax

optimal. This lower bound was also recently revisited in (Ariu et al., 2021; Degenne, 2023; Wang
et al., 2023) to prove that the instance-specific lower bound (1) cannot be achieved on all instances by
a single algorithm . Deriving tight instance-specific lower bounds remains open (Qin, 2022).

We conclude this section by mentioning two interesting algorithms. In (Komiyama et al., 2022), the
authors propose DOT, an algorithm trying to match minimax error probability lower bounds. To this
aim, the algorithm requires to periodically call an oracle able to determine an optimal allocation,
solution of an optimization problem with high and unknown complexity. DOT has minimax guarantees
but is computationally challenging if not infeasible (numerically, the authors cannot go beyond simple
instances with 3 arms). Finally, researchers have also looked at the best arm identification problem
from a Bayesian perspective. For example, (Russo, 2016) devise variants of the celebrated Thompson
Sampling algorithm, that could potentially work well in practice. Nevertheless, as discussed in
(Komiyama, 2022), Bayesian algorithms cannot be analyzed nor provably perform well in the
frequentist setting.
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3 Large Deviation Analysis of Adaptive Sampling Algorithms

In this section, we first recall key concepts in Large Deviations (refer to the classical textbooks
(Budhiraja and Dupuis, 2019; Dembo and Zeitouni, 2009; Dupuis and Ellis, 2011; Varadhan, 2016)
for a more detailed exposition). We then apply these concepts to the performance analysis of adaptive
sampling algorithms. Finally, we exemplify the analysis and apply it to improve existing performance
guarantees for the SR algorithm (Audibert et al., 2010).

3.1 Large Deviation Principles

Consider the stochastic process {Y (t)}t≥1 with values in a separable complete metric space (i.e.,
a Polish space) Y . Large Deviations are concerned with the probabilities of rare events related to
{Y (t)}t≥1 that decay exponentially in the parameter t. The asymptotic decay rate is characterized
by the rate function I : Y → R+ defined so that essentially − 1

t logP [Y (t) ∈ B] converges to
minx∈B I(x) for any Borel set B. We provide a more rigorous definition below.
Definition 1. [Large Deviation Principle (LDP)] The stochastic process {Y (t)}t≥1 satisfies a LDP
with rate function I if:
(i) I is lower semicontinuous, and ∀s ∈ [0,∞], the set Ks = {y ∈ Y : I(y) ≤ s} is compact;
(ii) for every closed (resp. open) set C ⊂ Y (resp. O ⊂ Y),

lim
t→∞

1

t
log

1

P [Y (t) ∈ C]
≥ inf
y∈C

I(y), (3)

lim
t→∞

1

t
log

1

P [Y (t) ∈ O]
≤ inf
y∈O

I(y). (4)

LDPs have been derived earlier in stochastic bandit literature. (Glynn and Juneja, 2004) have used
Gärtner-Ellis Theorem (Ellis, 1984; Gärtner, 1977) to establish that under a static sampling algorithm
with allocation ω ∈ Σ (i.e., each arm k is selected ωkT times up to round T ), the process {µ̂(T )}T≥1

satisfies an LDP with rate function λ 7→ Ψ(λ,ω) =
∑K
k=1 ωkd(λk, µk). Our objective in the next

subsection is to investigate how to extend this result to the case of adaptive sampling algorithms.

3.2 Analysis of adaptive sampling algorithms

An adaptive sampling algorithm generates a stochastic process {Z(t)}t≥1 = {(ω(t), µ̂(t))}t≥1.
When the sampling budget T is exhausted, should the algorithm returns the arm with the highest
empirical reward, the error probability is Pµ [̂ı ̸= 1(µ)] = Pµ[µ̂(T ) ∈ Alt(µ)]. To assess the rate at
which this probability decays with the budget, we may try to establish a LDP for the empirical reward
process {µ̂(t)}t≥1. Due to the intricate dependence between the sampling and the empirical reward
processes, deriving such an LDP is very challenging. Instead, we establish a connection between
the LDPs satisfied by these processes. This connection will be enough for us to derive tight upper
bounds on the error probability. We present our main result in the following theorem.
Theorem 1. Assume that under some adaptive sampling algorithm, {ω(t)}t≥1 satisfies the LDP
upper bound (3) with rate function I . Then {µ̂(t)}t≥1 satisfies the LDP upper bound (3) with rate
function λ 7→ minω∈Σ max{Ψ(λ,ω), I(ω)}. Moreover, we have: for any bounded Borel subset S
of RK and any Borel subset W of Σ,

lim
t→∞

1

t
log

1

Pµ [µ̂(t) ∈ S,ω(t) ∈W ]
≥ inf

ω∈cl(W )
max {FS(ω), I(ω)} ,

where FS(ω) := infλ∈cl(S) Ψ(λ,ω), and cl(S) denotes the closure of S .

Before proving the above theorem, we make the following remarks and provide a simple corollary
that will lead to improved upper bound on the error probability of the SR algorithm.

(a) Not a complete LDP. To upper bound the error probability of a given algorithm, we do not actually
need to establish that {µ̂(t)}t≥1 satisfies a complete LDP. Instead, deriving a LDP upper bound is
enough. Theorem 1 provides such an upper bound, but does not yield a complete LDP. We conjecture
if {ω(t)}t≥1 satisfies an LDP with rate function I , {µ̂(t)}t≥1 satisfies an LDP with rate function
λ 7→ infω∈W max{Ψ(λ,ω), I(ω)}. The conjecture holds for static sampling algorithms as shown
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below. If it holds for adaptive algorithms, we show, in Appendix I, that when K > 3, no algorithm
can attain the instance-specific lower bound (1) for all parameters.

(b) Theorem 1 is tight for static sampling algorithms. When the sampling rule is static, namely
ω(t) = ω ∈ Σ, then {ω(t)}t≥1 satisfies a LDP with rate function I defined as I(ω) = 0 and∞
elsewhere. Theorem 1 with W = Σ states that {µ̂(t)}t≥1 satisfies the LDP upper bound (3) with
rate function FS . In fact, as shown by (Glynn and Juneja, 2004), {µ̂(t)}t≥1 satisfies a complete LDP
with this rate function.

(c) A useful corollary. From Theorem 1, we have:

lim
t→∞

1

t
log

1

Pµ [µ̂(t) ∈ S,ω(t) ∈W ]
≥ inf

ω∈cl(W )
FS(ω).

From there, we will be able to improve the performance guarantee for SR.

3.3 Proof of Theorem 1

Proof. Observe that when S or W is empty, the result holds. Now recall that FS(·) =
infλ∈cl(S) Ψ(λ, ·) is the infimum of a family of linear functions on a compact set, Σ, hence it
is upper bounded. Denote u > 0 such an upper bound. FS(·) is also continuous (see Appendix F for
details). For each integer N ∈ N, we define a collection of closed sets:

WN
n =

{
ω ∈ cl(W ) :

u(n− 1)

N
≤ FS(ω) ≤ un

N

}
, ∀n ∈ [N ]. (5)

We observe that:

Pµ[µ̂(t) ∈ S,ω(t) ∈W ] ≤
N∑
n=1

Pµ[µ̂(t) ∈ S,ω(t) ∈WN
n ]

≤ N max
n∈[N ]

Pµ[µ̂(t) ∈ S,ω(t) ∈WN
n ].

Taking the logarithm on both sides and dividing them by −t yields that

lim
t→∞

1

t
log

1

Pµ [µ̂(t) ∈ S,ω(t) ∈W ]
≥ lim
t→∞

min
n∈[N ]

1

t
log

1

Pµ [µ̂(t) ∈ S,ω(t) ∈WN
n ]

= min
n∈[N ]

lim
t→∞

1

t
log

1

Pµ [µ̂(t) ∈ S,ω(t) ∈WN
n ]

≥ min
n∈[N ]

max

{
u(n− 1)

N
, inf
ω∈WN

n

I(ω)

}
, (6)

where the last inequality follows from Lemma 1. Since for all n ∈ [N ],

max

{
u(n− 1)

N
, inf
ω∈WN

n

I(ω)

}
= inf

ω∈WN
n

max

{
u(n− 1)

N
, I(ω)

}
,

the r.h.s. of (6) is equal to

min
n∈[N ]

inf
ω∈WN

n

max

{
u(n− 1)

N
, I(ω)

}
≥ min
n∈[N ]

inf
ω∈WN

n

max {FS(ω), I(ω)} − u/N

= inf
ω∈cl(W )

max{FS(ω), I(ω)} − u/N,

where the first inequality is due to (5). As N can be taken arbitrarily large, we conclude this theorem.

Lemma 1. For any N ∈ N, n ∈ [N ],

lim
t→∞

1

t
log

1

Pµ[µ̂(t) ∈ S,ω(t) ∈WN
n ]
≥ max

{
u(n− 1)

N
, inf
ω∈WN

n

I(ω)

}
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Proof. Recall FS(·) = infλ∈cl(S) Ψ(λ, ·). We deduce that

Pµ

[
µ̂(t) ∈ S,ω(t) ∈WN

n

]
≤ Pµ

[
X ≥ tFS(ω(t)),ω(t) ∈WN

n

]
,

where X denotes tΨ(µ̂(t),ω(t)) for short. Let α ∈ (0, 1), Markov’s inequality implies that

Pµ

[
X ≥ tFS(ω),ω(t) ∈WN

n

]
= Pµ

[
1{ω(t) ∈WN

n }eα(X−tFS(ω(t))) ≥ 1
]

≤ Eµ

[
1{ω(t) ∈WN

n }eα(X−tFS(ω(t)))
]

≤ Eµ

[
1{ω(t) ∈WN

n }eαX
]
e−

αu(n−1)
N , (7)

where the last inequality uses the definition ofWN
n (see (5)). By applying Hölder’s inequality with p, q,

where p ∈ [1, 1/α) and q = p/(p−1) on r.h.s. of (7), we deduce that logPµ

[
µ̂(t) ∈ S,ω(t) ∈WN

n

]
is at most

(logEµ

[
eαpX

]
)/p+ (logEµ[1{ω(t) ∈WN

n }])/q −
αu(n− 1)

N
.

As αp ∈ (0, 1), Lemma 2 in Appendix B shows that the first term above is o(t). Using definition of the
rate function, (3) with C =WN

n , on the second term yields that limt→∞
1
t log

1
Pµ[µ̂(t)∈S,ω(t)∈WN

n ]

is lower bounded by

(1/q) inf
ω∈WN

n

I(ω) +
αu(n− 1)

N
= (1− 1/p) inf

ω∈WN
n

I(ω) +
αu(n− 1)

N
.

As p can be arbitrarily close to 1/α, we get the lower bound (1 − α)I(ω) + αu(n−1)
N . Further

choosing α close to either 1 or 0, the proof is completed.

3.4 Improved analysis of the Successive Rejects algorithm

In SR, the set of candidate arms is initialized as CK = [K]. The budget of samples is partitioned into
K − 1 phases, and at the end of each phase, SR discards the empirical worst arm from the candidate
set. In each phase, SR uniformly samples the arms in candidate set. The lengths of phases are set as
follows. Define logK := 1

2 +
∑K
k=2

1
k . The candidate set is denoted by Cj when it has j > 2 arms.

In the corresponding phase, (i) each arm in Cj is sampled until the round t when mink∈Cj
Nk(t)

reaches T/(jlogK) (recall that Nk(t) is the number of times arm k has been sampled up to round t);
(ii) the empirical worst arm, denoted by ℓj , is then discarded, i.e., Cj−1 = Cj \ {ℓj}. During the last
phase, the algorithm equally samples the two remaining arms and finally recommends ı̂, the arm with
higher empirical mean in C2. The pseudo code is presented in Algorithm 1.

Algorithm 1: SR
initialization CK ← [K], j ← K;
for (t = 1, . . . , T ) do

if (j > 2 and mink∈Cj
Nk(t) ≥ T

jlogK
) then

ℓj ← argmink∈Cj
µ̂k(t) (tie broken arbitrarily), Cj−1 ← Cj \ {ℓj}, and j ← j − 1 ;

end
sample At ← argmink∈Cj

Nk(t) (tie broken arbitrarily), update {Nk(t)}k∈Cj
and µ̂(t);

end
ℓ2 ← argmink∈C2

µ̂k(T ) and return ı̂← argmaxk∈C2
µ̂k(T ) (tie broken arbitrarily).

We apply the corollary (c) in Section 3.2 to improve the existing performance guarantees of SR. To
simplify the presentation, we assume wlog that µ1 > µ2 ≥ . . . ≥ µK . For j = 2, . . . ,K, define

Γj = min
J∈J

inf

{∑
k∈J

d(λk, µk) : λ ∈ RK , λ1 ≤ min
k∈J

λk

}
, (8)

where J = {J ⊆ [K] : |J | = j, 1 ∈ J}.
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Theorem 2. Let µ ∈ Λ. Under SR, we have: for j = 2, . . . ,K, limT→∞
1
T log 1

Pµ[ℓj=1] ≥
Γj

jlogK
.

Hence, the error probability of SR is upper bounded by limT→∞
1
T log 1

Pµ [̂ı ̸=1] ≥ minj ̸=1
Γj

jlogK
.

Proof of Theorem 2. Fix j ∈ {2, . . . ,K}. Observe that

Pµ [ℓj = 1] =
∑
J∈J

Pµ [ℓj = 1, Cj = J ] ≤ |J |max
J∈J

Pµ [ℓj = 1, Cj = J ] ,

which implies that

lim
T→∞

1

T
log

1

Pµ [ℓj = 1]
≥ min
J∈J

lim
T→∞

1

T
log

1

Pµ [ℓj = 1, Cj = J ]
(9)

as |J | <∞.
Since ℓj is selected at the θT -th round1 where θ = (1 +

∑K
k=j+1

1
k )/logK, the event {ℓj = 1, Cj =

J} implies that {µ̂(θT ) ∈ S, ω(θT ) ∈W}, where

S =
{
λ ∈ RK : λ1 ≤ λk,∀k ∈ J

}
and W =

{
ω ∈ Σ : ωk =

1

θjlogK
,∀k ∈ J

}
.

In other words, Pµ[ℓj = 1, Cj = J ] ≤ Pµ[µ̂(θT ) ∈ S, ω(θT ) ∈ W ]. Applying (c) in Section 3.2
with the above S and W yields that limT→∞

1
θT log 1

Pµ[µ̂(θT )∈S,ω(θT )∈W ] is larger than

inf
ω∈W

inf
λ∈cl(S)

Ψ(λ,ω) ≥ 1

θjlogK
inf

{∑
k∈J

d(λk, µk) : λ1 ≤ min
k∈J

λk

}
≥ Γj

θjlogK
, (10)

where the first inequality uses the fact that KL-divergences and the components of ω are nonnegative,
and the second one is due to the definition (8) of Γj . Combining (9) and (10) completes the proof.□

The upper bound derived in Theorem 2 is tighter than those recently derived in (Barrier et al., 2022).
Indeed, for any J ∈ J , since |J | = j, one can find at least one index in J at least larger than j, say
kJ . Hence,

Γj ≥ min
J∈J

inf
λ∈RK ,λ1≤λkJ

d(λ1, µ1) + d(λkJ , µkJ ) ≥ inf
λ∈RK ,λ1≤λj

d(λ1, µ1) + d(λj , µj).

The r.h.s. in the previous inequality corresponds to the upper bounds derived by (Barrier et al., 2022).

To simplify the presentation and avoid rather intricate computations involving the KL-divergences, in
the remaining of the paper, we restrict our attention to specific classes of reward distributions.
Assumption 1. The rewards are bounded with values in (0, 1). The reward distributions ν1, . . . , νK
are Bernoulli distributions such that νa is of mean a, and for any a ̸= b, d(a, b) ≥ 2(a− b)2 (this is
a consequence of Pinsker’s inequality as rewards are in (0, 1)).

Under Assumption 1, we have Γj ≥ 2ξj (a direct consequence of Proposition 3 in Appendix D.1),
where for j = 2, . . . ,K,

ξj = inf
λ∈[0,1]j

{
j∑

k=1

(λk − µk)2 : λ1 ≤ min
k=1,...,j

λk

}
.

We give an explicit expression of ξj in Proposition 1, presented in Appendix D.1. More-
over, 2ξj is clearly larger than 2 infλ1≤λj

{
(λ1 − µ1)

2 + (λj − µj)2
}
= (µ1 − µj)2, and hence

minj ̸=1 Γj/(jlogK) ≥ minj ̸=1(µ1 − µj)2/(jlogK). This implies that our error probability upper
bound is better than that derived in (Audibert et al., 2010).

Example 1. To illustrate the improvement brought by Theorem 2 on the performance guarantees of
SR, consider the simple example with 3 Bernoulli arms and µ = (0.9, 0.1, 0.1). Then minj ̸=1(µ1 −
µj)

2/(jlog3) = 0.16 for the upper bound presented in (Audibert et al., 2010). From Proposition 1,
instead we get minj ̸=1 2ξj/(jlog3) = 0.21.

1To simplify the presentation, we ignore cases where θT is not an integer. Refer to Appendix E for details.
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4 Continuous Rejects Algorithms

In this section, we present CR, a truly adaptive algorithm that can discard an arm in any round. We
propose two variants of the algorithm, CR-C using a conservative criterion to discard arms and CR-A
discarding arms more aggressively. Using the Large Deviation results of Theorem 1, we establish
error probability upper bounds for both CR-C and CR-A.

4.1 The CR-C and CR-A algorithms

As SR, CR initializes its candidate set as CK = [K]. For j ≥ 2, Cj denotes the candidate set
when it is reduced to j arms. When j > 2, the algorithm samples arms in the candidate set Cj
uniformly until a discarding condition is met. The algorithm then discards the empirically worst
arm ℓj ∈ Cj , i.e., Cj−1 ← Cj \ {ℓj}. More precisely, in round t, if there are j candidate arms
remaining and if ℓ(t) denotes the empirically worst candidate arm, the discarding condition is
Nℓ(t)(t) > maxk/∈Cj

Nk(t), (∀k ∈ Cj , Nℓ(t)(t) = Nk(t))
2, and

for CR-C: min
k∈Cj ,k ̸=ℓ(t)

µ̂k(t)− µ̂ℓ(t)(t) ≥ G

(∑
k∈Cj

Nk(t)logj

T −
∑
k/∈Cj

Nk(t)

)
, (11)

for CR-A:

∑
k∈Cj ,k ̸=ℓ(t) µ̂k(t)

j − 1
− µ̂ℓ(t)(t) ≥ G

(∑
k∈Cj

Nk(t)logj

T −
∑
k/∈Cj

Nk(t)

)
, (12)

where G(β) = 1/
√
β − 1 for all β > 0. The idea behind (11) is to keep the probability of discarding

the best arm at most smaller than that of SR while using less budget. Note that (12) is easier to
achieve than (11). CR-A is hence more aggressive than CR-C, and reduces the set of arms to C2
faster, but at the expense of a higher risk. After discarding ℓ3, CR will sample the arms in C2 evenly,
and recommend the empirical best arm in C2 when the budget is exhausted. The pseudo-code of CR
is presented in Algorithm 2.

