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Abstract

The common self-supervised pre-training practice requires collecting massive unla-1

beled data together and then trains a representation model, dubbed joint training.2

However, in real-world scenarios where data are decentralized or collected in a3

streaming fashion, the joint training scheme is storage-heavy, time-consuming,4

and even infeasible. A more efficient alternative is to train a model continually5

with streaming data, dubbed sequential training, which, however, has not been6

investigated by previous works. To this end, in this paper, we conduct thorough7

experiments to investigate self-supervised pre-training with streaming data. Specif-8

ically, we evaluate and compare the transfer performance of self-supervised models9

between joint training and sequential training. We pre-train over 400 models on10

4 types of pre-training streaming data from ImageNet and DomainNet, and eval-11

uate them on 3 kinds of downstream tasks and 12 different downstream datasets.12

Surprisingly, we find that (1) as for self-supervised pre-training, with the help of13

simple data replay or parameter regularization, sequential training is promising to14

exhibit comparable transfer ability to joint training on various streaming data, and15

(2) when sequentially trained with streaming data chunks, self-supervised models16

have visibly less knowledge forgetting of the first data chunk than supervised17

models. Based on our findings, we believe sequential self-supervised training is a18

more efficient yet performance-competitive representation learning practice for19

real-world pre-training applications.20

1 Introduction21

Relying on supervised learning with large-scale labeled data, deep neural networks (DNNs) are able to22

extract transferable features beneficial to various visual tasks [1, 2]. As a result, it has been a popular23

paradigm to first pre-train a DNNs model on a large-scale labeled database (e.g., ImageNet [3])24

and then transfer learned features to target downstream tasks. However, supervised pre-training25

requires massive labeled data, which are usually difficult to collect and annotate. To exempt expensive26

labeling, existing works have resorted to self-supervised learning (SSL) with large-scale unlabeled27

data. SSL aims to learn useful features via solving various pretext tasks [4–8] using labels generated28

from unlabeled data themselves. Recent advances in SSL [8, 9] demonstrate comparable or even29

better transfer performance on various downstream tasks, compared with supervised learning (SL).30

Although SSL waives the cost of human labeling, it usually requires massive unlabeled data to learn a31

good representation model. Meanwhile, it is desirable to leverage significantly large-scale unlabeled32

data, e.g., billion-scale data to pre-train a strong model [7]. However, it is not easy to collect together33

such a large amount of unlabeled data. In realistic scenarios, data are usually streaming, generated34

and collected sequentially chunk by chunk, or data cannot be distributed elsewhere due to the privacy35
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and can only be visited sequentially. How to leverage these streaming data to pre-train a strong36

self-supervised representation model is well-worth studying.37

The common pre-training scheme with SSL collects massive unlabeled data together and trains a38

SSL model jointly using these data, dubbed joint training (JT). For a sequential data chunks, joint39

training requires to store all seen data chunks and re-train the representation model with both the new40

chunk and historical chunks. Drawbacks are evident that joint training is extremely storage-heavy,41

time-consuming, and not able to learn with decentralized data. A more efficient learning scheme for42

supervised learning with streaming data is to continually train a supervised model, dubbed sequential43

training (ST). Sequential training is assumed to suffer from catastrophic forgetting in supervised44

learning [10–12], showing significant performance degradation of previously learned tasks. Though45

more efficient and applicable to various streaming data, sequential training has not been investigated46

in SSL so far. Whether sequential SSL with streaming data suffers the similar degradation of transfer47

performance on downstream tasks is still unclear.48

In this work, we empirically study the transfer learning behavior of SSL models sequentially pre-49

trained on streaming data chunks. To make a comprehensive investigation, we consider 4 types50

of streaming data with different degrees of data distributions shifts, including ImageNet-based51

streaming data, i.e., the instance incremental sequence, the random class incremental sequence, and52

the distant class incremental sequence, and the DomainNet-based streaming data [13], i.e., the domain53

incremental sequence. As for downstream evaluation, following [14], we conduct 3 downstream54

tasks, including few-shot evaluation and linear evaluation on 12 image classification datasets [15],55

and Pascal VOC [16] detection. Besides the effect of streaming pre-training data and downstream56

tasks on the transfer learning performance, we investigate the effect of different SSL methods, and57

the potential help of continual learning methods. We further analyze the resource efficiency and58

knowledge forgetting behaviour of sequential SSL. We summarize findings and takeaways as below:59

• Sequential SSL exhibits almost the same transfer performance as joint SSL on streaming60

data with mild distribution shifts. As for streaming data with large distribution shifts, i.e.,61

the distant class sequence and the domain sequence, there exist evident transfer performance62

gaps between sequential SSL and joint SSL. Such performance gaps, however, can be63

mitigated effectively and efficiently with unsupervised parameter regularization [17] and64

simple data replay.65

• The common joint training practice may be unnecessary for SSL to obtain a good repre-66

sentation model with streaming data. Instead, sequential SSL is performance-competitive67

but more time-efficient and storage-saving, well worth considering as common practice for68

self-supervised pre-training with streaming data.69

• When sequentially trained with streaming data, representations of SSL models exhibits70

visibly less forgetting than those of SL model. We believe such good property of knowledge71

forgetting will inspire potential applications of SSL in continual learning tasks.72

2 Problem Setting73

For the illustration purpose, we adopt the prevailing SSL method, MoCo-v2 [18], to investigate74

the transfer learning performance of SSL with streaming data. See Appendix B on how to apply75

MoCo-v2 in sequential training and joint training, respectively.76

Pre-training with streaming data. We design 4 types of streaming data to mimic practical data77

collection scenarios: instance incremental sequence, random class incremental sequence, distant class78

incremental sequence and domain incremental sequence.79

We first consider ImageNet [3] as the streaming data and split it into 4 disjoint data chunks, which80

means the data sequence length is B = 4. For the instance incremental sequence, we randomly81

shuffle and split all samples into 4 IID parts. For the random class incremental sequence, we82

randomly split ImageNet into 4 disjoint data chunks with each chunk having 250 classes. For the83

distant class incremental sequence, inspired by [19], we split ImageNet into 4 class-even chunks84

according to WordNet Tree [20] while maximize the semantic dissimilarity across splits. In this85

case, the labels of data in different splits do not have common parent nodes under the 9-th level of86

taxonomy. Finally, to obtain a domain incremental sequence, we adopt a multi-domain dataset87

called DomainNet [21] for pre-training. Following [21], we evenly choose samples from four domains88
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Figure 2: Comparisons of transfer learning performance among models of SSL-ST, SSL-ST w/MAS,
SSL-ST w/MAS+, SSL-JT, SL-ST, and SL-JT, when pre-trained with the distant class incremental
sequence. On the right, we show the average accuracy for two downstream tasks across all the
datasets, respectively.

including Real, Clipart, Sketch and Painting. The illustration of above 4 types of streaming data is89

shown in Figure 1. See Appendix C for more introductions.90
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Figure 1: Illustration of 4 different types of streaming
data used for pre-training. Each color means one class,
where similar colors refer to similar semantics in the
label semantic tree. Border types mean domain styles.

Transferring to downstream tasks. To91

thoroughly evaluate the transfer learning92

ability of SSL pre-trained models with93

streaming data, we evaluate them on 394

typical downstream tasks, including lin-95

ear evaluation, few-shot classification and96

detection. Following [22], we consider97

12 diverse image classification datasets in-98

cluding Food-101 [23], CIFAR10 [24], CI-99

FAR100 [24], Birdsnap [25], SUN397 [26],100

Standard Cars [27], FGVC Aircraft [28],101

VOC2007 [16], DTD [29], Oxford-IIIT102

Pets [30], Caltech-101 [31] and Oxford 102103

Flowers [32]. On these datasets, we eval-104

uate the pre-trained models via the linear105

probe and few-shot classification (except106

VOC2007). Both classification protocols107

are the same as [14]. In addition, we evalu-108

ate the pre-trained models on the PASCAL109

VOC detection task, following the same110

transfer protocol of MoCo [7]. We mainly111

make comparisons among the following training models: sequentially trained SSL models (SSL-ST),112

jointly trained SSL models (SSL-JT), sequentially trained SSL models using MAS [17] (SSL-ST113

w/MAS), sequentially trained SSL models using MAS and replay of 10% old data (SSL-ST w/MAS+),114

sequentially trained SL models (SL-ST), and jointly trained SL models (SL-JT).115

3 Sequential SSL: Resource-efficient and Performance-competitive116

In Table 1, we compare the required training time and storage between sequentially trained models117

and the model of joint training (JT). As shown in Table 1, JT is very time-consuming especially118

when data amount is large, while ST is able to save a large amount of time under sequential training119

scenarios. Moreover, when we use MAS and data replay to improve the performance of ST, the120

time consumption of SSL increases a little but is still significantly faster than JT. As for storage121

consumption, we can observe a similar phenomenon. In summary, sequential SSL pre-training is122

much more time-efficient and storage-saving than JT, especially when the data amount is large and123
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Table 1: The comparison of SSL pre-training
methods in terms of the resource efficiency. We
take the distant class incremental sequence as
an example, and report the training time (h) and
required storage (GB) of the model pre-trained
after each data chunk. Note that all the following
statistics are recorded under the same hardware
environment. The lower value means the better
efficiency.