Algorithm 2: CR-C and CR-A

Input: θ0 ∈ (0, 1
logK

) ∩Q independent of T (can be chosen as small as one wishes)
initialization
CK ← [K], j ← K, sample each arm k ∈ [K] once, update {Nk(t)}k∈CK

and µ̂(t);
for t = K + 1, . . . , ⌊θ0T ⌋ do

sample At ← argmink∈Cj
Nk(t) (tie broken arbitrarily), update {Nk(t)}k∈Cj and µ̂(t);

end
for (t = ⌊θ0T ⌋+ 1, . . . , T ) do

ℓ(t)← argmink∈Cj
µ̂k(t) (tie broken arbitrarily);

if j > 2, Nℓ(t)(t) > maxk/∈Cj
Nk(t), (∀k ∈ Cj , Nℓ(t)(t) = Nk(t)),

and (11) (resp. (12)) holds for CR-C (resp. CR-A) then
ℓj ← ℓ(t), Cj−1 ← Cj \ {ℓj}, j ← j − 1

sample At ← argmink∈Cj
Nk(t) (tie broken arbitrarily), update {Nk(t)}k∈Cj and µ̂(t);

end
ℓ2 ← ℓ(T ); return ı̂← argmaxk∈C2

µ̂k(T ) (tie broken arbitrarily).

4.2 Analysis of CR-C and CR-A

As in Section 3.4, µ1 > µ2 ≥ . . . ≥ µK is assumed wlog and we further define µK+1 = 0. We
introduce the following instance-specific quantities needed to state our error probability upper bounds.
For j ∈ {2, . . . ,K}, define

ψj =
j − 1

j

(
µ1 −

∑j
k=2 µk
j − 1

)2

, ψ̄j =
j − 1

j

(
µ1 −

∑j−1
k=2 µk + µj+1

j − 1

)2

, ζj = µj−µj+1,

2This condition is only imposed to simplify our analysis. It may be removed.
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φj =

∑j
k=1 µk
j

−µj+1, and ξ̄j = inf

{
K∑
k=1

(λk − µk)2 : λ ∈ [0, 1]K , λ1 ≤ min
k=2,...,j−1,j+1

λk

}
.

Here we remark ξ̄j ≥ ξj and ψ̄j ≥ ψj . These inequalities are proven in Proposition 3 and Proposition
5 in Appendix D.
Theorem 3. Let µ ∈ [0, 1]K . Under CR-C, limT→∞

1
T log 1

Pµ [̂ı̸=1] is larger than

2 min
j=2,...,K


min

{
max

{
ξj log(j+1)(1−αj)1{j ̸=K}

logj
, ξj

}
, ξ̄j

}
jlogK

 ,

where αj ∈ R is the real number such that 2ξj(1−αj)

jlogj
= [((1 + ζj)

√
αj −

√
1

(j+1)log(j+1)
)+]

2.

Theorem 4. Let µ ∈ [0, 1]K . Under CR-A, limT→∞
1
T log 1

Pµ [̂ı̸=1] is larger than

2 min
j=2,...,K

min{max{ψj log(j+1)(1−αj)1{j ̸=K}

logj
, ψj}, ψ̄j}

jlogK

 ,

where αj ∈ R is the real number such that ψj(1−αj)

jlogj
= j

j+1 [((1 + φj)
√
αj −

√
1

(j+1)log(j+1)
)+]

2.

Note that Theorem 3 implies that CR-C enjoys better performance guarantees than SR, and hence
has for now the best known error probability upper bounds.

Proof sketch. The complete proof of Theorems 3 and 4 are given in Appendices C.1 and C.2. We
sketch that of Theorem 3. The proof consists in upper bounding Pµ[ℓj = 1] for j ∈ {2, . . . ,K}. We
focus here on the most challenging case where j ∈ {3, . . . ,K − 1} (the analysis is simpler when
j = K, since the only possible allocation is uniform, and when j = 2, since the only possible round
deciding ℓ2 is the last round).

To upper bound Pµ[ℓj = 1] using Theorem 1, we will show that it is enough to study the large
deviations of the process {ω(θT )}T≥1 for any fixed θ ∈ [θ0, 1] and to define a set S ⊆ [0, 1]K under
which ℓj = ℓ(θT ) = 1. We first observe that ℓj = ℓ(θT ) restricts the possible values of ω(θT ):
ω(θT ) ∈ Xj :=

{
x ∈ Σ : ∃σ ∈ [K]2 s.t. xσ(1) = . . . = xσ(j) > xσ(j+1) > . . . > xσ(K) > 0

}
.

We can hence just derive the LDP satisfied by {ω(θT )}T≥1 on Xj . This is done in Appendix
E, and we identify by Iθ a rate function leading to an LDP upper bound. By defining

Xj,i(θ) =

{
x ∈ Xj : θxσ(i)ilogi > 1− θ

K∑
k=i+1

xσ(k)

}
, ∀i ∈ {j, . . . ,K},

As it is shown in Appendix E.1 that Iθ(x) =∞ if x ∈ Xj,i(θ) for i ≥ j, we may further restrict to
Xj \ ∪Ki=jXj,i(θ).

Next, we explain how to apply Theorem 1 to upper bound Pµ[ℓj = 1]. Let J = {J ⊆ [K] : |J | =
j, 1 ∈ J} as defined in Section 3.4. For all β, θ ∈ (0, 1] and J ∈ J , we introduce the sets

SJ(β) =
{
λ ∈ [0, 1]K : min

k∈J,k ̸=1
λk − λ1 ≥ G(β)

}
,

ZJ(θ, β) =

{
z ∈ Xj \ ∪Ki=jXj,i(θ) : (∀k ∈ J, zk = max

k′∈[K]
zk′),

θ
∑
k∈J zklogj

1− θ
∑
k/∈J zk

= β

}
.

Assume that in round t, ℓj = ℓ(t) = 1, Cj = J and let τ =
∑
k/∈J Nk(t) ≤ t be the number of times

arms outside J are pulled. While ω(t) /∈ Xj,j(t/T ), we have β = (t−τ)logj
T−τ ∈ (0, 1]. Using the

criteria (11), we observe that
T∑

t=K+1

∑
J∈J

Pµ

[
ℓj = ℓ(t) = 1, Cj = J,ω(t) ∈ Xj \ ∪Ki=jXj,i(

t

T
)

]

≤
T∑

t=K+1

∑
J∈J

∑
τ≤t,τ∈N

Pµ

[
µ̂(t) ∈ SJ(

(t− τ)logj
T − τ

),ω(t) ∈ ZJ(
t

T
,
(t− τ)logj
T − τ

)

]
.
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To upper bound the r.h.s. in the above inequality, we combine the results of Theorem 1 and a
partitioning technique (presented in Appendix G). This gives:

lim
T→∞

1

T
log

1

Pµ [µ̂(θT ) ∈ SJ(β),ω(θT ) ∈ ZJ(θ, β)]
≥ θ inf

z∈cl(ZJ (θ,β))
max{FSJ (β)(z), Iθ(z)}.

The proof is completed by providing lower bounds of θFSJ (β)(z) and θIθ(z) for a fixed z ∈ ZJ(θ, β)
with various J . Such bounds are derived in Appendix D.1 and E.3.1, respectively. □

Example 2. To conclude this section, we just illustrate through a simple example the gain in terms of
performance guarantees brought by CR compared to SR. Assume we have 50 Bernoulli arms with
µ1 = 0.95, µ2 = 0.85, µ3 = 0.2, and µk = 0 for k = 4, . . . , 50. For SR, Theorem 2 states that
with a budget of 5000 samples, the error probability of SR does not exceed 1.93× 10−3. With the
same budget, Theorems 3 and 4 state that the error probabilities of CR-C and CR-A do not exceed
6.40× 10−4 and 6.36× 10−4, respectively.

We note that in general, we cannot say that one of our two algorithms, CR-C or CR-A, has better
guarantees than the other. This is demonstrated in the problem instances presented in Appendix K.1
and K.4.

5 Numerical Experiments

We consider various problem instances to numerically evaluate the performance of CR. In these
instances, we vary the number of arms from 5 to 55; we use Bernoulli distributed rewards, and vary
the shape of the arm-to-reward mapping. For each instance, we compare CR to SR, SH, and UGapE.

Most of our numerical experiments are presented in Appendix K. Due to space constraints, we
just provide an example of these results below. In this example, we have 55 arms with convex
arm-to-reward mapping. The mapping has 10 steps, and the m-th step consists of m arms with same
average reward, equal to 3

4 · 3
− m

10 . Table 1 presents the error probabilities averaged over 40, 000
independent runs. Observe that CR-A performs better than CR-C (being aggressive when discarding
arms has some benefits), and both versions of CR perform better than SR and all other algorithms.

Table 1: Error probability (in %).
T = 3, 000 T = 4, 000 T = 5, 000

UGapE (Gabillon et al., 2012) 24.7 21.3 18.9
SH Karnin et al. (2013) 10.2 5.9 3.2
SR Audibert et al. (2010) 5.5 2.8 1.3
CR-C (this paper) 7.1 2.6 1.1
CR-A (this paper) 4.7 1.6 0.6

6 Conclusion

In this paper, we have established, in MAB problems, a connection between the LDP satisfied by the
sampling process (under any adaptive algorithm) and that satisfied by the empirical average rewards
of the various arms. This connection has allowed us to improve the performance analysis of existing
best arm identification algorithms, and to devise and analyze new algorithms with an increased level
of adaptiveness. We show that one of these algorithms CR-C has better performance guarantees than
existing algorithms and that it performs also better in practice in most cases.

Future research directions include: (i) developing algorithms with further improved performance
guarantees – can the discarding conditions of CR be further optimized? (ii) Enhancing the Large
Deviation analysis of adaptive algorithms – under which conditions, can we establish a complete
LDP of the process {Z(t)}t≥1 = {(ω(t), µ̂(t))}t≥1? Answering this question would constitute
a strong step towards characterizing the minimal instance-specific error probability for best arm
identification with fixed budget. (iii) Extending our approach to other pure exploration tasks: top-m
arm identification problems (Bubeck et al., 2013), best arm identification in structured bandits (Yang
and Tan, 2022; Azizi et al., 2022), or best policy identification in reinforcement learning.
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A Notation

Problem setting
K Number of arms

[m] for any m ∈ N The set {1, 2 . . . ,m}
νk Reward distribution for arm k

Xk(t) Random reward received from pulling arm k in round t
µ ∈ RK Vector of the expected rewards of the various arms

Λ Set of all possible parameters µ
1(µ) Best arm under parameter µ
T Given budget

Quantities related to the error rate lower bound
ω Vector of the proportions of arm draws
Σ Simplex

Eµ and Pµ The expectation and probability measure corresponding to µ
Alt(µ) Set of confusing parameters for µ (whose best arm is not 1(µ))
d(µ, µ′) KL divergence between the distributions parametrized by µ and µ′

kl(a, b) KL divergence between two Bernoulli distributions of means a and b
Ψ(λ,ω)

∑K
k=1 ωkd(λk, µk)

Notation used in large deviation theory
cl(S) The closure of S
FS(ω) infλ∈cl(S) Ψ(λ,ω)
I Rate function for {ω(t)}t≥1

B(y, δ) The open ball with center y and radius δ
Notation used in the algorithms

Nk(t) Number of pulls of arm k up to t
ωk(t) Nk(t)/t
At The arm pulled in round t
µ̂k(t)

∑t
s=1Xk(s)1{As = k}/Nk(t)

ı̂ Recommended arm
Notation for SR, CR (assuming µ1 > µ2 ≥ . . . ≥ µK )

Cj Candidates set with size j
ℓj The arm discarded from Cj

ℓ(t) Empirical worst arm at round t
logj 1

2
+

∑j
k=2

1
k

G(β) 1√
β
− 1

J {J ⊆ [K] : |J | = j, 1 ∈ J}
Iθ Rate function for {ω(θT )}T≥1

Γj minJ∈J inf
{∑

k∈J d(λk, µk) : λ ∈ RK , λ1 ≤ mink∈J λk

}
ξj infλ∈[0,1]j

{∑j
k=1(λk − µk)

2 : λ1 ≤ mink=1,...,j λk

}
ξ̄j infλ∈[0,1]K

{∑K
k=1(λk − µk)

2 : λ1 ≤ mink=2,...,j−1,j+1 λk

}
ψj

j−1
j

(
µ1 −

∑j
k=2

µk

j−1

)2

ψ̄j
j−1
j

(
µ1 −

∑j−1
k=2

µk+µj+1

j−1

)2

ζj µj − µj+1

φj

∑j
k=1 µk/j − µj+1
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B Technical lemmas towards the proof of Theorem 1

Lemma 2. Let µ ∈ Λ, t > max{K, e} and β ∈ (0, 1). There is a constant c > 0 (that depends on
K and β only) s.t.

Eµ

[
eβX

]
≤ c(log t)K ,

where X =
∑K
k=1Nk(t)d(µ̂k(t), µk).

Proof. Let M be the smallest positive integer s.t. (i) logM
β > K + 1 and (ii) (logM)2K < M

1
β . We

have:

Eµ

[
eβX

]
≤

∞∑
n=0

Pµ

[
eβX ≥ n

]
≤M +

∑
n≥M

Pµ

[
X ≥ log n

β

]

≤M +
∑
n≥M

(
2(log n)2 log t

)K
n

1
β

eK+1

β2KKK
, (13)

where the last inequality follows from repeatedly invoking Lemma 3 with δ = logn
β (notice that

n ≥M satisfies the condition on δ of Lemma 3). Observe that the r.h.s. of (13) is a Bertrand series
and it is convergent since β < 1. Unfamiliar reader can check the convergence analysis below. (ii)
implies that the sequence will decrease after n ≥M , hence the sum in (13) is bounded as (up to a
constant multiplicative factor):∑

n≥M

(log n)
2K

n
1
β

≤
∫ ∞

1

(log x)2K

x
1
β

dx

=

∫ ∞

0

y2Ke−( 1
β−1)ydy

≤
(
1

β
− 1

)−2K−1

Γ(2K + 1). (14)

The constant c can be deduced from (13) and (14).

The following lemma is Theorem 2 in Magureanu et al. (2014). It was originally stated for Bernoulli
distributions, but as claimed in Garivier and Kaufmann (2016); Kaufmann and Koolen (2018), it is
straightforward to generalize it to one-parameter exponential distributions.
Lemma 3 (Magureanu et al. (2014)). For all δ > (K + 1) and t ∈ N, we have:

Pµ [X ≥ δ] ≤ e−δ
(
⌈δ log t⌉δ

K

)K
eK+1.
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C Analysis of CR

In C.1, we give the proof for Theorem 3 and in C.2 that of Theorem 4. As mentioned in §3.4 and
§4.2, in the following analysis, we will assume that 1 ≥ µ1 > µ2 ≥ . . . ≥ µK ≥ 0.

C.1 Performance analysis of CR-C

Theorem 3. Let µ ∈ [0, 1]K . Under CR-C, limT→∞
1
T log 1

Pµ [̂ı̸=1] is larger than

2 min
j=2,...,K


min

{
max

{
ξj log(j+1)(1−αj)1{j ̸=K}

logj
, ξj

}
, ξ̄j

}
jlogK

 ,

where αj ∈ R is the real number such that

2ξj (1− αj)
jlogj

=

[(
(1 + ζj)

√
αj −

√
1

(j + 1)log(j + 1)

)
+

]2
.

We upper bound Pµ [ℓj = 1] for (i) j = K; (ii) j = 2; (iii) j ∈ {3, . . . ,K}. The upper bound for (i),
presented in C.1.1, is the easiest to derive as the only possible allocation before one discards the first
arm is uniform among all arms. The bound for (ii), presented in C.1.2, is the second easiest to derive
as ℓ2 is decided only in the end, namely, in the T -th round. The upper bound for (iii), presented in
C.1.3, is more involved since we have to consider all possible allocations and rounds.

C.1.1 Upper bound of Pµ [ℓK = 1]

Lemma 4. Let µ ∈ [0, 1]K . Under CR-C,

lim
T→∞

1

T
log

1

Pµ [ℓK = 1]
≥ 2ξK

KlogK
.

Proof. Without loss of generality, let us assume θ0T > K. Observe that

Pµ [ℓK = 1] =

T∑
t≥θ0T

Pµ [ℓK = ℓ(t) = 1] . (15)

Since CR-C discards ℓK = ℓ(t) at the round t only whenNℓ(t)(t) = Nk(t) for all k ∈ [K], it suffices
to consider ω(t) ∈ XK = {(1/K, . . . , 1/K)}. We further introduce

Sθ =
{
λ ∈ RK : λ1 ≤ min

k ̸=1
λk −G(θlogK)

}
, ∀θ ∈ [θ0, 1] ∩Q.

With this notation, we can use the criteria of discarding the arm ℓK = ℓ(t) = 1 (see (11)) to get that:

T∑
t≥θ0T

Pµ [ℓK = ℓ(t) = 1] ≤
T∑

t≥θ0T

Pµ

[
µ̂(t) ∈ S t

T
,ω(t) ∈ XK

]
. (16)

Applying Theorem 10 in Appendix G with θ̃0 = θ0

E = {ℓK = 1}, Sθ,γ = Sθ, Wθ,γ = XK ,∀γ,

yields that

lim
T→∞

1

T
log

1

Pµ[ℓK = 1]
≥ inf
θ,γ∈[θ0,1]∩Q

inf
ω∈cl(Wθ,γ)

θmax{FSθ,γ
(ω), Iθ(ω)}

= inf
θ∈[θ0,1]∩Q

θ{FSθ
(1/K, . . . , 1/K), Iθ(1/K, . . . , 1/K)}. (17)

Theorem 10 can be indeed applied since, in view of Theorem 5, {ω(θT )}T≥1 satisfies LDP upper
bound (3) with rate function Iθ. In the above derivation, by convention, we let infλ∈∅ f(λ) =
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∞. Next, from Theorem 5 (a) in Appendix E.1, we know that Iθ(1/K, . . . , 1/K) = ∞ if
θ > 1/logK. Thus, the minimization problem on r.h.s. of (17) can be further lower bounded
by infθ∈[θ0,1/logK]∩Q θFSθ

(1/K, . . . , 1/K). From the definition of FSθ
, we have

θFSθ
(1/K, . . . , 1/K) =

θ

K
inf

{
K∑
k=1

d(λk, µk) : λ1 ≤ min
k ̸=1

λk −G(θlogK)

}

≥ 2θ

K
inf

{
K∑
k=1

(λk − µk)2 : λ1 ≤ min
k ̸=1

λk −G(θlogK)

}
≥ 2ξK

KlogK
,

(18)

where the first inequality is from Assumption 1, and the last inequality follows from Proposition 4 in
Appendix D.1 with β = θlogK. The proof is completed combining (17) and (18).