Time (Storage) / Chunk 2 3 4
SSL-ST 17 (35) 34 (35) 51 (35)
SSL-ST w/MAS 18 (35) 36 (35) 54 (35)
SSL-ST w/MAS+ 22 (39) 46 (42) 72 (46)
SSL-JT 31 (70) 78 (105) 145 (140)

Table 2: The comparison of pre-training meth-
ods in terms of the transfer performance gap
between ST and JT models. We report the aver-
aged accuracy gaps of linear evaluation across
12 downstream datasets. The lower, the better.

Accuracy gap (%) / Chunk 2 3 4
SL-ST (Instance) 2.26 3.27 4.83
SSL-ST (Instance) 0.41 1.02 1.04
SL-ST (Random) 5.63 8.73 10.68
SSL-ST (Random) 0.42 0.94 1.13
SL-ST (Distant) 7.77 12.50 15.75
SSL-ST (Distant) 2.34 3.81 4.62
SSL-ST w/MAS (Distant) 1.82 2.73 3.17
SSL-ST w/MAS+ (Distant) 1.47 2.01 2.10

grows quickly. Such a result suggests that sequential SSL is a more favorable choice for real-world124

applications, where data come in sequentially and grow daily.125

In Figure 2, we make comparisons of the transfer learning performance among different models on126

the most challenging distant class incremental sequence. We find SSL have much smaller accuracy127

gap between ST models and JT models, compared with SL. Besides, simple yet efficient continual128

learning methods bring visible improvement over sequential SSL. In Table 2, we show the mean129

accuracy gap between ST model and the corresponding JT model under the linear evaluation protocol.130

On the easiest instance incremental sequence, SL shows an obvious accuracy gap while the gap of131

SSL is negligible. On the medium-hard random class incremental sequence, SL exhibits a much132

larger accuracy gap while SSL still keeps the negligible accuracy gap. On the hard distant class133

incremental sequence, SL shows a much larger accuracy gap and SSL has an obvious accuracy gap.134

But such an accuracy gap of SSL can be effectively mitigated with simple continual learning methods135

like MAS or data replay. Generally, when learned with various streaming data, sequential SSL can136

achieve comparable transfer performance to joint SSL, with the help of continual learning methods.137

4 SSL Models Forget Less Than SL Models138

To further understand why SSL has smaller accuracy gaps between sequential models and joint models,139

we analyze features of sequentially trained models via Centered Kernel Alignment (CKA) [33].140

How do features forget in sequential training? We first study how learned features forget in141

sequential training via the CKA. Specifically, we randomly sample 5,000 images from the first data142

chunk for each streaming data. We use these samples and the sequentially trained models for CKA143

similarity analysis. We report CKA values under three sequential training settings in Figure 3(a). Each144

value in Figure 3 (a) is obtained by inputting these samples to two different models and computing145

the CKA similarity value between the output two features. We find SSL always has higher feature146

similarity than SL. This suggests that features of SSL forget less than features of SL during sequential147

training. Moreover, for the distant class incremental sequence, equipped with the MAS regularization148

and data replay, sequential SSL features are almost the same as the initial features with a CKA149

similarity over 0.9. Such a result shows that with these two simple techniques, the model continually150

trained by SSL exhibits almost no forgetting of previous knowledge in sequential training.151

Sequential training v.s. Joint training. We then evaluate CKA similarity between features from152

the jointly trained model and features from the sequentially trained model for each data chunk. For153

example, as shown in Figure 3(b), at the second data chunk, we compute the CKA similarity between154

features of the sampled data from the model jointly trained with the first two data chunks and features155

from the model sequentially trained with the second data chunk. The corresponding CKA similarity156

value is 0.4, which means for SL, the difference between joint training and sequential training is157

very large. In contrast, SSL has a higher similarity between sequential learning and joint training.158

Particularly, with MAS and data replay, the model trained by sequential SSL extracts nearly the159

same features as the jointly trained model. This illustrates that, even for the challenging distant class160

incremental sequence, one can also replace the joint training by sequential SSL pre-training.161
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(a) CKA scores across ST models trained after streaming data chunks.
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chunk on the distant class incremen-
tal sequence.

Figure 3: CKA similarity analysis of representations learned from different methods w.r.t. each
sequential chunk. Given a set of images, figures (a-c) show the feature similarity between the model
pre-trained with the first data chunk and the model sequentially trained with the current data chunk
under 3 sequential training settings, respectively. Moreover, figure (d) shows the feature similarity
between the jointly trained model and the sequentially trained model with different methods w.r.t.
each data chunk on the distant class incremental sequence.