C.1.2 Upper bound of Pµ [ℓ2 = 1]

Lemma 5. Let µ ∈ [0, 1]K . Under CR-C,

lim
T→∞

1

T
log

1

Pµ [ℓ2 = 1]
≥ min{max{4ξ2(1− α2), 3ξ2}, 3ξ̄2}

3logK
,

where α2 ∈ R is the real number such that

ξ2 (1− α2) =

[(
(1 + ζ2)

√
α2 −

1

2

)
+

]2
. (19)

Proof. There are two arms remaining in the last phase. Hence, it suffices to consider the estimate and
allocation in the last round. The possible allocation ω(T ) belongs to the set

X2 =
{
x ∈ Σ : ∃σ : [K] 7→ [K] s.t. xσ(1) = xσ(2) > xσ(3) > . . . > xσ(K) > 0

}
.

As we defined J in Section 3.4, we introduce D = {D ⊆ [K] : |D| = 2, 1 ∈ D}, and

XD =

{
x ∈ X2 : min

k∈D
xk > max

k′ /∈D
xk′

}
.

The set ∪D∈DXD is a subset of X2, and is relevant when we consider events where the best arm 1 is
discarded in the last elimination phase. Since ℓ2 is decided as the empirical worst arm in C2,

Pµ[ℓ2 = 1] ≤
∑
D∈D

Pµ[µ̂(T ) ∈ SD,ω(T ) ∈ XD]

≤ (K − 1)max
D∈D

Pµ[µ̂(T ) ∈ SD,ω(T ) ∈ XD], (20)

where

SD =

{
λ ∈ [0, 1]K : min

k∈[D]
λk ≥ λ1

}
.

Rearranging (20) yields that

lim
T→∞

1

T
log

1

Pµ[ℓ2 = 1]
≥ lim
T→∞

min
D∈D

1

T
log

1

Pµ[µ̂(T ) ∈ SD,ω(T ) ∈ XD]

≥ min
D∈D

lim
T→∞

1

T
log

1

Pµ[µ̂(T ) ∈ SD,ω(T ) ∈ XD]
≥ min
D∈D

inf
ω∈cl(XD)

max{FSD
(ω), I1(ω)}, (21)

where I1 denotes the rate function for which {ω(T )}T≥1 satisfies an LDP upper bound (3), and the
last inequality follows from Theorem 1 with S = SD,W = XD.
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Further introduce for all i ∈ {2, . . . ,K},

X2,i(1) =

{
x ∈ X2 : xσ(i)ilogi > 1−

K∑
k=i+1

xσ(k)

}
,

where in this definition, σ refers to the permutation used in the definition of X2. In Theorem 5 (a)
in Appendix E.1, we show that I1(ω) = ∞ for all ω ∈ ∪Ki=2X2,i(1). Hence any ω ∈ ∪Ki=2X2,i(1)
cannot be the minimizer on the r.h.s. of (21). In the following, we define

ZD(1, 1) = XD \ ∪Ki=2X2,i(1).

Here the argument (1, 1) in ZD(1, 1) is to be consistent with our notation in Appendix E, but we
abbreviate it as ZD for short below. To get a lower bound of (21), we consider two cases: (a) D ̸= [2];
(b) D = [2].

(a) The case where D ̸= [2]. Using Corollary 1 with β = 1, j = 2 in Appendix D.1 yields that:

inf
ω∈cl(XD)

max{FSD
(ω), I1(ω)} ≥ inf

z∈cl(ZD)
FSD

(z)

≥

(
1−

∑
k/∈D

zk

)
inf

{∑
k∈D

(λk − µk)2 : λ ∈ [0, 1]K , min
k∈D

λk = λ1

}
(22)

≥

(
1−

∑
k/∈D

zk

)
ξ̄2

≥ ξ̄2

logK
, (23)

where the last inequality directly comes from Proposition 7 with θ = 1, j = 2, i = 3 in Appendix
E.2.

(b) The case where D = [2]. Next, we will show that both ξ2
logK

and 4ξ2(1−α2)

3logK
are lower bounds

for infω∈cl(XD) max{FSD
(ω), I1(ω)}. The maximum of these hence becomes our lower bound.

Together with the conclusion obtained in the case (a), we complete the proof of Lemma 5.

Lower bounding by ξ2
logK

. Observe that (22) holds also for D = [2], hence

inf
ω∈cl(X[2])

max{FS[2]
(ω), I1(ω)} ≥ inf

ω∈cl(Z[2])
FS[2]

(ω)

≥

(
1−

K∑
k=3

zk

)
inf

λ∈RK , λ2>λ1

∑
k∈[2]

(λk − µk)2


≥

(
1−

K∑
k=3

zk

)
ξ2 (24)

≥ ξ2

logK
, (25)

where the second inequality is derived by Proposition 4 with θ = 1, β = 1, j = 2 in Appendix D.1,
and the last inequality follows from Proposition 7 with j = 2, i = 3 in Appendix E.3.

Lower bounding by 4ξ2(1−α2)

3logK
. One can derive another lower bound by using I1. In Theorem 5 (b),

j = 2, θ = β = 1 in Appendix E.1, we show that I1 is a valid lower semi-continuous rate function for
an LDP upper bound (3) for the process {ω(T )}T≥1. In Corollary 3 in Appendix E.3.1, we further
show that I1(z) ≥ I1(z) for z ∈ Z[2], where

I1(z) =
4

3logK

(1 + ζ2)

√
zσ(3)

1−
∑K
k=4 zσ(k)

− 1

2


+

2

, ∀z ∈ Z[2]. (26)
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Instead of using (25), we lower bound FS[2]
(z) as:

FS[2]
(z) ≥

(
1−

K∑
k=3

zσ(k)

)
ξ2

= ξ2

(
1−

K∑
k=4

zσ(k)

)(
1−

zσ(3)

1−
∑K
k=4 zσ(k)

)

≥ 4ξ2

3logK

(
1−

zσ(3)

1−
∑K
k=4 zσ(k)

)
, (27)

where the first inequality follows the derivation of (24) and the last inequality stems from Proposition 7
with θ = 1, j = 2, i = 4 in Appendix E.3. Since FS[2]

(z) and I1(z) are lower bounded by the
functions of α =

zσ(3)

1−
∑K

k=4 zσ(k)
given in (26) and (27), we have:

inf
ω∈cl(X[2])

max{FS[2]
(ω), I1(ω)} ≥ 4

3logK
inf
α∈R

max{ξ2 (1− α) , [((1 + ζ2)
√
α− 1

2
)+]

2}

≥ 4ξ2(1− α2)

3logK
, (28)

where the last inequality is due to Lemma 23 in Appendix H and α2 is defined in (19). Hence, the
maximum of the r.h.s. of (25) and (28) is a lower bound for infω∈cl(X[2]) max{FS[2]

(ω), I1(ω)}

C.1.3 Upper bound for Pµ [ℓj = 1] for j ∈ {3, . . . ,K − 1}

Lemma 6. Let µ ∈ [0, 1]K , j ∈ {3, . . . ,K − 1}. Under CR-C,

lim
T→∞

1

T
log

1

Pµ [ℓj = 1]
≥

2min
{
max

{
ξj log(j+1)(1−αj)

logj
, ξj

}
, ξ̄j

}
jlogK

,

where αj ∈ R is the real number such that

2ξj (1− αj)
jlogj

=

[(
(1 + ζj)

√
αj −

√
1

(j + 1)log(j + 1)

)
+

]2
. (29)

Proof. Without loss of generality, we assume θ0T > K and θ0T
K ∈ N.

Observe that Pµ[ℓj = 1] =
∑
J∈J Pµ[ℓj = 1, Cj = J ], which directly implies

lim
T→∞

1

T
log

1

Pµ [ℓj = 1]
≥ min
J∈J

lim
T→∞

1

T
log

1

Pµ [ℓj = 1, Cj = J ]
. (30)

There are j arms remaining while discarding ℓj . The possible allocation ω(t) belongs to the set

Xj =
{
x ∈ Σ : ∃σ : [K] 7→ [K] s.t. xσ(1) = . . . = xσ(j) > xσ(j+1) > . . . > xσ(K) > 0

}
.

Suppose that in round t, Cj = J for some J ∈ J and let τ =
∑
k/∈J Nk(t) ≥ θ̃0T , where

θ̃0 = (K − j)θ0/K, be the number of times arms outside J are pulled. While ℓj = ℓ(t) = 1, we

must have µ̂(t) ∈ SJ( (t−τ)logjT−τ ), where

SJ(β) =
{
λ ∈ [0, 1]K : min

k∈J,k ̸=1
λk − λ1 ≥ G(β)

}
, ∀β > 0,

because (t−τ)logj
T−τ =

∑
k∈Cj

Nk(t)logj

T−
∑

k/∈Cj
Nk(t)

(recall the discarding condition (11)). Now further introduce

∀θ, β ∈ (0, 1],

XJ(θ, β) =

{
x ∈ Xj : (∀k ∈ J, xk = max

k′∈[K]
xk′),

θ
∑
k∈J xklogj

1− θ
∑
k/∈J xk

= β

}
.
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We then have:

Pµ [ℓj = 1, Cj = J ] ≤
T∑

t≥θ0T

t∑
τ≥θ̃0T

Pµ

[
µ̂(t) ∈ SJ(

(t− τ)logj
T − τ

),ω(t) ∈ XJ(
t

T
,
(t− τ)logj
T − τ

)

]
.

Applying Theorem 10 in Appendix G with E = {ℓj = 1, Cj = J},

Sθ,γ =

{
SJ( (θ−γ)logj1−γ ), if G( (θ−γ)logj1−γ ) ≤ 1,

SJ(G−1(1)), otherwise,
, and Wθ,γ = XJ(θ,

(θ − γ)logj
1− γ

),

(notice that β = (t−τ)logj
T−τ = (θ−γ)logj

1−γ and SJ(β) = ∅ if G(β) > 1) yields that

lim
T→∞

1

T
log

1

Pµ [ℓj = 1, Cj = J ]
≥

inf
θ∈[θ0,1]∩Q

inf
γ∈[θ̃0,1]∩Q

inf
x∈cl(XJ (θ,

(θ−γ)logj
1−γ ))

θmax{FSJ (
(θ−γ)logj

1−γ )
(x), Iθ(x)}. (31)

Further introduce for all i ∈ {j, . . . ,K},

Xj,i(θ) =

{
x ∈ Xj : θxσ(i)ilogi > 1− θ

K∑
k=i+1

xσ(k)

}
.

In Theorem 5 with (a) in Appendix E.1, we show that Iθ(ω) =∞ for all ω ∈ ∪Ki=jX2,i(θ), hence
any ω ∈ ∪Ki=jXj,i(θ) will not be the minimizer on the r.h.s. of (31). In the following, we define

ZJ(θ, β) = XJ(θ, β) \ ∪Ki=jXj,i(θ).

Consider any z ∈ ZJ(θ, β), as z /∈ Xj,j(θ), we have

(θ − γ)logj
1− γ

=
θzσ(j)jlogj

1− θ
∑
k>j zσ(k)

< 1.

Therefore, after excluding the points in ∪Ki=jXj,i(θ) and setting β = (θ−γ)logj
1−γ , the r.h.s of (31) can

be lower bounded by

inf
θ,β∈(0,1]∩Q

inf
z∈cl(ZJ (θ,β))

θmax{FSJ (β)(z), Iθ(z)}. (32)

For lower bounding (32), we consider two cases: (a) J ̸= [j]; (b) J = [2].

(a) The case where J ̸= [j]. If z ∈ ZJ(θ, β),

θFSJ (β)(z) = θ inf
λ∈cl(SJ (β))

Ψ(λ, z)

≥ 2 inf

{∑
k∈J

θzk(λk − µk)2 : min
k∈J,k ̸=1

λk − λ1 ≥ G(β)

}

=
2

jlogj

(
1− θ

∑
k/∈J

zk

)
β inf

{∑
k∈J

(λk − µk)2 : min
k∈J,k ̸=1

λk − λ1 ≥ G(β)

}
(33)

≥ 2ξ̄j

jlogj
(1− θ

∑
k/∈J

zk)

≥ 2ξ̄j

jlogK
, (34)

where the first inequality is due to Assumption 1; the second equality uses the fact that ∀k ∈ J, θzk =
(1−θ

∑
k′ /∈J zk′ )β

jlogj
(as z ∈ ZJ(θ, β)); the third follows from Corollary 1 in Appendix D.1; the last one

is a consequence of Proposition 7 with i = j + 1 in Appendix E.3.
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(b) The case where J = [j]. We will show that both 2ξj
jlogK

and 2ξj log(j+1)(1−αj)

jlogjlogK
are lower bounds

for the r.h.s. of (32). The maximum of these becomes our lower bound. Together with the conclusion
obtained in the case (a), we complete the proof of Lemma 6.

Lower bounding by 2ξj
jlogK

. By Proposition 4 and Proposition 7, we can further lower bound the r.h.s.

of (32) as

θFS[j](β)(z) ≥
2

jlogj

1− θ
∑
k>j

zk

β inf

∑
k∈[j]

(λk − µk)2 : min
k∈[j],k ̸=1

λk − λ1 ≥ G(β)


≥ 2ξj

jlogj

1− θ
∑
k>j

zk

 (35)

≥ 2ξj

jlogK
, (36)

where the first inequality corresponds to (33); the second inequality is due to Proposition 4 in
Appendix D.1; the last inequality uses Proposition 7 with i = j + 1 in Appendix E.3.

Lower bounding by 2ξj log(j+1)(1−αj)

jlogjlogK
. One can derive another lower bound by using Iθ. In Theo-

rem 5 with (b) in Appendix E.1, we show that Iθ is a valid lower semi-continuous rate function
for an LDP upper bound (3) for the process {ω(θT )}T≥1. And in Corollary 3 in Appendix E.3.1,
Iθ(z) ≥ Iθ(z) for z ∈ Z[j](θ, β), where

Iθ(z) =
log(j + 1)

θlogK

((1 + ζj)

√
θzσ(j+1)

1− θ
∑K
k=j+2 zσ(k)

−
√

1

(j + 1)log(j + 1)

)
+

2

. (37)

Instead of using (36), we lower bound FS[J](β)(z) as:

θFS[j](β)(z) ≥
2ξj

jlogj

1− θ
∑
k/∈[j]

zk

 =
2ξj

jlogj

1− θ
K∑

k=j+2

zσ(k)

(1− θzσ(j+1)

1− θ
∑K
k=j+2 zσ(k)

)

≥ 2ξj log(j + 1)

jlogjlogK

(
1−

θzσ(j+1)

1− θ
∑K
k=j+2 zσ(k)

)
, (38)

where the first inequality is from (35) and the last inequality is due to Proposition 7 with i =
j + 2 in Appendix E.3. Since θFS[j](β)(z) and θIθ(z) are lower bounded by the functions of

α =
θzσ(j+1)

1−θ
∑K

k=j+2 zσ(k)
given in (37) and (38), we have:

inf
θ,β∈[0,1]∩Q

θ inf
z∈cl(Z[j](θ,β))

max{FS[j](β)(z), Iθ(z)} ≥

log(j + 1)

logK
inf
α∈R

max

2ξj (1− α)
jlogj

,

[(
(1 + ζj)

√
α−

√
1

(j + 1)log(j + 1)

)
+

]2 . (39)

By Lemma 23 in Appendix H, (39) is lower bounded by 2ξj log(j+1)(1−αj)

jlogjlogK
, where αj is described in

(29).

C.2 Performance analysis of CR-A

Theorem 4. Let µ ∈ [0, 1]K . Under CR-A, limT→∞
1
T log 1

Pµ [̂ı̸=1] is larger than

2 min
j=2,...,K

min{max{ψj log(j+1)(1−αj)1{j ̸=K}

logj
, ψj}, ψ̄j}

jlogK

 ,
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where αj ∈ R is the real number such that

ψj (1− αj)
jlogj

=
j

j + 1

[(
(1 + φj)

√
αj −

√
1

(j + 1)log(j + 1)

)
+

]2
.

We upper bound Pµ [ℓj = 1] for (i) j = K; (ii) j = 2; (iii) j ∈ {3, . . . ,K}. The upper bound for (i),
presented in C.2.1, is the easiest to derive as the only possible allocation before one discards the first
arm is uniform among all arms. The bound for (ii), presented in C.2.2, is the second easiest to derive
as ℓ2 is decided only in the end, namely, in the T -th round. The upper bound for (iii), presented in
C.2.3, is more involved since we have to consider all possible allocations and rounds. Overall, the
analysis is very similar to that of CR-C, and we just sketch the arguments below.

C.2.1 Upper bound of Pµ [ℓK = 1]

Lemma 7. Let µ ∈ [0, 1]K . Under CR-A,

lim
T→∞

1

T
log

1

Pµ [ℓK = 1]
≥ 2ψK

KlogK
.

Proof. The proof follows the steps similar to those in the proof in Appendix C.1.1.
Applying Theorem (10) to

T∑
t≥θ0T

Pµ [ℓK = ℓ(t) = 1] ≤
T∑

t≥θ0T

Pµ

[
µ̂(t) ∈ S t

T
,ω(t) ∈ XK

]
, (40)

with

Sθ =

{
λ ∈ [0, 1]K : λ1 ≤

∑K
k=2 λk
K − 1

−G(θlogK)

}
, ∀θ ∈ (0,

1

logK
],

we obtain

lim
T→∞

1

T
log

1

Pµ[ℓK = 1]
≥ min
θ∈[θ0,1]∩Q

θ{FSθ
(1/K, . . . , 1/K), Iθ(1/K, . . . , 1/K)}. (41)

Next, from Theorem 6 (a) in Appendix E.1, we know that Iθ(1/K, . . . , 1/K) =∞ if θ > 1/logK.
Finally, Assumption 1 and Proposition 6 in Appendix D.2 yields that

min
θ∈[θ0,1/log(K)]∩Q

θ{FSθ
(1/K, . . . , 1/K), Iθ(1/K, . . . , 1/K)} ≥ 2ψK

KlogK
.