Feature reconstruction. Similar to [34], in Figure 4, we visualize feature reconstructions of both162

sequential SL models and sequential SSL models using deep image prior (DIP) [35]. To be specific,163

we choose 4 images in the first data chunk of the distant class incremental sequence and visualize164

features of 4 sequential sequentially learned models of SSL and SL, respectively. As is shown in165

Figure 4 in the Appendix, In the sequential training process, features of SSL model can always166

perfectly reconstruct the main information in original images, while features of SL models would167

lose lots of detailed information, which indicates SSL is much better at countering the knowledge168

forgetting in sequential training. Considering the evolving CKA similarity shown in Figure 3(a), the169

good property of knowledge forgetting does not means SSL models stop learning new knowledge,170

but it indicates that SSL does well in learning new knowledge while keeping old knowledge.171

5 Discussions172

In this paper, we have conducted the first thorough empirical evaluation to investigate how well173

self-supervised learning (SSL) performs under sequential training scenarios. Our results show two174

main findings as follows: 1). Joint training is not necessary for SSL, while sequential training175

with suitable strategies is a good alternative. In the scenarios where distribution shifts within176

streaming data are mild (e.g., instance and random class incremental sequence), it is more favorable177

to directly conduct sequential SSL training that is far more efficient with negligible performance loss.178

On the other hand, if distribution shifts between streaming data are large, sequential SSL training179

with MAS+ is well worth considering. 2). Sequential self-supervised pre-training shows a better180

capability of overcoming catastrophic forgetting than supervised pre-training. One reason is181

that the features learned by contrastive SSL have been shown to be uniformly distributed over the182

feature space [36], which means the learned representations shift less during sequential training,183

as demonstrated by Section 4. In addition, features learned by the self-supervised task of instance184

discrimination are able to keep more visual information than the features learned by supervised185

pre-training [34], which weakens the effect of knowledge forgetting during sequential training.186

Future directions. We first call for more attention to sequential self-supervised learning for under-187

standing its underlying theories and devising better approaches. Also, we recommend considering188

sequential self-supervised training as a more efficient representation learning practice for real-world189

applications. Moreover, we will further investigate different self-supervised learning methods on190

various network architectures under sequential pre-training.191
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6 Appendix343

Input Image Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 1 Chunk 2 Chunk 3 Chunk 4

Raw image SSL SL

Figure 4: Features reconstruction of both SL-ST and SSL-ST models in sequential training.

A Related Work344

Self-supervised learning (SSL). SSL learns useful representations by solving various pretext tasks345

using supervisions generated from unlabeled training data, e.g., predicting rotations [5], solving346

jigsaw puzzles [4], predicting colorization [37], predicting cluster assignments [6] and solving347

instance discrimination [38, 22, 7, 8]. Recently, instance discrimination has become the most popular348

pre-text task for SSL, which motivates various contrastive SSL methods [39, 22, 7, 18, 40–42].349

Contrastive SSL usually leverages a contrastive loss [43] to maximize the similarity of features350

from the same image and minimize the similarity of features from different images, where massive351

pairwise comparisons among different images are required. Many strategies are proposed to improve352

contrastive learning, including maintaining a memory bank of all features [38], using a large chunk353

size [22] and using momentum encoders [7, 18]. To further improve the representation model, recent354

studies of SSL have proposed to pre-train a representation model with increasingly large datasets355

such as YFCC 100M [44] or even Instagram 1B [45]. Despite the desirable transfer performance [7],356

in realistic scenarios, it is not easy to acquire massive data at a time and unlabeled data are mostly357

streaming. However, how to efficiently and effectively perform SSL with streaming data remains358

open, which motivates our study.359

Continual learning. Existing studies of continual learning (CL) [46] mainly focus on supervised360

tasks and can be summarized into three categories, including regularization, replay and parameter-361

isolation. In regularization-based CL, knowledge preserving is achieved by regularizing the parameter362

posterior of the new task not to deviate drastically from the prior [17, 11, 47]. Replay-based CL363

methods overcome forgetting by saving samples of previous tasks in a replay buffer [48–51] and364

using them to regularize the learning of new tasks. Last, isolation-based CL methods leverage365

different parameters for learning each task to preserve the learned knowledge [52, 53]. Although366

works [54, 55] explore continual learning for some specific unsupervised tasks, few have studied the367

transfer performance of sequential self-supervised representation learning.368

B Training of MoCo-v2 on streaming data369

Formally, we consider the unlabeled dataset D =
⋃B
b=1 Db with B chunks of data, where Db =370 ⋃