C.2.2 Upper bound of Pµ [ℓ2 = 1]

Lemma 8. Let µ ∈ [0, 1]K . Under CR-A,

lim
T→∞

1

T
log

1

Pµ [ℓ2 = 1]
≥ min{max{4ψ2(1− α2), 3ψ2}, 3ψ̄2}

3logK
,

where α2 ∈ R is the real number such that

3ψ2 (1− α2) = 4

[(
(1 + φ2)

√
α2 −

1

2

)
+

]2
. (42)

Proof. The proof follows the same steps as those of the proof in Appendix C.1.2.
Applying Theorem 1 with S = SD,W = XD, where

SD =

{
λ ∈ [0, 1]K : min

k∈[D]
λk ≥ λ1

}
,
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we get

lim
T→∞

1

T
log

1

Pµ[ℓ2 = 1]
≥ min
D∈D

inf
ω∈cl(XD)

max{FSD
(ω), I1(ω)}, (43)

Then we exclude the points in ∪Ki=2X2,i(1) using Theorem 6 (a) in Appendix E.1 and we define

ZD(1, 1) = XD \ ∪Ki=2X2,i(1).

Consider two cases: (a) D ̸= [2]; (b) D = [2].

(a) The case where D ̸= [2]. Using Corollary 2 with β = 1, j = 2 in Appendix D.2 and Proposition
7 with θ = 1, j = 2, i = 3 in Appendix E.2 yields that

inf
ω∈cl(XD)

max{FSD
(ω), I1(ω)} ≥ ψ̄2

logK
.

(b) The case where D = [2]. We show that both ψ2

logK
and 4ψ2(1−α2)

3logK
are lower bounds for

limT→∞
1
T log 1

Pµ[µ̂(T )∈S[2],ω(T )∈Z[2]]
. The maximum of these hence becomes our lower bound.

Together with the conclusion obtained in the case (a), we complete the proof of Lemma 8.

Lower bounding by ψ2

logK
. Applying Proposition 6 with θ = 1, β = 1, j = 2 in Appendix D.2, and

Proposition 7 with j = 2, i = 3 in Appendix E.3, we can obtain:

inf
ω∈cl(X[2])

max{FS[2]
(ω), I1(ω)} ≥ ψ2

logK
.

Lower bounding by 4ψ2(1−α2)

3logK
. In Theorem 6 (b), j = 2, θ = β = 1 in Appendix E.1, we show that

I1 is a valid rate function for an LDP upper bound (3) for the process {ω(T )}T≥1. And Corollary 4
in Appendix E.3.2 show I1(z) > I1(z) for z ∈ Z[2], where

I1(z) =
16

9logK

(1 + φ2)

√
zσ(3)

1−
∑K
k=4 zσ(k)

− 1

2


+

2

, ∀z ∈ Z[2]. (44)

Also, we lower bound FS[2]
(z) by Proposition 7 with θ = 1, j = 2, i = 4 in Appendix E.3:

FS[2]
(z) ≥ 4ψ2

3logK

(
1−

zσ(3)

1−
∑K
k=4 zσ(k)

)
. (45)

Observe that FS[2]
(z) and I1(z) are lower bounded by the functions of α =

zσ(3)

1−
∑K

k=4 zσ(k)
given in

(44) and (45). Applying Lemma 23 in Appendix H yields that

inf
ω∈cl(X[2])

max{FS[2]
(ω), I1(ω)} ≥ 4ψ2(1− α2)

3logK
. (46)

C.2.3 Upper bound for Pµ [ℓj = 1] for j ∈ {3, . . . ,K − 1}

Lemma 9. Let µ ∈ [0, 1]K , j ∈ {3, . . . ,K − 1}. Under CR-A,

lim
T→∞

1

T
log

1

Pµ [ℓj = 1]
≥

2min
{
max

{
ψj log(j+1)(1−αj)

logj
, ψj

}
, ψ̄j

}
jlogK

,

where αj ∈ R is the real number such that

ψj (1− αj)
jlogj

=
j

j + 1

[(
(1 + φj)

√
αj −

√
1

(j + 1)log(j + 1)

)
+

]2
. (47)
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Proof. We proceed as in Appendix C.1.3. We have:

lim
T→∞

1

T
log

1

Pµ [ℓj = 1]
≥ min
J∈J

lim
T→∞

1

T
log

1

Pµ [ℓj = 1, Cj = J ]
. (48)

We then introduce

SJ(β) =
{
λ ∈ [0, 1]K :

∑
k∈J,k ̸=1 λk

j − 1
− λ1 ≥ G(β)

}
XJ(θ, β) =

{
z ∈ Xj : (∀k ∈ J, xk = max

k′∈[K]
xk′),

θ
∑
x∈J zklogj

1− θ
∑
k/∈J xk

= β

}
.

Theorem 10 yields that for each J ∈ J ,

lim
T→∞

1

T
log

1

Pµ [ℓj = 1, Cj = J ]
≥ inf
θ,β∈(0,1]∩Q

θ inf
z∈cl(ZJ (θ,β))

max{FSJ (β)(z), Iθ(z)}, (49)

where ZJ(θ, β) = XJ(θ, β) \ ∪Ki=jXj,i(θ).

(a) The case where J ̸= [j]. Corollary 2 in Appendix D.2 and Proposition 7 with i = j + 1 in
Appendix E.3 yields:

θFSJ (β)(z) ≥
2ψ̄j

jlogK
.

(b) The case where J = [j]. We show both 2ψj

jlogK
and 2ψj log(j+1)(1−αj)

jlogjlogK
are lower bounds of (49).

The maximum of these becomes our lower bound.

Lower bounding 2ψj

jlogK
. By Proposition 6 and Proposition 7, Proposition 6 in Appendix D.2 and

Proposition 7 with i = j + 1 in Appendix E.3, we have

θFSJ (β)(z) ≥
2ψj

jlogK
. (50)

Lower bounding by 2ψj log(j+1)(1−αj)

jlogjlogK
. A similar argument as above implies

(49) ≥ 2log(j + 1)

logK
inf
α∈R

max

ψj (1− α)jlogj
,

j

j + 1

[(
(1 + φj)

√
α−

√
1

(j + 1)log(j + 1)

)
+

]2 .

(51)
By Lemma 23 in Appendix H, (49) is lower bounded by 2ψj log(j+1)(1−αj)

jlogjlogK
.
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D Optimization Problems

This section provides results related to the various optimization problems we encounter in the paper.
In D.1, we compute the ξj’s appearing in the performance guarantees of SR and CR-C, and prove
other useful results. In D.2, we focus on computing the ψj’s, useful for the performance analysis of
CR-A.

D.1 Optimization problems for SR and CR-C

Let j ∈ {2, . . . ,K} and let µ ∈ RK such that µ1 > µ2 ≥ . . . ≥ µK . Denote by ξj the optimal value
of the following optimization problem:

inf

{
j∑

k=1

(λk − µk)2 : λ ∈ [0, 1]K , λ1 ≤ min
k ̸=1

λk

}
. (52)

We first show Proposition 1, restated below for convenience, and deduce some related results.

Proposition 1. We have:

ξj =



∑
k=1,j

(
µk − µ1+µj

2

)2
, if µj−1 ≥ µ1+µj

2 ,∑
k=1,j−1,j

(
µk − µ1+µj−1+µj

3

)2
, if µj−1 <

µ1+µj

2 , µj−2 ≥ µ1+µj−1+µj

3 ,

...
...∑j

k=1

(
µk −

∑j
i=1 µi

j

)2
, if µj−1 <

µ1+µj

2 , . . . , µ2 ≤ µ1+µ3+...+µj

j−1 .

Proof. The objective function and the functions defining the constraints in (52) are all convex. There
exists λ ∈ RK s.t. all the constraints are strict (Slater condition). Hence we can identify the solution
of (52) by just verifying the KKT conditions. The Lagrangian of the problem is

Lµ(λ, η2, . . . , ηj) =
1

2

j∑
k=1

(λk − µk)2 +
j∑

k=2

ηk(λ1 − λk), for (λ,η) ∈ RK × Rj−1
≥0 .

Let (λ⋆,η⋆) be a saddle point of L. It satisfies KKT conditions:

λ⋆1 ≤ λ⋆k, for k = 2, . . . , j, (Primal Feasibility)
η⋆k ≥ 0, for k = 2, . . . , j, (Dual Feasibility)

λ⋆1 − µ1 +

j∑
k=2

η⋆k = 0;λ⋆k − µk − η⋆k = 0, for k = 2, . . . , j, (Stationarity)

η⋆k(λ
⋆
1 − λ⋆k) = 0, for k = 2, . . . , j. (Complementarity)

In case µj−1 ≥ µ1+µj

2 , one can easily see the point (λ⋆,η⋆) defined as λ⋆1 = λ⋆j =
µ1+µj

2 ,
λ⋆k = µk,∀k /∈ {1, j}, and η⋆k = 0,∀k = 2, . . . , j − 1, η⋆j =

µ1−µj

2 satisfies the KKT conditions
listed above. As for the other cases, one can also easily find the solutions in a similar manner.

We are now interested in quantifying the impact of µ on the value of ξj . We investigate this impact in
the following two propositions.

Proposition 2. Assume that ξj =
∑
b∈B(µb − A)2 for some B ⊆ [j] and for A =

∑
b∈B µb

|B| . Let
S be such that S1 =

∑
b∈B,b̸=1 Sb, where Sb ≥ 0 for all b ̸= 1. Consider another parameter µ′

defined as µ′
1 = µ1 + S1 and µ′

b = µb − Sb for all b ∈ B, b ̸= 1. Then (i)
∑

b∈B µ′
b

|B| = A; (ii)

inf

{∑
k∈B

(λ′k − µ′
k)

2 : λ′ ∈ [0, 1]K , λ′1 ≤ min
b∈B

λ′b

}
=
∑
k∈B

(µ′
b −A)2.
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Proof. (i) is trivial. We now prove (ii). Using Proposition 1 and the fact that ξj =
∑
b∈B(µb −A)2,

we get that

∀b ̸= 1, b ∈ B, µb <
µ1 +

∑
k>b µk

j − b+ 1
. (53)

Also, as Sb ≥ 0,

µ′
b = µb − Sb ≤ µb <

µ1 +
∑
k>b µk

j − b+ 1

=
1

j − b+ 1

(
µ1 − S1 +

∑
k>b

µk +
∑
k>b

Sk

)

=
µ′
1 +

∑
k>b µ

′
k

j − b+ 1
,

where the second inequality is due to (53). By (i) and Proposition 1 again, we conclude the proof.

Proposition 3. Consider the optimization problem (52) instantiated with another µ′ ∈ [0, 1]K which
satisfies that µ′

1 ≥ µ1 and µ′
k ≤ µk for all k = 2, . . . , j, and denote its value by ξ′j . Then ξ′j ≥ ξj .

Proof. Consider the Lagrangians of the two optimization problems: Lµ and Lµ′ . The corresponding
Lagrange dual functions are: gµ(η) = minλ∈RK Lµ(λ,η) and gµ′(η) = minλ∈RK Lµ′(λ,η) and
one can easily verify that

gµ(η) =
1

2

[
(

j∑
k=2

ηk)
2 +

j∑
k=2

η2k

]
+

j∑
k=2

ηk(µ1 − µk −
∑
i ̸=k

ηi),

gµ′(η) =
1

2

[
(

j∑
k=2

ηk)
2 +

j∑
k=2

η2k

]
+

j∑
k=2

ηk(µ
′
1 − µ′

k −
∑
i ̸=k

ηi).

Recall µ1 − µk ≤ µ′
1 − µ′

k and η ∈ Rj−1
≥0 , hence gµ(η) ≤ gµ′(η) for all η ∈ Rj−1

≥0 . For (52), Slater
condition holds clearly, hence strong duality follows (see e.g. (Boyd et al., 2004) Chapter 5.5.3).
Thus, ξj = maxη∈Rj−1

+
gµ(η) ≤ maxη∈Rj−1

+
gµ′(η) = ξ′j .

The following result relates the function G to ξj and is instrumental in the proof of Theorem 3.

Proposition 4. ∀β ∈ (0, 1], µ ∈ [0, 1]K , and 2 ≤ j ≤ K, one has

β inf

{
j∑

k=1

(λk − µk)2 : λ ∈ [0, 1]K , λ1 ≤ min
k=2,...,j

λk −G(β)

}
≥ ξj . (54)

Proof. LetB ⊆ [j] s.t. ξj =
∑
b∈B(µb−A)2, whereA =

∑
b∈B µb

|B| . Using the fact that
∑
k/∈B(µk−

λk)
2 ≥ 0 for all λ ∈ RK , one can deduce that

l.h.s. of (54) ≥ β inf

{∑
b∈B

(λb − µb)2 : λ1 ≤ λb −G(β),∀b ∈ B, b ̸= 1

}

≥ β inf

{∑
b∈B

(λb − µb)2 : λ1 ≤ λb − (µ1 − µb)G(β),∀b ∈ B, b ̸= 1

}

= β inf

{∑
b∈B

(λb − µb)2 : λ1 + (µ1 −A)G(β) ≤ λk − (A− µb)G(β),∀b ∈ B, b ̸= 1

}
(55)

where the second inequality comes from 1 ≥ µ1 − µk. Now introduce λ′ and µ′ as

λ′1 = λ1 + (µ1 −A)G(β), λ′b = λb − (A− µb)G(β),∀b ̸= 1, b ∈ B;

µ′
1 = µ1 − (µ1 −A)G(β), µ′

b = µb + (A− µb)G(β),∀b ̸= 1, b ∈ B.
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These allow us to write the r.h.s. of (55) as the value of the following optimization problem:

β inf

{∑
b∈B

(λ′b − µ′
b)

2 : λ′1 ≤ min
b∈B

λ′b

}
. (56)

Applying Proposition 2 with Sb = (A− µb)G(β) for all b ∈ B, b ̸= 1 yields that the value of (56) is

β
∑
b∈B

(µ′
b −A)2 = β

(µ1 + (µ1 −A)G(β)−A)2 +
∑

b∈B,b̸=1

(A− µb + (A− µb)G(β))2
 .

(57)
Recall that G(β) = 1/

√
β − 1. Hence, (57) is larger than

∑
b∈B(µb −A)2 = ξj .

In Proposition 4, the top-j arms only are considered. We can prove similar results for any J ∈ J , by
combining Proposition 3 to the arguments of the previous proof.

Corollary 1. ∀β ∈ (0, 1], µ ∈ [0, 1]K , 2 ≤ j ≤ K, and J ∈ J , J ̸= [j], one has

β inf

{
K∑
k=1

(λk − µk)2 : λ ∈ [0, 1]K , λ1 ≤ min
k∈J,k ̸=1

λk −G(β)

}
≥ ξ̄j . (58)

Proof. Let J ∈ J , J ̸= [j] be fixed, we denote the indexes in J by {1̃, 2̃, . . . , j̃} such that 1̃ < 2̃ <
. . . < j̃. One can repeat the argument in the proof of Proposition 4 to obtain that the l.h.s. of (58) is
larger than

inf

{
K∑
k=1

(λk − µk)2 : λ ∈ [0, 1]K , λ1 ≤ min
k∈J,k ̸=1

λk

}
. (59)

Since every J ∈ J includes 1, 1̃ = 1. Also, since J ̸= [j], we have 2̃ ≥ 2, . . . , j̃ ≥ j + 1. Because
we assume that µ1 > µ2 ≥ . . . ≥ µK , Proposition 3 yields that the value of (59) is larger than ξ̄j .

D.2 Optimization problem for CR-A

The following proposition is the analogue of Proposition 3 for ψj .

Proposition 5. Let µ′ ∈ [0, 1]K such that µ′
1 ≥ µ1 and µ′

k ≤ µk for all k = 2, . . . , j. Define

ψ′
j =

j−1
j (µ′

1 −
∑j

k=2 µ
′
k

j−1 )2. Then, ψ′
j ≥ ψj .

Proof. The result simply follows from the following inequality:

ψ′
j =

j − 1

j
(µ′

1 −
∑j
k=2 µ

′
k

j − 1
)2 ≥ j − 1

j
(µ1 −

∑j
k=2 µ

′
k

j − 1
)2 ≥ j − 1

j
(µ1 −

∑j
k=2 µk
j − 1

)2 = ψj .

We use the following result in the proof of Theorem 4.

Proposition 6. ∀β ∈ (0, 1],µ ∈ [0, 1]K with µ1 > µ2 ≥ . . . ≥ µK , and 2 ≤ j ≤ K, one has

β inf

{
j∑

k=1

(λk − µk)2 : λ ∈ [0, 1]K , λ1 ≤
∑
k=2,...,j λk

j − 1
−G(β)

}
≥ ψj , (60)

where ψj = j−1
j (µ1 −

∑j
k=2 µk

j−1 )2, ∀j ∈ {2, . . . ,K}, as introduced in Section 4.2.

28



Proof. The Lagrangian of the optimization problem (60) is:

L(λ, η) = β

2

j∑
k=1

(λk − µk)2 + η(λ1 −
∑j
k=2 λk
j − 1

+G(β)), for (λ, η) ∈ Rj × R≥0.

Denote the saddle point of L by (λ⋆, η⋆). The KKT conditions are satisfied:

λ⋆1 ≤
∑j
k=2 λ

⋆
k

j − 1
−G(β) and η⋆ ≥ 0, (Feasibility)

β(λ⋆1 − µ1) + η⋆ = 0, and β(λ⋆k − µk)−
η⋆

j − 1
= 0,∀k ̸= 1, (Stationarity)

η⋆

(
λ⋆1 −

∑j
k=2 λ

⋆
k

j − 1
+G(β)

)
= 0. (Complementarity)

One can simply verify that if η⋆ = 0, stationarity and feasibility cannot hold simultaneously. Thus
η⋆ > 0 and complementarity yield that λ⋆1 −

∑j
k=2 λ

⋆
k/(j − 1) +G(β) = 0. In conjunction with

stationarity, we have

η⋆ =
β(j − 1)

j

(
µ1 −

∑j
k=2 µk
j − 1

+G(β)

)
,

and hence the value of (60) is

(j − 1)β

j

(
µ1 −

∑j
k=2 µk
j − 1

+G(β)

)2

. (61)

Recall thatG(β) = 1/
√
β−1 and µ ∈ [0, 1]K . We deduce thatG(β) ≥ (1/

√
β−1)(µ1−

∑j
k=2 µk

j−1 ),

which is equivalent to µ1 −
∑j

k=2 µk

j−1 + G(β) ≥ 1√
β
(µ1 −

∑j
k=2 µk

j−1 ) and hence (61) is larger than
j−1
j (µ1 −

∑j
k=2 µk

j−1 )2.

As we obtained Corollary 1 in Appendix D.1, combining Proposition 5 and the proof of Proposition 6
yields the following corollary.
Corollary 2. ∀β ∈ (0, 1], µ ∈ [0, 1]K with µ1 > µ2 ≥ . . . ≥ µK , 2 ≤ j ≤ K, and J ∈ J , J ̸= [j],
one has

β inf

 ∑
k∈[K]

(λk − µk)2 : λ ∈ [0, 1]K , λ1 ≤
∑
k∈J,k ̸=1 λk

j − 1
−G(β)

 ≥ ψ̄j . (62)

Proof. Let J ∈ J , J ̸= [j] be fixed. We denote the indexes in J by {1̃, 2̃, . . . , j̃} such that
1̃ < 2̃ < . . . < j̃. One can repeat the arguments of the proof of Proposition 6 to obtain that the l.h.s.
of (62) is larger than

j − 1

j
(µ1̃ −

∑j
k=2 µk̃
j − 1

)2. (63)

Note that every J ∈ J containing 1 satisfies 1̃ = 1, and that since J ̸= [j], we have 2̃ ≥ 2, . . . , j̃ ≥
j + 1. As we assume that µ1 > µ2 ≥ . . . ≥ µK , Proposition 5 yields that the value of (63) is larger
than ξ̄j .
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E LDP for the sampling process under CR

In this section, we are interested in deriving an LDP for the process {ω(θT )}T≥1 for a fixed
θ ∈ (0, 1] ∩Q under CR. More precisely, we look for a function Iθ(·) which satisfies an LDP upper
bound (3) on Xj for some fixed j ∈ {1, . . . ,K}, where

Xj =
{
x ∈ Σ : ∃σ : [K] 7→ [K] s.t. xσ(1) = . . . = xσ(j) > xσ(j+1) > . . . > xσ(K) > 0

}
. (64)

For convenience, we define xσ(K+1) = 0. For any j, we also define

Xj,i(θ) =

{
x ∈ Xj : θxσ(i)ilogi > 1− θ

K∑
k=i+1

xσ(k)

}
, ∀i ∈ {j, . . . ,K}, (65)

where the permutation σ depends on x as in the definition of Xj (64).

It is important to remark that when θT is not an integer, ω(θT ) is not defined. Hence in the following,
when we write limT→∞ f(Pµ[ω(θT ) ∈ F ]), we actually mean limT→∞:θT∈N f(Pµ[ω(θT ) ∈ F ]).
Deriving an LDP upper bound (3) is not easy in general, and to this aim, we first introduce a useful
sufficient condition in E.1.

E.1 A sufficient condition towards an LDP upper bound (3)

The following condition will be useful in our analysis, in particular in this section. This condition is
similar to those presented in Chapter 2 in Varadhan (2016). We say that {Y (t)}t≥1 satisfies an LDP
local upper bound with rate function I at point y ∈ Y if:

lim
δ→0

lim
t→∞

1

t
log

1

P[Y (t) ∈ B(y, δ)]
≥ I(y), (66)

where B(y, δ) is the open ball with center y and radius δ.
Lemma 10. Suppose Y is compact and {Y (t)}t≥1 satisfies an LDP local upper bound (66) with a
lower semi-continuous function I at all y ∈ Y , then {Y (t)}t≥1 satisfies an LDP upper bound (3).

Proof. Let C ⊆ Y be a closed (and hence compact) set, and s = infy∈C I(y). We prove
limt→∞

1
t log

1
P[Y (t)∈C] ≥ s if (i) s =∞ and if (ii) s <∞ separately.

(i) If s =∞. Let M > 0 and y ∈ C. As I(y) = ∞, and since I is lower semi-continuous, there
exists δy > 0 s.t.

lim
t→∞

1

t
log

1

P [Y (t) ∈ B(y, δy)]
≥M. (67)

Now observe that C ⊆ ∪y∈CB(y, δy). The compactness of C implies that we can find N ∈ N, and
{y1, . . . ,yN} such that C ⊆ ∪Ni=1B(yi, δyi

), which directly yields that

P [Y (t) ∈ C] ≤
N∑
i=1

P
[
Y (t) ∈ B(yi, δyi

)
]
≤ N max

i∈[N ]
P
[
Y (t) ∈ B(yi, δyi

)
]
. (68)

Using a simple rearrangement in (67) and (68), we then have limt→∞
1
t log

1
P[Y (t)∈C] ≥M . As M

can be taken arbitrarily large, the proof is completed.

(ii) If s <∞. Let ϵ ∈ (0, s/2) and y ∈ C. As I(y) ≥ s and since I is lower semi-continuous, there
exists δy > 0 such that

lim
t→∞

1

t
log

1

P [Y (t) ∈ B(y, δy)]
≥ s− ϵ. (69)

Now observe that C ⊆ ∪y∈CB(y, δy). The compactness of C implies that we can find N ∈ N,
{y1, . . . ,yN} such that C ⊆ ∪Ni=1B(yi, δyi

), which directly yields that

P [Y (t) ∈ C] ≤
N∑
i=1

P
[
Y (t) ∈ B(yi, δyi

)
]
≤ N max

i∈[N ]
P
[
Y (t) ∈ B(yi, δyi

)
]
. (70)
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Using a simple rearrangement in (69) and (70), we then have limt→∞
1
t log

1
P[Y (t)∈C] ≥ s− ϵ. As ϵ

can be taken arbitrarily small, the proof is completed.

We apply Lemma 10 to the process {ω(θT )}T≥1. The latter has values in Σ, a compact set. To derive
an LDP upper bound for this process (such an LDP upper bound is required to apply Theorem 1), we
just need to establish at all points in Σ a local LDP upper bound.

The following two theorems state that {ω(θT )}T≥1 under CR-C and CR-A satisfies a local LDP
upper bound.
Theorem 5. [Local LDP upper bound for CR-C ] For θ ∈ (0, 1] ∩Q, we define Iθ as follows.
(a) If x ∈ X1 ∪ (∪Kj=2 ∪Ki=j Xj,i(θ)), then Iθ(x) =∞;
(b) If ∃j ∈ {2, . . . ,K} such that x ∈ Xj \ ∪Kj=2 ∪Ki=j Xj,i(θ), then

Iθ(x) = max
p=j,...,K−1

2xσ(p+1) inf
λ∈Sp(x)

p+1∑
k=1

(λσ(k) − µσ(k))2,

where Sp(x) is defined in (89);
(c) If V = ∪Kk=1Xk, and x ∈ cl(V) \ V , then

Iθ(x) = inf{ lim
s→∞

Iθ(x
(s)) : {x(s)}s∈N ⊂ V,x(s) → x as s→∞};

Then the process {ω(θT )}T≥1 under CR-C satisfies an LDP upper bound (3) with the rate function
Iθ, and Iθ is lower semi-continuous.

Proof. In view of Lemma 10, the theorem holds if we are able to show that {ω(θT )}T≥1 satisfies a
local LDP upper bound with Iθ and if Iθ is lower semi-continuous. The first part is established below
in Lemma 12, Lemma 13, Lemma 14, and Theorem 7.
For the second part, we first verify the lower semi-continuity of Iθ restricted to ∪Kj=1Xj , and
then apply Lemma 11 with f = Iθ to establish the lower semi-continuity of Iθ in Σ. Let
x ∈ ∪Kj=1Xj . If x ∈ X1, lower semi-continuity directly follows from the fact X1 is open
and Iθ(x) = ∞ for x ∈ X1. We then consider x ∈ Xj for some j = 2, . . . ,K. By defi-
nition, there is σ : [K] 7→ [K] such that xσ(1) = . . . = xσ(j) > xσ(j+1) > . . . > xσ(K).
By taking δ < mini≥j{xσ(i) − xσ(i+1)}/2, we have x′ ∈ ∪jq=1Xq if ∥x′ − x∥∞ < δ, and
Iθ(x

′) ≥ maxp=j,...,K−1 2x
′
σ(p+1) infλ∈Sp(x′)

∑p+1
k=1(λσ(k) − µσ(k))2 as a consequence. Now as

verified in Lemma 17 in Appendix F, the mapping x 7→ 2xσ(p+1) infλ∈Sp(x)

∑p+1
k=1(λσ(k)−µσ(k))2

is continuous, we hence deduce that Iθ is lower semi-continuity at x.

Theorem 6. [Local LDP upper bound for CR-A ] For θ ∈ (0, 1] ∩Q, we define Iθ as follows.
(a) If x ∈ X1 ∪ (∪Kj=2 ∪Ki=j Xj,i(θ)), then Iθ(x) =∞;
(b) If ∃j ∈ {2, . . . ,K} such that x ∈ Xj \ ∪Kj=2 ∪Ki=j Xj,i(θ), then

Iθ(x) = max
p=j,...,K−1

2xσ(p+1) inf
λ∈Sp(x)

p+1∑
k=1

(λσ(k) − µσ(k))2,

where Sp(x) is defined in (96);
(c) If V = ∪Kk=1Xk, and x ∈ cl(V) \ V , then

Iθ(x) = inf{ lim
s→∞

Iθ(x
(s)) : {x(s)}s∈N ⊂ V,x(s) → x as s→∞};

Then the process {ω(θT )}T≥1 under CR-A satisfies an LDP upper bound (3) with the rate function
Iθ, and Iθ is lower semi-continuous.

Proof. In view of Lemma 10, the theorem is deduced if we are able to show that {ω(θT )}T≥1

satisfies a local LDP upper bound with Iθ. This is established below in Lemma 12, Lemma 13,
Lemma 14, and Theorem 8.
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We then verify the lower semi-continuity of Iθ restricted to ∪Kj=1Xj , and then applying Lemma 11
with f = Iθ yields the lower semi-continuity of Iθ in Σ. Let x ∈ ∪Kj=1Xj . If x ∈ X1, lower
semi-continuity directly follows from the fact X1 is open and Iθ(x) = ∞ for x ∈ X1. We
then consider x ∈ Xj for some j = 2, . . . ,K. By definition, there is σ : [K] 7→ [K] such that
xσ(1) = . . . = xσ(j) > xσ(j+1) > . . . > xσ(K). By taking δ < mini≥j{xσ(i)−xσ(i+1)}/2, we have
x′ ∈ ∪jq=1Xq if ∥x′ − x∥∞ < δ and Iθ(x′) ≥ maxp=j,...,K−1 2x

′
σ(p+1) infλ∈Sp(x′)

∑p+1
k=1(λσ(k)−

µσ(k))
2, as a consequence. Now as verified in Lemma 18 in Appendix F, the mapping x 7→

2xσ(p+1) infλ∈Sp(x)

∑p+1
k=1(λσ(k) − µσ(k))2 is continuous, we hence deduce that Iθ is lower semi-

continuity at x.

Lemma 11. Suppose V ⊆ Σ is the set such that cl(V) = Σ, and f : V → R is a lower semi-continous
function. If we extend f to Σ by defining

f̄(ω) =

{
f(ω), if ω ∈ V,
inf{lims→∞ f(ω(s)) : {ω(s)}s∈N ⊂ V,ω(s) → ω as s→∞}, otherwise,

then f̄ is a lower semi-continous function in Σ.

Proof. By the definition of f̄ and the fact cl(V) = Σ,

∀ε > 0, ∀δ > 0, ∀ω ∈ Σ, ∃x ∈ V such that f(x) < f̄(ω) + ϵ and ∥x− ω∥∞ < δ. (71)

Next suppose on the contrary, f̄ is not lower semi-continous at some ω ∈ Σ, that is, ∃{ω(s)} ⊂ Σ
such that ω(s) → ω as s→∞ and lims→∞ f̄(ω(s)) < f̄(ω). Let η = f̄(ω)−lims→∞ f̄(ω(s)) > 0.
For each s ∈ N, (71) implies that there is x(s) ∈ V such that

∥∥x(s) − ω(s)
∥∥
∞ < 1/s and f(x(s)) <

f̄(ω(s)) + η/2. Hence,

lim
s→∞

f(x(s)) ≤ lim
s→∞

f̄(ω(s)) +
η

2
< f̄(ω),

which contradicts the lower semi-continuity of f if ω ∈ V and the definition of f̄ if ω /∈ V .

E.2 Local LDP upper bound on ∪Ki=jXj,i(θ)

Let θ ∈ (0, 1] ∩Q and j ∈ {2, . . . ,K}. Here, we first prove the result on Xj,j(θ) in Lemma 13 and
that on Xj,i(θ) for any i > j in Lemma 14. Note the results in this subsection are valid for both
CR-C and CR-A.
Lemma 12. Let θ ∈ (0, 1] ∩ Q, x ∈ X1, the process {ω(θT )}T≥1 satisfies an LDP local upper
bound (66) with Iθ(x) =∞ at x ∈ X1.

Proof. For x ∈ X1, there exists σ : [K] 7→ [K] such that xσ(1) > xσ(2) > . . . > xσ(K).
Let δ < mink=1,...,K−1{xσ(k) − xσ(k+1)} and T > 2

θδ such that θT ∈ N, we show that
Pµ[ω(θT ) ∈ B(x, δ)] = 0, which directly completes the proof.

If ω(θT ) ∈ B(x, δ), then we have ωσ(1)(θT ) > ωσ(2)(θT ) > . . . > ωσ(K)(θT ) and

min
k=1,...,K−1

{Nσ(k)(θT )−Nσ(k+1)(θT )} = θT min
k=1,...,K−1

{ωσ(k)(θT )−ωσ(k+1)(θT )} > 2. (72)

Because CR always pulls arms in the candidate set in a round-robin manner, (72) will never happen.
Hence, Pµ[ω(θT ) ∈ B(x, δ)] = 0.

Lemma 13. Let j ∈ {2, . . . ,K}. The process {ω(θT )}T≥1 satisfies an LDP local upper bound (66)
with Iθ(x) =∞ at x ∈ Xj,j(θ).
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Proof. Let x ∈ Xj,j(θ). We show that there exists δθ,x > 0 and Tθ,x ∈ N s.t. if T ≥ Tθ,x and
δ < δθ,x, then ω(θT ) /∈ B(x, δ) almost surely. As a consequence, Pµ[ω(θT ) ∈ B(x, δ)] = 0, and
Iθ(x) =∞. We decompose the proof into three steps.

1. Defining δθ,x and Tθ,x. We introduce the two functions, f1, f2 : [0, 1]× Σ 7→ R:

f1(θ
′,x′) = θ′

j∑
k=1

x′σ(k)logj − θ
′

K∑
k=j+1

x′σ(k) − 1,

f2(θ
′,x′) = min

k≤j
x′σ(k) − max

k≥j+1
x′σ(k).

Since x ∈ Xj,j(θ), we have c = min{f1(θ,x), f2(θ,x)} > 0. Leveraging the fact that f1, f2 are
continuous, we can find δθ,x ∈ (0, 1

3j ) s.t.

if |θ′ − θ| < 3jδθ,x and ∥x′ − x∥∞ < 7jδθ,x, then min{f1(θ′,x′), f2(θ
′,x′)} > c

2
. (73)

We also define Tθ,x = max{⌈ 4
θc⌉, ⌈

1
δθ,x
⌉}.

2. We prove that for δ < δθ,x and T > Tθ.x, ω(θT ) /∈ B(x, δ) a.s.. We proceed by contradiction.
Assume ω(θT ) ∈ B(x, δ). From (73), we have f2(θ,ω(θT )) > c/2. It then directly yields
that

min
k≤j

Nσ(k)(θT )− max
k≥j+1

Nσ(k)(θT ) = θT

[
min
k≤j

ωσ(k)(θT )− max
k≥j+1

ωσ(k)(θT )

]
= θTf2(θ,ω(θT ))

>
θcT

2
>
θcTθ,x

2
≥ 2, (74)

where the last inequality follows from Tθ,x > 4
θc . Observe that CR always pulls the arms in

the candidate set in a round-robin manner (the maximal difference of pulling amounts among the
candidate set is at most 1), and CR stops pulling an arm k after k is removed from the candidate
set. Thus, from (74), we deduce several facts: (i) Cj = {σ(1), . . . , σ(j)}; (ii) before the round
τ = jmink≤j Nσ(k)(θT ) +

∑
k>j Nσ(k)(θT ), the arm ℓj to be removed has not yet been decided;

(iii)

Nσ(k)(τ − j) =
{

mink≤j Nσ(k)(θT )− 1, if k ≤ j,
Nσ(k)(τ − j) = Nσ(k)(θT ), if k > j.

However, we will show in the next step that in the round τ − j, the condition for discarding an arm
in Cj is triggered. In other words, ℓj = ℓ(τ − j) is removed from Cj in the round τ − j, which
contradicts (ii).

3. The condition for discarding an arm in round τ − j is triggered. First, from (iii) in Step 2,

Nσ(1)(τ − j) = Nσ(2)(τ − j) = . . . = Nσ(j)(τ − j). (75)

Then, using (iii) in Step 2 again yields that

min
k≤j

Nσ(k)(τ − j)− max
k≥j+1

Nσ(k)(τ − j) = min
k≤j

Nσ(k)(θT )− 1− max
k≥j+1

Nσ(k)(θT ) > 1, (76)

where the last inequality comes from (74). Finally, observe that

θ − τ − j
T

=

∑
k∈[j]Nσ(k)(θT )− jmink∈[j]Nσ(k)(θT )

T
+
j

T

≤ j
[
max
k∈[j]

ωσ(k)(θT )− xσ(j) + xσ(j) − min
k∈[j]

ωσ(k)(θT )

]
+ jδθ,x

≤ j(2δ + δθ,x) < 3jδθ,x, (77)
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where the first inequality is due to T ≥ 1/δθ,x; the second inequality follows from ω(θT ) ∈ B(x, δ);
the last inequality is obtained using δ < δθ,x. Combining Lemma 15 (see below) with δ = 3jδθ,x
and (77) yields that ∥ω(τ − j)− ω(θT )∥∞ ≤ 6jδθ,x, hence

∥ω(τ − j)− x∥∞ ≤ ∥ω(τ − j)− ω(θT )∥∞ + ∥ω(θT )− x∥∞ ≤ 7jδθ,x. (78)

From (73)-(77)-(78), we get f1( τ−jT ,ω(τ − j)) > c
2 . Thus,

G

( ∑j
k=1Nσ(k)(τ − j)logj

T −
∑K
k=j+1Nσ(k)(τ − j)

)
= G

(
τ−j
T

∑j
k=1 ωσ(k)(τ − j)logj

1− τ−j
T

∑K
k=j+1 ωσ(k)(τ − j)

)
< G(1) = 0, (79)

where the inequality is directly derived from f1(
τ−j
T ,ω(τ − j)) > 0 and the fact that G(β) =

1/
√
β−1 is a strictly decreasing function. Note that (75)-(76)-(79) trigger the condition of discarding

ℓ(τ − j) in the round τ − j.