{(xi)} represents the b-th data chunk in the stream. Without loss of generality, we assume that371

these data come from C classes although the labels are unavailable for model training.372

Sequential training. In sequential training, data samples used for model training are divided into373

disjoint chunks, i.e., D =
⋃B
b=1 Db, where B is the total number of data chunks. In sequential374
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self-supervised pre-training, both the representation network fθ and the projection head fw are375

continually trained. Specifically, the b-th time sequential training starts from the pre-trained network376

including f b−1
θ and f b−1

w , only involving samples of data chunk Db in the model training. When the377

b-th time training finishes, only f bθ and f bw are saved for sequential learning with next independent378

data chunk. Given the same training epoch, sequential training is much more efficient than joint379

training as only new data are used for the continual pre-training at each chunk. Continual learning380

techniques including data replay and unsupervised parameter regularization methods e.g. Memory381

Aware Synapses (MAS) [17] may be used to further improve the performance of sequential training.382

Joint training. In joint training, all available data are randomly shuffled to jointly train a model383

until convergence. Joint training is the common practice in SSL [8, 9]. As for pre-training with384

streaming data, each data chunk has a joint training result. At b-th data chunk, joint training requires385

all previously seen data chunks, i.e., {D1, ..., Db−1, Db}, for jointly training a representation network386

fθ from scratch. When the data sequence is long and each data chunk has a large amount of data,387

joint training is very storage-heavy and time-consuming.388

C Introduction on Streaming Data389

Instance incremental sequence Here we consider the sequential training of new instance. It assumes390

that streaming data are independent and identically distributed (IID), where each sequence chunk391

contains all the C classes but new instances come in sequentially. This kind of data stream is often392

encountered when samples are sequentially collected under the same conditions.393

Random class incremental sequence Similar to the classic class incremental learning, we then394

consider the random class incremental sequence for representation learning. In a typical example,395

each chunk of image data is obtained by a random key word from the Internet using search engines.396

Distant class incremental sequence Extending from the random class incremental sequence, we397

intentionally split the data classes w.r.t. the semantic similarity of classes to enlarge the data398

distribution gaps among chunks. In particular, images in the same data chunk share similar semantics399

while images from different data chunks are semantically dissimilar. This setting is designed to400

evaluate how well self-supervised pre-training performs on streaming data with large data distribution401

shifts.402

Domain incremental sequence Complementary to the above settings, we also consider a domain-403

incremental setting, where data chunks in the stream come from different image domains. For404

example, the first data chunk is realistic photos while the second data chunk are paintings. Such a405

data sequence mimics streaming data with domain distribution shifts, where different data chunks406

in the sequence may share the same classes or similar semantics. A typical example can be found407

in [56], when autonomous driving data with similar semantics are collected under different weathers408

or light conditions.409

D Results of Object Detection410

The results of object detection are shown in Figure 8.411

E Results of BYOL412

The results of BYOL on the distant class incremental sequence are shown in Figure 9.413

F Results on Other Streaming Data414

The results of the instance incremental data is shown in Figure 5, the results of random class415

incremental data is shown in Figure 6, and the results of the domain incremental sequence is shown416

in Figure 7.417
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Figure 5: Comparisons of transfer performance between sequential training (ST) and joint training
(JT) for self-supervised pre-training with the instance incremental sequence. ST shows similar
transfer performance compared to JT on 12 downstream tasks under both many-shot and few-shot
classification yet with much higher efficiency. On the right, we show the average performance for the
two downstream tasks across all the datasets together with results of joint supervised pre-training
(SL-ST) and sequential supervised pre-training (SL-ST).
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Figure 6: Comparison of transfer performance between sequential training (ST) and joint training
(JT) for self-supervised pre-training with the random class incremental sequence. On the right, we
show the average performance for the two downstream tasks across all the datasets together with
results of joint supervised pre-training (SL-ST) and sequential supervised pre-training (SL-ST).
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Figure 7: The average few-shot transfer performance across five sequences between sequential training
(ST) and joint training (JT) for self-supervised pre-training with domain incremental streaming data.
On the right, we show the average performance across all the datasets.
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(b) Random class incremental sequence
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(c) Distant class incremental sequence

Figure 8: Comparisons of transfer performance between sequential training (ST) and joint training
(JT) for self-supervised pre-training on the detection task.
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Figure 9: Comparisons of transfer performance between sequential training (ST) and joint training
(JT) for BYOL with the Distant class incremental sequence. On the right, we show the average
performance across all the datasets.
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