Lemma 14. Let j ∈ {2, . . . ,K − 1} and i > j. The process {ω(θT )}T≥1 satisfies an LDP local
upper bound (66) with Iθ(x) =∞ at x ∈ Xj,i(θ).

Proof. Let x ∈ Xj,i(θ) and let σ be the permutation described in (64) for x. We show that there
exists δθ,x > 0 s.t. for all δ < δθ,x,

lim
T→∞

1

T
log

1

Pµ[ω(θT ) ∈ B(x, δ)]
=∞. (80)

We decompose the proof into three steps.

1. Defining δθ,x, Tx, and a random time τ . We introduce two functions: for all x′ ∈ Σ:

f1(x
′) = θ min

k=1,...,i
x′σ(k)ilogi− θ

K∑
k=i+1

x′σ(k) − 1,

f2(x
′) = min

k=1,...,i
x′σ(k) − max

k=i+1,...,K
x′σ(k).

Because f1(x) > 0, f2(x) > (xσ(i) − xσ(i+1))/2, and both f1, f2 are continuous, we can find a
positive δθ,x > 0 s.t.

∀x′ ∈ B(x, δθ,x), f1(x
′) > 0, f2(x

′) >
xσ(i) − xσ(i+1)

2
. (81)

In the following, we fix δ < δθ,x. We define Tx as: Tx = ⌈ 2
xσ(i)−xσ(i+1)

⌉. Finally, we introduce the
random time τ = imink≤iNσ(k)(θT ) +

∑
k>iNσ(k)(θT ) and two fixed rounds, τmin = ⌊(ixσ(i) +∑

k>i xσ(k) −Kδ)T ⌋ and τmax = ⌈(ixσ(i) +
∑
k>i xσ(k) +Kδ)T ⌉.

2. If T > Tθ,x and ω(θT ) ∈ B(x, δ), then (i) τ ∈ {τmin, . . . , τmax} and (ii) ω(τ) ∈ Xi,i( τT ). (i) is
trivial based on the definition of B(x, δ). To show (ii), we observe that

min
k≤i

Nσ(k)(θT )− max
k≥i+1

Nσ(k)(θT ) = Tf2(ω(θT )) >
2

xσ(i) − xσ(i+1)

xσ(i) − xσ(i+1)

2
= 1, (82)

where the inequality simply comes from (81) and T > Tx. Since CR always pulls the arms in
the candidate set in a round-robin manner (the maximal difference of pulling amounts among the
candidate set is at most 1), (82) implies CR discards one arm in {σ(i+1), . . . , σ(K)} in the round τ ,
and ω(τ) is:

ωσ(k)(τ) =

{
mink′≤iNσ(k′)(θT )/τ, if k ≤ i,
Nσ(k)(θT )/τ, otherwise. (83)

Note that (83) yields that ω(τ) ∈ Xi. Moreover,

τ

T
ωσ(i)(τ)ilogi−

τ

T

K∑
k=i+1

ωσ(k)(τ) = θmin
k≤i

ωσ(k)(θT )ilogi− θ
K∑

k=i+1

ωσ(k)(θT )

= f1(ω(θT )) + 1 > 1,
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where the inequality directly follows from (81) and the fact that ω(θT ) ∈ B(x, δθ,x). Hence
ω(τ) ∈ Xi,i( τT ).

3. We show (80). Thanks to (i) and (ii) in Step 2, we have, for T > Tx,

Pµ [ω(θT ) ∈ B(x, δ)] ≤
τmax∑
τ=τmin

Pµ

[
ω(τ) ∈ Xi,i(

τ

T
)
]
≤ 2KδT max

θ′∈(0,1]
Pµ [ω(θ′T ) ∈ Xi,i(θ′)] .

Thus, a simple rearrangement of the above inequality yields that

lim
T→∞

1

T
log

1

Pµ[ω(θT ) ∈ B(x, δ)]
≥ inf
θ′∈(0,1]

lim
T→∞

1

T
log

1

Pµ[ω(θ′T ) ∈ Xi,i(θ′)]
≥ inf
θ′∈(0,1]

inf
x′∈Xi,i(θ′)

Iθ′(x
′) =∞,

where the last inequality stems from Lemma 13.

Lemma 15. Let θ ∈ (0, 1] ∩Q, and δ ∈ (0, 1). If we consider θ′ ∈ [θ − θδ, θ] and T ∈ N such that
θT, θ′T ∈ N, then

∥ω(θT )− ω(θ′T )∥∞ ≤ 2δ. (84)

Proof. Observe that for any k ∈ [K],

|ωk(θT )− ωk(θ′T )| =
∣∣∣∣Nk(θT )θT

− Nk(θ
′T )

θ′T

∣∣∣∣ ≤ ∣∣∣∣Nk(θT )θT
− Nk(θ

′T )

θT

∣∣∣∣+ ∣∣∣∣Nk(θ′T )θT
− Nk(θ

′T )

θ′T

∣∣∣∣
≤ θ − θ′

θ
+ θ′(

1

θ′
− 1

θ
)

= 1− θ′

θ
+ 1− θ′

θ
≤ 2δ,

where the first inequality uses the triangle inequality; the second inequality simply comes from
Nk(θT ) − Nk(θ′T ) ≤ (θ − θ′)T and Nk(θ′T ) ≤ θ′T ; the third inequality is a consequence of
θ′ ≥ θ(1− δ). Hence (84) follows.

Lemma 16. Let θ ∈ (0, 1] ∩Q, and δ ∈ (0, 1). If we consider θ′ ∈ [θ − θδ, θ] and T ∈ N such that
θT, θ′T ∈ N, then

∥µ̂(θT )− µ̂(θ′T )∥∞ ≤ 2δ. (85)

Proof. Observe that for any k ∈ [K],

|µ̂k(θT )− µ̂k(θ′T )| =
∣∣∣∣
∑
t≤θT Xk(t)

θT
−
∑
t≤θ′T Xk(t)

θ′T

∣∣∣∣
≤
∣∣∣∣
∑
t≤θT Xk(t)

θT
−
∑
t≤θ′T Xk(t)

θT

∣∣∣∣+ ∣∣∣∣
∑
t≤θ′T Xk(t)

θT
−
∑
t≤θ′T Xk(t)

θ′T

∣∣∣∣
≤ θ − θ′

θ
+ θ′(

1

θ′
− 1

θ
)

= 1− θ′

θ
+ 1− θ′

θ
≤ 2δ,

where the first inequality uses the triangle inequality; the second inequality simply comes from∑
θ′T<t≤θT Xk(t) ≤ (θ − θ′)T and

∑
t≤θT Xk(t) ≤ θ′T (as Assumption 1 ensures that Xk(t) ∈

[0, 1]); the third inequality is a consequence of θ′ ≥ θ(1− δ). Hence (85) follows.
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E.3 Local LDP upper bound on Xj \ ∪Ki=jXj,i(θ)

Fix θ ∈ (0, 1] ∩Q. We will establish local LDP upper bounds on Xj \ ∪Ki=jXj,i(θ) for the process
{ω(θT )}T≥1 under CR-C and CR-A. The upper bound for CR-C is presented in E.3.1 and that for
CR-A in E.3.2. We first present a useful proposition repeatedly used in E.3.1, E.3.2, and the main
proofs for Theorem 3 and Theorem 4 in C.

One important property for x ∈ Xj \∪Ki=jXj,i(θ) is that the remaining budget for the empirical top-j
arms is lower bounded by a constant. This observation is summarized in Proposition 7.
Proposition 7. If x ∈ Xj \ ∪Ki=jXj,i(θ), then ∀i ∈ {j + 1, . . . ,K},

1− θ
K∑
k=i

xσ(k) ≥
log(i− 1)

logK
.

Proof. Notice that the statement of the proposition is equivalent to (86): ∀i ∈ {j + 1, . . . ,K},

θ

K∑
k=i

xσ(k) ≤
1

logK

K∑
k=i

1

k
. (86)

The inequalities (86) will be proved by induction.

1. We show (86) for i = K. Since x /∈ Xj,K(θ),

1 ≥ θKlogKxσ(K). (87)

Dividing by KlogK on both sides of (87) directly yields (86) with i = K. Now we assume (86) is
valid for some i+ 1 ∈ {j + 2, . . . ,K}, and we show (86) for i.

2. We show (86) for i assuming that (86) holds for i+ 1. As x /∈ Xj,i(θ), we get:

1− θ
K∑

k=i+1

xσ(k) ≥ θilogixσ(i).

Dividing the above inequality by ilogi and adding θ
∑K
k=i+1 xσ(k) to the both sides, we obtain that

θ

K∑
k=i

xσ(k) ≤
1

ilogi
+ (1− 1

ilogi
)θ

K∑
k=i+1

xσ(k)

≤ 1

ilogi
+ (1− 1

ilogi
)

1

logK

K∑
k=i+1

1

k

=
1

logK

K∑
k=i+1

1

k
+

1

ilogi

[
1− 1

logK

K∑
k=i+1

1

k

]
,

where the second inequality stems from our inductive hypothesis (86) for i+ 1. As logK − logi =∑K
k=i+1

1
k , the r.h.s on the above inequality is equal to

1

logK

K∑
k=i+1

1

k
+

1

ilogi

[
1− 1

logK

(
logK − logi

)]
=

1

logK

K∑
k=i

1

k
,

hence (86) is proved.

E.3.1 The allocation process under CR-C

We show that Iθ presented in Theorem 7 below is a valid rate function for a local LDP upper bound
(66) for the process {ω(θT )}T≥1. This function is however too complicated to use, and we will
present a simpler rate function in Corollary 3.
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Theorem 7. Let j ∈ {2, . . . ,K − 1}, θ ∈ (0, 1],x ∈ Xj \ ∪Ki=jXj,i(θ), define

Iθ(x) = max
p=j,...,K−1

2xσ(p+1) inf
λ∈Sp(x)

p+1∑
k=1

(λσ(k) − µσ(k))2, (88)

where σ is the permutation described in (64) for z and

Sp(x) =

{
λ ∈ [0, 1]K : λσ(p+1) ≤ min

k≤p
λσ(k) −G

(
θxσ(p+1)(p+ 1)log(p+ 1)

1− θ
∑K
k=p+2 xσ(k)

)}
. (89)

Then the process {ω(θT )}T≥1 under CR-C satisfies a local LDP upper bound (66) with Iθ at x.

Proof. For simplicity, σ is assumed to be the identity map. Let p ∈ {j, . . . ,K − 1}. As x ∈ Xj , we
have xp − xp+1 > 0. Let T > K, and δ < (xp − xp+1)/2 be some positive number. We will derive
an upper bound for Pµ [ω(θT ) ∈ B(x, δ)], and then compute its rate by driving T →∞ and δ → 0.

Observe that of course:

Pµ [ω(θT ) ∈ B(x, δ)] ≤ Pµ

[
∪y∈B(x,δ){ω(θT ) = y}

]
. (90)

1. Obtaining a necessary condition for ω(θT ) = y. For any y ∈ B(x, δ), we introduce θ(y) and
z(y) as:

θ(y) = θ − θ
p∑
k=1

(yk − yp+1), and zk(y) =
{
θyk/θ(y), if k ≥ p+ 2,
θyp+1/θ(y), if k ≤ p+ 1.

Following directly from the above definitions, we obtain that

θ(y)

p+1∑
k=1

zk(y) = θ(p+ 1)yp+1, and θ(y)zk(y) = θyk, ∀k = p+ 2, . . .K. (91)

From the choice of δ, yp+1 is the smallest real number in {y1, . . . , yp+1}, so ℓp+1 = p+1. Moreover,
θ(y)T is the round CR-C decides ℓp+1 = ℓ(θ(y)T ) = p + 1, and ω(θ(y)T ) = z(y). Due to the
condition for discarding p+ 1 (see (11)), we have µ̂(θ(y)T ) ∈ Sp(y). Consequently, we have:

{ω(θT ) = y} ⊂ {µ̂(θ(y)T ) ∈ Sp(y),ω(θ(y)T ) = z(y)} . (92)

2. Reducing ∪y∈B(x,δ){ω(θT ) = y} to a single set. To do this reduction, we use the results of Step
1 and Lemmas 15 and 16.

Let y0 ∈ argmaxy∈B(x,δ) θ(y). Using the continuity of the function θ(y), there exists η(δ) such
that η(δ) tends to 0 as δ → 0, and for all y ∈ B(x, δ), θ(y) ∈ [θ(y0)(1−η(δ)), θ(y0)]. By Lemmas
15 and 16, we obtain that:

∥µ̂(θ(y))− µ̂(θ(y0))∥∞ ≤ 2η(δ),

∥ω(θ(y)T )− ω(θ(y0)T )∥∞ ≤ 2η(δ).

Now define the following sets:

S̄δ,p = ∪y∈B(x,δ){s̄ : ∃s ∈ Sp(y) : ∥s− s̄∥∞ ≤ 2η(δ)},
W̄δ = ∪y∈B(x,δ){w̄ ∈ Σ : ∥w̄ − z(y)∥∞ ≤ 2η(δ)}.

By construction, for all y ∈ B(x, δ), we have that if µ̂(θ(y)T ) ∈ Sp(y), then µ̂(θ(y0)T ) ∈ S̄δ,p,
and similarly ω(θ(y)T ) = z(y) implies that ω(θ(y0)T ) ∈ W̄δ .

3. Using Theorem 1. Putting the results of the first two steps together, we get:

Pµ [ω(θT ) ∈ B(x, δ)] ≤ Pµ

[
µ̂(θ(y0)T ) ∈ S̄δ,p,ω(θ(y0)T ) ∈ W̄δ

]
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By applying (c) in Section 3.2 with S = S̄δ,p and W = W̄δ , it follows that

lim
T→∞

1

T
log

1

Pµ [ω(θT ) ∈ B(x, δ)]
≥ θ(y0) inf

ω∈W̄δ

FS̄δ,p
(ω).

When δ tends to 0, the r.h.s. simply converges to θ(x)FSp(x)(z(x)). The latter is
infλ∈Sp(x) 2

∑p+1
k=1 xp+1(λk − µk)

2 (see Lemma 17 in Appendix F.1 for continuity arguments).
As the above proof holds for any p ∈ {j, . . . ,K − 1}, we complete the proof.

Next, as in Appendix C, we define the subset of Xj \ ∪Ki=jXj,i(θ):

Z[j](θ, β) =

{
z ∈ Xj \ ∪Ki=jXj,i(θ) : σ(k) = k, ∀k ≤ j and

θzjjlogj

1− θ
∑
k>j zk

= β

}
for all β ∈ (0, 1]. Note that the permutation σ in the above definition corresponds to that used for point
z as in the definition of Xj (64): it is such that zσ(1) = . . . = zσ(j) > zσ(j+1) > . . . > zσ(K) > 0.

Corollary 3. Let j ∈ {2, . . . ,K − 1}, θ, β ∈ (0, 1], z ∈ Z[j](θ, β). Define

Iθ(z) =
log(j + 1)

θlogK

((1 + ζj)

√
θzσ(j+1)

1− θ
∑K
k=j+2 zσ(k)

−
√

1

(j + 1)log(j + 1)

)
+

2

,

where σ is the permutation described in (64) for z, then Iθ(z) ≤ Iθ(z).

Proof. Observe that Iθ(z) is larger than the value of the following optimization problem:

min
λ∈RK

2zσ(j+1)

(
(λj − µj)2 + (λσ(j+1) − µσ(j+1))

2
)
, (93)

subject to λσ(j+1) ≤ λj −G(β̃),

where

β̃ =
θzσ(j+1)(j + 1)log(j + 1)

1− θ
∑K
k=j+2 zσ(k)

.

One can simply verify that the optimal value of (93) is

zσ(j+1)[(µj − µσ(j+1) −G(β̃))+]2 ≥ zσ(j+1)[(1 + ζj −
1√
β̃
)+]

2, (94)

where the inequality follows from the fact that µj+1 ≥ µσ(j+1) and G(β̃) = 1/

√
β̃− 1. Substituting

the value of β̃ yields that the r.h.s. of (94) is equal to

1

θ

1− θ
K∑

k=j+2

zσ(k)

((1 + ζj)

√
θzσ(j+1)

1− θ
∑K
k=j+2 zσ(k)

−
√

1

(j + 1)log(j + 1)

)
+

2

.

As z ∈ Xj \ ∪Ki=jXj,i(θ), Proposition 7 with i = j + 2 directly completes the proof.

E.3.2 The allocation process under CR-A

One can use similar arguments as those used in the proof of Theorem 7 to derive the analogous rate
function for the allocation process under CR-A.
Theorem 8. Let j ∈ {2, . . . ,K − 1}, θ ∈ (0, 1],x ∈ Xj \ ∪Ki=jXj,i(θ), define

Iθ(x) = max
p=j,...,K−1

2xσ(p+1) inf
λ∈Sp(x)

p+1∑
k=1

(λσ(k) − µσ(k))2, (95)
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where σ is the permutation described in (64) for z and

Sp(x) =

{
λ ∈ [0, 1]K : λσ(p+1) ≤

∑p
k=1 λσ(k)

p
−G

(
θxσ(p+1)(p+ 1)log(p+ 1)

1− θ
∑K
k=p+2 xσ(k)

)}
. (96)

Then the process {ω(θT )}T≥1 under CR-A satisfies a local LDP upper bound (66) with Īθ at x.

The proof is omitted as it is almost the same as that of Theorem 7. We can also obtain the analogous
version of Corollary 3 as shown below:

Corollary 4. Let j ∈ {2, . . . ,K}, θ, β ∈ (0, 1], z ∈ Z[j](θ, β), we define

Iθ(z) =
2jlog(j + 1)

θ(j + 1)logK

((1 + φj)

√
θzσ(j+1)

1− θ
∑K
k=j+2 zσ(k)

−
√

1

(j + 1)log(j + 1)

)
+

2

, (97)

where σ is the permutation described in (64) for z, then Iθ(z) ≤ Iθ(z).

Proof. We can simply solve the optimization problem similar to (60) as in the proof Proposition 6 in
Appendix D.2 and get that Iθ(z) is greater than the l.h.s. of the following inequality.

2jzσ(j+1)

j + 1

[(∑j
k=1 µk
j

− µσ(j+1) −G(β̃)

)
+

]2
≥

2jzσ(j+1)

j + 1


(1 + φj)−

1√
β̃


+


2

, (98)

where

β̃ =
θzσ(j+1)(j + 1)log(j + 1)

1− θ
∑K
k=j+2 zσ(k)

.

(98) is due to µj+1 ≥ µσ(j+1) (hence
∑j
k=1 µk/j−µσ(j+1) ≥ φj) andG(β̃) = 1√

β̃
−1. Substituting

the value of β̃ yields that the r.h.s. of (98) equals to

2j

θ(j + 1)

1− θ
K∑

k=j+2

zσ(k)

((1 + φj)

√
θzσ(j+1)

1− θ
∑K
k=j+2 zσ(k)

−
√

1

(j + 1)log(j + 1)

)
+

2

.

As z ∈ Xj \ ∪Ki=jXj,i(θ), Proposition 7 with i = j + 2 directly completes the proof.
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F Continuity arguments

We introduce some definitions and results taken from (Berge, 1997), and also used recently in (Wang
et al., 2021; Degenne and Koolen, 2019; Combes et al., 2017) in the bandit literature.

Suppose X and Y are Hausdorff topological spaces. Let u : X × Y → R be a function and
Φ : X ⇒ S(Y) be a set-valued function, where S(Y) is the set of non-empty subsets of Y. Besides,
we introduce K(X) = {F ∈ S(X) : F is compact}. We are interested in a minimization problem of
the form: for x ∈ X,

v(x) = inf
y∈Φ(x)

u(x, y).

We define the set of solutions of this problem as Φ∗(x) = {y ∈ Φ(x) : u(x, y) = v(x)}.
Theorem 9 ((Berge, 1997)). Assume that

• Φ : X ⇒ K(X) is continuous (i.e., both lower and upper hemicontinous),

• u : X× Y→ R is continuous.

Then the function v : X→ R is continuous and the solution multifunction Φ∗ : X→ S(Y) is upper
hemicontinuous, with values that are nonempty and compact.

F.1 Verifying the continuity in Theorem 7

We verify the continuity argument used in the proof of Theorem 7.
Lemma 17. The function

inf
λ∈Sp(x)

p+1∑
k=1

xp+1(λk − µk)2,

where Sp(x) =

{
λ ∈ [0, 1]K : λp+1 ≤ min

k≤p
λk −G

(
θxp+1(p+ 1)log(p+ 1)

1− θ
∑K
k=j+2 xk

)}
,

is continuous for all x ∈ Σ.

Proof. We apply Theorem 9 with:

• X = Σ,
• Y = [0, 1]K ,

• Φ(x) = Sp(x),
• u(x,λ) =

∑K
k=1 xp+1(λk − µk)2.

As the objective function is obviously continuous, it remains to show that Sp(·) is a continuous
correspondence. By simply using Lemma 19 with f(λ) = λp+1 − mink≤p λk and g(x) =

−G
(
θxp+1(p+1)log(p+1)

1−θ
∑K

k=p+2 xk

)
, we can complete the proof.

It is straightforward to get a similar guarantee for the function involved in CR-A: we hence omit the
proof of the following lemma.
Lemma 18. The function

inf
λ∈Sp(x)

p+1∑
k=1

xp+1(λk − µk)2,

where Sp(x) =

{
λ ∈ [0, 1]K : λp+1 ≤

∑
k≤p λk

p
−G

(
θxp+1(p+ 1)log(p+ 1)

1− θ
∑K
k=j+2 xk

)}
,

is continuous for all x ∈ Σ.
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Lemma 19. Let g : Σ 7→ R be a continuous mapping and f : [0, 1]K 7→ R be a lower semicontinuous
mapping which further satisfies that ∀λ ∈ RK , δ > 0, there exists λ′ ∈ RK s.t.

∥∥λ− λ′∥∥
∞ ≤ δ and

f(λ′) < f(λ). Then ∀x ∈ Σ,

S(x) =
{
λ ∈ [0, 1]K : f(λ) ≤ g(x)

}
,

is a continuous correspondence.

Proof. (i) Upper hemicontinuity: Suppose {xn}n∈N ⊂ Σ converges to x⋆ ∈ Σ and {λn}n∈N ⊂ RK
converges to λ⋆ s.t. λn ∈ S(xn) for all n ∈ N. We will show that λ⋆ ∈ S(x⋆). Since g is upper
semicontinuous, and xn → x⋆ as n→∞, for any ϵ > 0, ∃Nϵ ∈ N s.t. g(xn) ≤ g(x⋆) + ϵ for all
n ≥ Nϵ. As λn ∈ S(xn), we deduce that

f(λn) ≤ g(xn) ≤ g(x⋆) + ϵ, ∀n ≥ Nϵ.

Now the lower semicontinuity of f implies f(λ⋆) ≤ limn→∞ f(λn) ≤ g(x⋆)+ ϵ. As ϵ can be taken
arbitrarily, λ⋆ ∈ S(x⋆).

(ii) Lower hemicontinuity: Suppose {xn}n∈N ⊂ Σ converges to x⋆ ∈ Σ, we aim to show that for
all λ⋆ ∈ S(x⋆) (or equivalently f(λ⋆) ≤ g(x⋆)), there exist a subsequence {xnk

}k∈N ⊆ {xn}n∈N
and a sequence {λk}k∈N s.t. λk ∈ S(xnk

) and λk → λ⋆ as k → ∞. By assumption on f , for
any integer k, there exists λk s.t. ∥λk − λ⋆∥∞ < 1/k and f(λk) < f(λ⋆). Also, g(xn)→ g(x⋆)
as n → ∞ implies there exists a finite n s.t. g(xn) ≥ f(λk) due to the lower semicontinouity of
g. Hence we can always find a subsequence {nk} s.t. g(xnk

) ≥ f(λk), which is equivalent to
λk ∈ S(xnk

).

Lemma 20. When S is a bounded set in RK , FS(·) is a continuous function.

Proof. This is a direct application of Berge’s maximum theorem.
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G A partitioning technique for large deviations

In this section, we establish a theorem that is instrumental in the large deviation analysis of our
algorithms.

Theorem 10. Let θ0, θ̃0 ∈ (0, 1). Let (Sθ,γ)θ∈[θ0,1],γ∈[θ̃0,1]
and (Wθ,γ)θ∈[θ0,1],γ∈[θ̃0,1]

two collec-
tions of Borel sets in [0, 1]K and Σ, respectively. We assume that

Suppose (i) for any T ∈ N,

Pµ[E ] ≤
T∑

t≥θ0T

T∑
τ≥θ̃0T

Pµ[µ̂(t) ∈ S t
T ,

τ
T
,ω(t) ∈W t

T ,
τ
T
],

(ii) for any θ ∈ [θ0, 1] ∩Q, {ω(θT )}T≥1 satisfies LDP upper bound (3) with Iθ, where Iθ is lower
semi-continuous in Σ.
(iii) ∀θ, γ, Sθ,γ ̸= ∅. For all δ > 0, there exists η > 0 such that if max{|θ′ − θ| , |γ′ − γ|} < η, then

dist(Sθ,γ ,Sθ′,γ′) = max

{
sup
s∈Sθ,γ

inf
s′∈Sθ′,γ′

∥s− s′∥∞ , sup
s′∈Sθ′,γ′

inf
s∈Sθ,γ

∥s′ − s∥∞

}
.

Under Assumption 1, we have

lim
T→∞

1

T
log

1

Pµ[E ]
≥ inf
θ∈[θ0,1]∩Q

inf
γ∈[θ̃0,1]∩Q

inf
ω∈cl(Wθ,γ)

θmax{FSθ,γ
(ω), Iθ(ω)}. (99)

Proof. Without loss of generality, we can assume θ0 = θ̃0. If θ0 < θ̃0, we further define Sθ,γ = Sθ,θ̃0
and Wθ,γ =Wθ,θ̃0

for θ0 ≤ γ < θ̃0. And we handle the case θ0 > θ̃0 similarly.

The main idea behind the proof is to partition the set of instants t ∈ {θ0T, . . . , T} into a finite
collection of instant sets such that if t lies within one of these sets then we may bound Pµ[µ̂(t) ∈
S t

T ,
τ
T
,ω(t) ∈ W t

T ,
τ
T
] uniformly. From this partition, we can rewrite the upper bound Pµ[E ] as a

finite sum. This sum is further upper bounded by a maximum over each of its terms. We conclude by
taking the limit as T grows large – since we deal with the maximum over a finite number of terms,
the limit and the maximum can be exchanged.

Step 1. Partition of [θ0, 1]. To build this partition, we leverage the results of Lemmas 15 and 16. Let
δ > 0. We construct Nδ points θ1, . . . , θNδ

as follows: θNδ
= 1 and

θn = (1− δ

2
)−nθ0, ∀n = 1, . . . , Nδ − 1.

Nδ is chosen as min{p ∈ N : θ0(1− δ
2 )

−p ≥ 1}. Now observe by construction that:

∪Nδ
n=1 [θn−1, θn] = [θ0, 1], (100)

∀n, (θ ∈ [θn−1, θn]) =⇒ (θ ∈ [θn(1−
δ

2
), θn]). (101)

Step 2. Uniform upper bounds of Pµ[µ̂(t) ∈ S t
T ,

τ
T
,ω(t) ∈W t

T ,
τ
T
]. We define the following sets:

for all n,m = 1, . . . , Nδ ,

S̄δn,m = ∪θ∈[θn−1,θn]∩Q ∪γ∈[θm−1,θm]∩Q
{
s̄ ∈ [0, 1]K : ∃s ∈ Sθ,γ : ∥s̄− s∥∞ ≤ δ

}
,

W̄ δ
n,m = ∪θ∈[θn−1,θn]∩Q ∪γ∈[θm−1,θm]∩Q {w̄ ∈ Σ : ∃w ∈Wθ,γ : ∥w̄ − w∥∞ ≤ δ} .

Let θ = t/T , γ = τ/T , and assume that θ ∈ [θn−1, θn], γ ∈ [θm−1, θm]. Then µ̂(t) ∈ S t
T ,

τ
T

implies
that µ̂(θn) ∈ S̄δn,m from Lemma 16. Similarly, ω(t) ∈ W t

T ,
τ
T

implies that ω(θn) ∈ W̄ δ
n,m from

Lemma 15. We conclude that: for all t, τ such that t/T ∈ [θn−1T, θnT ] and τ/T ∈ [θm−1T, θmT ],

Pµ[µ̂(t) ∈ S t
T ,

τ
T
,ω(t) ∈W t

T ,
τ
T
] ≤ Pµ[µ̂(θnT ) ∈ S̄δn,ω(θnT ) ∈ W̄ δ

n,m].
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Step 3. Upper bound on Pµ[E ]. We denote by pn the number of instants t such that t
T ∈

[θn−1T, θnT ]. From the above inequality, we conclude that:

Pµ[E ] ≤
Nδ∑
n=1

Nδ∑
m=1

pnpmPµ[µ̂(θnT ) ∈ S̄δn,m,ω(θn) ∈ W̄ δ
n,m],

≤ (

Nδ∑
n=1

pn)(

Nδ∑
m=1

pm) max
n,m∈{1,...,Nδ}

Pµ[µ̂(θnT ) ∈ S̄δn,m,ω(θnT ) ∈ W̄ δ
n,m].

We note that
∑Nδ

n=1 pn is roughly equal to T , and always smaller than T +2Nδ . Taking the logarithm,
dividing by −T , and the liminf of the above inequality, we get:

lim
T→∞

1

T
log

1

Pµ[E ]
≥ lim
T→∞

1

T
min

n,m∈{1,...,Nδ}
log

1

Pµ[µ̂(θnT ) ∈ S̄δn,m,ω(θnT ) ∈ W̄ δ
n,m]

,

= min
n∈{1,...,Nδ}

lim
T→∞

1

T
log

1

Pµ[µ̂(θnT ) ∈ S̄δn,m,ω(θnT ) ∈ W̄ δ
n,m]

,

≥ min
n,m∈{1,...,Nδ}

θn inf
ω∈cl(W̄ δ

n,m)
max{FS̄δ

n,m
(ω), Iθn(ω)},

where the last inequality follows from Theorem 1 with S = S̄δn,m and W = W̄ δ
n,m.

Step 4. Continuity arguments. The last step consists in proving that:

lim sup
δ→0

min
n,m∈{1,...,Nδ}

inf
ω∈cl(W̄ δ

n,m)
θnmax{FS̄δ

n,m
(ω), Iθn(ω)}

≥ inf
θ,γ∈[θ0,1]∩Q

inf
ω∈cl(Wθ,γ)

θmax{FSθ,γ
(ω), Iθ(ω)}.

We first state two uniform continuity results, proved in Lemma 21: For any ϵ > 0, θ, γ ∈ [θ0, 1],
there exists δ > 0 such that

∀ω,∀n,m = 1, . . . , Nδ, FS̄δ
n,m

(ω) ≥ FSθn,θm
(ω)− ϵ, (102)

∀ω,ω′ : ∥ω − ω′∥∞ ≤ δ, FSθ,γ
(ω′) ≥ FSθ,γ

(ω)− ϵ, Iθ(ω′) ≥ Iθ(ω)− ϵ. (103)

(102) is the consequence of (iii) and Lemma 21. (103) immediately follows from the compactness of
Σ, lower semi-continuity of Iθ, and FSθ,γ

(see Lemma 20 and (ii)). We fix such a δ, and consider any
convergent sequence (nk,mk,ωk)k with values in {1, . . . , Nδ}2 × Σ such that if nk = n,mk = m
then ωk ∈ W̄ δ

n,m. Denote by (n,m,ω0) its limit. We let:

g⋆ = lim
k→∞

θnk
max(FS̄δ

nk,mk
(ωk), Iθnk

(ωk)).

Then, we have:

g⋆ ≥ θnmax(FS̄δ
n,m

(ω0), Iθn(ω0))− ϵ
≥ θnmax(FSθn,θm

(ω0), Iθn(ω0))− 2ϵ

≥ θnmax(FSθn,θm
(ω), Iθn(ω))− 3ϵ,

for some θ ∈ [θn−1, θn], γ ∈ [θm−1, θm], ω ∈ cl(Wθ,γ). The first inequality is due to (103), the
second to (102), and the third to the fact that ω0 ∈ W̄ δ

n,m and (103). We conclude that:

g⋆ ≥ inf
θ,γ∈[θ0,1]∩Q

inf
ω∈cl(Wθ,γ)

θmax{FSθ,γ
(ω), Iθ(ω)} − 3ϵ.

Lemma 21. Assume (Sθ,γ)θ∈[θ0,1],γ∈[θ̃0,1]
is a collection of nonempty sets in [0, 1]K that satisfies

∀δ > 0, there exists η > 0 such that if max{|θ′ − θ| , |γ′ − γ|} < η, then

dist(Sθ,γ ,Sθ′,γ′) = max

{
sup
s∈Sθ,γ

inf
s′∈Sθ′,γ′

∥s− s′∥∞ , sup
s′∈Sθ′,γ′

inf
s∈Sθ,γ

∥s′ − s∥∞

}
.

Then (102) holds.
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Proof. Recall that FSθ
(ω) = infλ∈cl(Sθ) Ψ(λ,ω) = infλ∈cl(Sθ)

∑
k ωkd(λk, µk). Ψ is uniformly

continuous in [0, 1]K × Σ, and hence:

∀ϵ > 0,∃δ̄ : ∀λ,λ′, ∥λ− λ′∥∞ ≤ 2δ̄ ⇒ |Ψ(λ,ω)−Ψ(λ′,ω)| ≤ ϵ.

Based on the assumption in the lemma, there exists η > 0 such that if max{|θ′ − θ| , |γ′ − γ|} < η,
then

dist(Sθ,γ ,Sθ′,γ′) < δ̄.

Select δ < min(δ̄, 2η). Let n,m ∈ {1, . . . , Nδ}. For (θ, γ) ∈ [θn−1, θn] × [θm−1, θm], we have
max(|θ − θn|, |γ − θm|) ≤ δ/2 < η. This implies that:

dist(Sθ,γ ,Sθn,θm) < δ̄.

And hence since Sθn,θm ⊂ S̄δn,m:
dist(Sθ,γ , S̄δn,m) < δ̄.

We conclude that ∀ω, ∀λ ∈ Sθ,γ , ∃λ′ ∈ S̄δn,m,

Ψ(λ,ω) ≥ Ψ(λ′,ω)− ϵ.

This completes the proof.
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H A simple min-max problem

The two following results are used in Appendix C.
Lemma 22. Let b1, c1, b2, c2 > 0. Introduce f(x) = −b1x + c1 and g(x) = b2x + c2, ∀x ∈ R.
Then

inf
x∈R

max{f(x), g(x)} ≥ f(x0),

where x0 is the real number s.t. x0 ≥ 0, f(x0) = g(x0)

Proof. As g is an increasing function and f is a decreasing function, we deduce that for all x ≥ x0,
max{f(x), g(x)} ≥ g(x) ≥ g(x0) = f(x0). Similarly for all x ≤ x0, max{f(x), g(x)} ≥
f(x) ≥ f(x0).

Lemma 23. Let b1, c1, b2, c2 > 0. Introduce f(x) = −b1x+ c1 and g(x) = [(c2
√
x− b2)+]2 for

x ∈ R+. Then
inf
x∈R+

max{f(x), g(x)} ≥ f(x0),

where x0 is the unique real number s.t. x0 > 0 and f(x0) = g(x0).

Proof. We first prove the uniqueness of x0. Observe that g is an increasing function, whereas f is a
strictly decreasing function. From the definition, we can have f(0) = c1 > 0 = g(0), hence there
exists an unique point x0 > 0 s.t. f(x0) = g(x0). Leveraging the convexity of g, there exists a linear
function g s.t. g(x) ≥ g(x) and g(x0) = g(x0). The proof then follows from the fact that

inf
x∈R+

max{f(x), g(x)} ≥ inf
x∈R

max{f(x), g(x)} ≥ f(x0),

where the last inequality is the application of Lemma 22.
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I The LDP conjecture and its consequence

In this section, we restate the conjecture mentioned in Section 3.2, and we discuss how it relates to
the conjectured lower bound (1).
Conjecture 1. Assume that under some adaptive sampling algorithm, {ω(t)}t≥1 satisfies an LDP
with rate function L. Then we have: for any non-empty subset S of RK and any subset W of Σ,

lim
t→∞

1

t
log

1

Pµ [µ̂(t) ∈ cl(S),ω(t) ∈W ]
= inf

ω∈W
max {FS(ω), L(ω)} .

For simplicity, we assume that Λ = {µ ∈ RK : µ1(µ) > µk,∀k ̸= 1(µ)} and all the reward
distributions are Gaussian. Introduce the notation:

Ψ⋆µ = max
ω∈Σ

inf
λ∈Alt(µ)

Ψµ(λ,ω),

and ω⋆(µ) = argmax
ω∈Σ

inf
λ∈Alt(µ)

Ψµ(λ,ω),

where Ψµ(λ,ω) =
∑K
k=1 ωkd(λk, µk). Notice that the KL-divergence is symmetric in its arguments

if the distributions are Gaussian. Hence the conjectured lower bound (1) is exactly the same as that
in the fixed confidence setting. The solution ω⋆(µ) to the corresponding optimization problem is
unique (see Theorem 5 in Garivier and Kaufmann (2016)).

We consider the set of algorithms returning the best empirical arm ı̂ = 1(µ̂(T )) and with error
probability matching the conjectured lower bound (1). If such an algorithm exists, under the
assumption that Conjecture 1 is true, the rate function for the corresponding process {ω(T )}T≥1

must satisfy:

inf
ω∈Σ

max

{
( inf
λ∈Alt(µ)

Ψµ(λ,ω)), Lµ(ω)

}
≥ Ψ⋆µ, (104)

where Lµ is the rate function of a complete LDP under µ for the process {ω(T )}T≥1. Lemma 24
below shows that (104) implies the process {ω(T )}T≥1 convergences to the optimal allocation.
Lemma 24. For µ ∈ Λ, if there is a strategy satisfying (104), then Lµ(ω) ≥ Ψ⋆µ,∀ω ̸= ω⋆(µ) and
Lµ(ω

⋆(µ)) = 0.

Proof. Assume that, on the contrary, there is ω′ ̸= ω⋆(µ) s.t. Lµ(ω
′) < Ψ⋆µ. Together with

infλ∈Alt(µ) Ψµ(λ,ω
′) < Ψ⋆µ, this implies that:

inf
ω∈Σ

max

{
( inf
λ∈Alt(µ)

Ψµ(λ,ω)), Lµ(ω)

}
≤ max

{
inf

λ∈Alt(µ)
Ψµ(λ,ω

′), Lµ(ω
′)

}
< Ψ⋆µ.

This contradicts the assumption, (104), so we have Lµ(ω) ≥ Ψ⋆µ,∀ω ̸= ω⋆(µ). As for the optimal
allocation, ω⋆(µ), the fact Pµ [ω(T ) ∈ Σ] = 1 implies that

0 = lim
T→∞

1

T
log

1

Pµ [ω(T ) ∈ Σ]
≥ inf

ω∈Σ
Lµ(ω),

where the last inequality stems from (4) in Definition 1. Since Lµ(ω) ≥ Ψ⋆µ,∀ω ̸= ω⋆(µ), we
conclude that Lµ(ω

⋆(µ)) = 0.

So far, we have investigated the consequence of matching the lower bound (1) on a single instance
(a single parameter µ). Of course, we wish to get an algorithm matching (1) for all instances. The
following theorem shows that this is impossible even for two parameters.
Theorem 11. Consider µ,π ∈ Λ s.t. ω⋆(µ) ̸= ω⋆(π) and maxk∈[K] d(πk, µk) < Ψ⋆µ, then there
is no strategy satisfying (i) and (ii) simultaneously:

(i) (104) holds for π

(ii) (104) holds for µ
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Proof. Assume that, on the contrary, there is such a strategy. By the assumption on µ and π, there
will be an open set O ⊂ Σ s.t. ω⋆(π) ∈ O but ω⋆(µ) /∈ O. On the one hand, Lπ(ω

⋆(π)) = 0 by
Lemma 24 and (i). Recalling the LDP lower bound (4) in Definition 1, Lπ(ω

⋆(π)) = 0 directly
implies that:

lim
T→∞

Pπ[ω(T ) ∈ O] = 1. (105)

On the other hand, (ii) and Lemma 24 imply that Lµ(ω) ≥ Ψ⋆µ if ω ̸= ω⋆(µ), hence

lim
T→∞

1

T
log

1

Pµ[ω(T ) ∈ O]
≥ Ψ⋆µ. (106)

Now applying a change-of-measure argument (see Lemma 1 in Kaufmann et al. (2016) or equation
(6) in Garivier et al. (2019)), one can derive

K∑
k=1

Eπ [ωk(T )] d(πk, µk) ≥
1

T
kl(Pπ[ω(T ) ∈ O],Pµ[ω(T ) ∈ O]) (107)

Using the assumption that maxk∈[K] d(πk, µk) < Ψ⋆µ, the left-hand side of (107) is strictly smaller
Ψ⋆µ. However, by letting T →∞ on the r.h.s. of (107), (105) and (106) implies the limitinf is larger
than Ψ⋆µ. This is a contradiction.

The consequence of Theorem 11 is that either our conjecture is true and in which case, for any
algorithm there are two instances for which it cannot match the error lower bound (1) or the conjecture
is not true (the bound provided in Theorem 1 is not tight). We finally note that recent results presented
in Degenne (2023); Wang et al. (2023) suggest that indeed the lower bound (1) cannot be achieved.
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J Discussion on the conjectured lower bound (1)

In this section, we discuss two points: (i) (1) indeed corresponds to the conjectured lower bound
proposed by Garivier and Kaufmann (2016), see their Section 7; (ii) however, as far as we know,
there is no proof for (1), but one can derive a lower bound by inverting max and inf in (1).

(i) Without loss of generality, assume that µ is such that 1 is the best arm. We start from (1) and show
that this is equivalent to Garivier-Kaufmann’s formula. First, it can be easily checked that in (1), we
can replace Σ by Σ>0 = {ω ∈ Σ : ωk > 0,∀k ∈ [K]}. Then, for any ω ∈ Σ>0, we have

inf
λ∈Alt(µ)

∑
k

ωkd(λk, µk) = min
m ̸=1

inf
µm<x<µ1

ω1d(x, µ1) + ωmd(x, µm).

Indeed, we can decompose Alt(µ) as ∪m ̸=1{λ ∈ Λ : λm > λ1}, and thus, we have:

inf
λ∈Alt(µ)

∑
k

ωkd(λk, µk) = min
m̸=1

inf
λm>λ1

∑
k

ωkd(λk, µk).

We conclude by observing that

inf
λm>λ1

ω1d(λ1, µ1) + ωmd(λm, µm) = inf
µm<x<µ1

ω1d(x, µ1) + ωkd(x, µm),

which holds for all families of distributions such that x 7→ d(x, y) is monotonic (decreasing before y
and increasing after y) – this holds for Bernoulli, Gaussian, etc.

(ii) Consider a consistent algorithm, and denote by ωk(λ) the expected proportion of rounds where the
algorithm selects arm k under the probability Pλ. Using the classical change-of-measure arguments,
we get:

lim sup
T→∞

log
1

Pµ [̂ı ̸= 1]
≤ T

∑
k

ωk(λ)d(λk, µk) ≤ T max
ω∈Σ

∑
k

ωkd(λk, µk).

We can only deduce that:

lim sup
T→∞

1

T
log

1

Pµ [̂ı ̸= 1]
≤ inf

λ∈Alt(µ)
max
ω∈Σ

∑
k

ωkd(λk, µk).

One cannot directly apply Sion’s minimax theorem to derive (1) (as Alt(µ) is not a convex domain).
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K Numerical experiments

We consider various problem instances to numerically evaluate the performance of CR. In these
instances, we vary the number of arms from 5 to 55; we use Bernoulli distributed rewards, and vary
the shape of the arm-to-reward mapping. For each instance, we compare CR-C and CR-A to SR
(Audibert et al., 2010), SH (Karnin et al., 2013), and UGapE (Gabillon et al., 2012). As discussed in
Section 2, UGapE requires prior knowledge about a parameter depending on the underlying problem.
We hence implement its heuristic version which estimates the parameter on the fly, such modification
was suggested in previous works e.g. (Audibert et al., 2010; Karnin et al., 2013). We implement all
algorithms in Julia 1.7.3 and run all experiments on a machine with Apple M1 with 16 GB
RAM.3 The error probabilities averaged over 40, 000 independent runs. In all experiments, we set
θ0 = 10−5 for CR.

We vary the shape of the arm-to-reward function and consider one shape in each of the subsections
below. We present the error probability of all algorithms in tables and figures. In the latter, the error
probability is presented using the log scale, which sometimes makes the curves for some algorithms
close to each other. In the tables, we present the error probability for a few budgets only, and there,
we can see a clearer separation between the performance of the various algorithms.

Observe that our algorithms, CR, perform better than the other algorithms for most arm-to-reward
function shapes, except for linear arm-to-reward functions. In this specific scenario, SH performs
better but may perform very poorly in some other setups. In contrasts, CR is always among the two
best algorithms in all scenarios.

K.1 One group of suboptimal arms

This instance is considered by (Karnin et al., 2013): µ1 = 0.5 and µk = 0.45 for all k ≥ 2. We can
see that the performances of SR, CR-C, and CR-A are significantly better than UGapE and SH.

Figure 1: (One group of suboptimal arms) µ with K = 40.

3Our Julia implementation can be found at https://github.com/rctzeng/NeurIPS2023-CR.
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Table 2: (One group of suboptimal arms) error probabilities (in %).
K = 10 T = 6, 400 T = 7, 200 T = 8, 000

UGapE (Gabillon et al., 2012) 34.66 33.22 32.15
SH Karnin et al. (2013) 16.09 13.83 11.72
SR Audibert et al. (2010) 7.86 5.86 4.29
CR-C (this paper) 7.29 5.47 4.17
CR-A (this paper) 7.37 5.52 4.07

K = 20 T = 12, 000 T = 14, 000 T = 16, 000

UGapE (Gabillon et al., 2012) 42.77 39.93 38.62
SH Karnin et al. (2013) 24.48 20.30 17.02
SR Audibert et al. (2010) 9.43 6.59 4.35
CR-C (this paper) 8.39 5.92 4.08
CR-A (this paper) 8.80 6.16 4.42

K = 40 T = 30, 000 T = 35, 000 T = 40, 000

UGapE (Gabillon et al., 2012) 42.84 40.46 38.11
SH Karnin et al. (2013) 23.24 19.20 15.93
SR Audibert et al. (2010) 6.51 4.48 3.14
CR-C (this paper) 5.96 3.99 2.89
CR-A (this paper) 6.56 4.27 3.06

(a) K = 10 (b) K = 20

(c) K = 40

Figure 2: (One group of suboptimal arms) error probabilities averaged over 40, 000 independent runs.
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K.2 Two groups of suboptimal arms

In this instance, we set µ1 = 0.5, µk = 0.45 for k = 2, · · · , ⌊K−1
2 ⌋, and µk = 0.4 for k =

⌊K−1
2 ⌋ + 1, · · · ,K. Compared to K.1, where CR-C is always the best, CR-A becomes relatively

better here.

Figure 3: (Two groups of suboptimal arms) µ with K = 40.

Table 3: (Two groups of suboptimal arms) error probabilities (in %).
K = 10 T = 5, 600 T = 6, 800 T = 8, 000

UGapE (Gabillon et al., 2012) 25.50 23.02 20.97
SH Karnin et al. (2013) 7.41 5.05 3.33
SR Audibert et al. (2010) 4.05 2.30 1.20
CR-C (this paper) 3.68 2.05 1.13
CR-A (this paper) 3.44 1.88 0.99

K = 20 T = 4, 000 T = 7, 000 T = 10, 000

UGapE (Gabillon et al., 2012) 48.49 40.68 36.12
SH Karnin et al. (2013) 38.64 23.13 14.64
SR Audibert et al. (2010) 28.26 12.03 5.03
CR-C (this paper) 26.54 10.62 4.52
CR-A (this paper) 26.00 10.61 4.27

K = 40 T = 15, 000 T = 20, 000 T = 25, 000

UGapE (Gabillon et al., 2012) 46.04 41.80 38.30
SH Karnin et al. (2013) 27.29 19.69 14.24
SR Audibert et al. (2010) 9.97 5.03 2.43
CR-C (this paper) 9.12 4.49 2.24
CR-A (this paper) 9.26 4.78 2.38
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(a) K = 10 (b) K = 20

(c) K = 40

Figure 4: (Two groups of suboptimal arms) error probabilities averaged over 40, 000 independent
runs.
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K.3 Linear arm-to-reward function

In this instance, we set µk = 3
4 −

k−1
2K for k = 1, · · · ,K. As commented at the beginning of this

section, SH is the best, but the performance of CR-A is rather close to it.

Figure 5: (Linear arm-to-reward function) µ with K = 40.

Table 4: (Linear arm-to-reward function) error probability (in %).
K = 10 T = 3, 200 T = 3, 600 T = 4, 000

UGapE (Gabillon et al., 2012) 4.96 4.22 3.24
SH Karnin et al. (2013) 0.80 0.48 0.30
SR Audibert et al. (2010) 2.09 1.53 1.03
CR-C (this paper) 1.59 1.04 0.83
CR-A (this paper) 1.20 0.81 0.55

K = 20 T = 6, 000 T = 8, 000 T = 10, 000

UGapE (Gabillon et al., 2012) 15.49 11.20 8.78
SH Karnin et al. (2013) 6.87 3.86 2.12
SR Audibert et al. (2010) 10.76 7.57 5.24
CR-C (this paper) 10.03 6.96 4.68
CR-A (this paper) 8.78 5.72 3.73

K = 40 T = 15, 000 T = 20, 000 T = 25, 000

UGapE (Gabillon et al., 2012) 25.09 20.21 16.44
SH Karnin et al. (2013) 16.01 11.14 7.80
SR Audibert et al. (2010) 20.29 15.86 13.07
CR-C (this paper) 19.93 15.56 12.30
CR-A (this paper) 17.99 13.74 10.67
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(a) K = 10 (b) K = 20

(c) K = 40

Figure 6: (Linear arm-to-reward function) error probabilities averaged over 40, 000 independent runs.
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K.4 Concave arm-to-reward function

In this instance, we set µ1 = sin( (K−1)π
2K ) and µk = sin( 9π(K−k+1)

20K ) for k = 2, · · · ,K. When K
is small, the arm-to-reward function is close to the linear shape, and hence SH does well. while K
becomes larger, CR-A becomes the best.

Figure 7: (Concave arm-to-reward function) µ with K = 40.

Table 5: (Concave arm-to-reward function) error probability (in %).
K = 10 T = 900 T = 1, 400 T = 1, 900

UGapE (Gabillon et al., 2012) 2.23 1.36 0.94
SH Karnin et al. (2013) 1.10 0.17 0.04
SR Audibert et al. (2010) 1.85 0.54 0.20
CR-C (this paper) 1.24 0.35 0.10
CR-A (this paper) 0.94 0.21 0.04

K = 20 T = 900 T = 1, 400 T = 1, 900

UGapE (Gabillon et al., 2012) 2.44 1.85 1.59
SH Karnin et al. (2013) 2.66 0.51 0.13
SR Audibert et al. (2010) 2.81 0.86 0.31
CR-C (this paper) 1.87 0.47 0.14
CR-A (this paper) 1.36 0.36 0.09

K = 40 T = 2, 400 T = 2, 800 T = 3, 200

UGapE (Gabillon et al., 2012) 1.03 0.98 0.94
SH Karnin et al. (2013) 0.75 0.34 0.15
SR Audibert et al. (2010) 0.23 0.10 0.02
CR-C (this paper) 0.18 0.08 0.04
CR-A (this paper) 0.08 0.03 0.02
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(a) K = 10 (b) K = 20

(c) K = 40

Figure 8: (Concave arm-to-reward function) error probabilities averaged over 40, 000 independent
runs.
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K.5 Convex arm-to-reward function

In this instance, we set µk = 3
10(k+1) for k = 1, · · · ,K. Although SR sometimes does better than

CR-C, CR-C becomes better than SR when there is more budget given. This confirms our theoretical
analysis for CR-C (see Theorem 7).

Figure 9: (Convex arm-to-reward function) µ with K = 40.

Table 6: (Convex arm-to-reward function) error probability (in %).
K = 10 T = 1, 500 T = 2, 000 T = 2, 500

UGapE (Gabillon et al., 2012) 13.48 10.08 7.77
SH Karnin et al. (2013) 4.93 2.16 0.93
SR Audibert et al. (2010) 3.15 1.45 0.83
CR-C (this paper) 3.12 1.47 0.65
CR-A (this paper) 2.99 1.27 0.62

K = 20 T = 3, 000 T = 3, 500 T = 4, 000

UGapE (Gabillon et al., 2012) 10.67 8.95 7.76
SH Karnin et al. (2013) 2.91 1.66 0.99
SR Audibert et al. (2010) 0.96 0.55 0.29
CR-C (this paper) 0.93 0.56 0.28
CR-A (this paper) 0.79 0.39 0.21

K = 40 T = 4, 400 T = 5, 200 T = 6, 000

UGapE (Gabillon et al., 2012) 12.16 9.95 8.28
SH Karnin et al. (2013) 3.68 2.11 1.44
SR Audibert et al. (2010) 1.21 0.58 0.30
CR-C (this paper) 1.28 0.49 0.25
CR-A (this paper) 1.34 0.60 0.29
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(a) K = 10 (b) K = 20

(c) K = 40

Figure 10: (Convex arm-to-reward function) error probabilities averaged over 40, 000 independent
runs.
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K.6 Stair arm-to-reward function

In this instance, we consider M ∈ {5, 6, 10} and a M(M +1)/2-dimensional vector µ. For each M ,
we define µ as: for all positive integers m smaller than M , there are m arms on the same level with
value, 3

4 · 3
− m

M . For example, we plot the values for M = 10 (hence K = 55) in Figure 11. One can
see in this instance, our algorithms are by far stronger than the others.

Figure 11: (Stair arm-to-reward function) µ with K = 55.

Table 7: (Stair arm-to-reward function) error probability (in %).
K = 15 T = 1, 600 T = 2, 000 T = 2, 400

UGapE (Gabillon et al., 2012) 12.00 9.89 8.47
SH Karnin et al. (2013) 1.47 0.72 0.38
SR Audibert et al. (2010) 0.43 0.19 0.06
CR-C (this paper) 0.36 0.10 0.02
CR-A (this paper) 0.20 0.07 0.04

K = 21 T = 1, 500 T = 2, 000 T = 2, 500

UGapE (Gabillon et al., 2012) 17.44 13.97 12.08
SH Karnin et al. (2013) 4.31 1.77 0.83
SR Audibert et al. (2010) 2.27 0.92 0.32
CR-C (this paper) 1.68 0.55 0.24
CR-A (this paper) 1.14 0.35 0.09

K = 55 T = 3, 000 T = 4, 000 T = 5, 000

UGapE (Gabillon et al., 2012) 24.74 21.29 18.91
SH Karnin et al. (2013) 10.23 5.87 3.23
SR Audibert et al. (2010) 5.55 2.80 1.26
CR-C (this paper) 7.10 2.58 1.05
CR-A (this paper) 4.70 1.62 0.57
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(a) K = 15 (b) K = 21

(c) K = 55

Figure 12: (Stair arm-to-reward function) error probabilities averaged over 40, 000 independent runs.
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