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A SYNTHETIC DATA GENERATION

For both Computationally Unidentifiable (CU) and Computationally Identifiable (CI) data, we
sampled from two-dimensional Gaussian distributions as:
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To have perfect balance, we sample 500 samples each for each label. For CU distribution, we assign
the sensitive attribute to each sample as:

a ⇠ Bern(
1

2
). (8)

While, the sensitive attribute of CI distribution is identifiable and formulated as:

a =

⇢
1, for x1 � 0
0, for x1 < 0,

(9)

where x1 is the first entry of x.

B MOTIVATING PROBLEM: GENERATIVE MODEL

Generative models usually suffer from mode collapse (Thanh-Tung & Tran, 2020) and posterior
collapse (Lucas et al., 2019), which result in a lack of diversity of synthetic images. When it comes
to fair generation, we want to generate samples to have similar distribution among sensitive groups.
If the sensitive information is correlated to a certain attribute in the feature space, the model would be
likely to generate images only from the related group. For example, when we want to generate blond
hair person, it would mostly generate female (Hwang et al., 2020; Liu et al., 2021).

To validate this, we study simple CNN-based VAE with MNIST-USPS dataset following Li et al.
(2020). Both MNIST and USPS have gray-scale handwritten digits as in Fig. 3c. We expect the latent
representation to be clustered by intrinsic information (digit) regardless of the sensitive information
(the source: MNIST or USPS). However, it is interesting to note that the representation is explicitly
separated by sensitive information as in Fig. 3a. This indicates that when we perturb the sample
in the latent space to obtain similar samples, we would only get samples from the same protected
group. Generally, it is likely to be from a privileged (majority) group of the label. This would create a
fatal problem in the fair generation that lacks the diversity of samples, which is the key to generating
synthetic images.

(a) t-SNE visualization of the learned representation

(b) Reconstruction of MNIST-USPS

(c) Samples of MNIST-USPS

Figure 3: Qualitative analysis of the generative model (VAE) on MNIST-USPS dataset. Left figure
illustrates t-SNE (Van der Maaten & Hinton, 2008) visualization of learned representation. Each
color (resp. shape) indicates a different digit (resp. source: MNIST or USPS). We observe that the
learned representation is clearly separated by the source (sensitive attribute). This computationally
identifiable distribution can lead to an imbalance in image generation, i.e., unfairness.
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C PROOF OF THEOREM 4.4

Before we prove Theorem 4.4, we introduce Lemma C.1 as:
Lemma C.1. Given two symmetric positive semi-definite matrices A 2 Rd⇥d

and B 2 Rd⇥d
, the

following inequality holds:
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p

Tr(A) Tr(B).

Proof. Denote the eigen decomposition of matrix A and B as

A = UASAU
>
A , B = UBSBU

>
B ,

where SA = Diag([↵1,↵2, . . . ,↵d]) 2 Rd⇥d and SB = Diag([�1,�2, . . . ,�d]) 2 Rd⇥d are
diagonal matrices with the eigenvalues ↵j |dj=1 and �j |dj=1 sorted in the descending order, i.e.,

↵1 � ↵2 � · · · � ↵d, and �1 � �2 � · · · � �d. Given that both A and B are positive semi-definite,
we have ↵j � 0,�j � 0, j = 1, 2, . . . , d.
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where the first equality is derived because matrix A is symmetric. Since A
1
2BA

1
2 is positive semi-
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Second, we prove the right-hand side of the inequality of Lemma 4.4. We can rewrite Tr
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(11)

where the first inequality is obtained based on the Von Neumann trace inequality (Mirsky, 1975) and
the second inequality is based on the Cauchy–Schwarz inequality.

Now we are ready to prove Theorem 4.4.

Proof. Consider a cluster X 2 Rd⇥n with n samples. X is normalized to zero mean (i.e., X1 = 0),
where 1 2 Rn is a vector with all elements being 1, and 0 2 Rd is a vector with all elements being
0. In this cluster, suppose there are l1 samples in the sensitive group a = 1, and l0 samples in the
sensitive group a = 0. We have l1 + l0 = n.

For a matrix X , denote xi as the i-th column of X . Define a matrix U 2 Rd⇥n as the following:

ui =

⇢
xi, if ai = 1,
0, else. (12)
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where ai 2 {0, 1} is the sensitive feature of the i-th sample.

Similarly we define a matrix V 2 Rd⇥n as the following:

vi =
⇢

xi, if ai = 0,
0, else. (13)

Based on the definition in equation 12 and equation 13 we have U + V = X .

Assume that samples in a = 1 and a = 0 groups are drawn from multivariate Gaussian distributions,
respectively. According to Definition 1 in the main paper, the Fréchet distance (FD) between U and
V is defined as:
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n

P
i
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vi are the means of U and V , respectively; ⌃U and ⌃V are the

covariance matrices:
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We can rewrite equation 15 as:
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where the matrix H in equation 17 is defined as

H = I � 1

n
11>.

Following the same procedure we can rewrite equation 16 as:

⌃V =
1

n� 1
V HV >. (18)

Based on equation 17 and equation 18, we can rewrite the FD definition in equation 14 as:
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Next we will prove two properties of UHU> and V HV >: 1) symmetry; 2) positive semi-definite.

1) For symmetry, it can be easily verified that both UHU> and V HV > are symmetric matrices since
H = H>.

2) For the positive semi-definite property, for any v 2 Rd, we have

v>UHU>v = ||HU>v||22 � 0, (20)

where the equality is derived based on the property that H>H = H . We can derive a similar
inequality for V HV >. Thus both UHU> and V HV > are positive semi-definite.
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Then based on Lemma 4.4, we can derive that:
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Denote
sU = U1, sV = V 1, s = X1.

We have sU + sV = s = 0 since X is normalized to zero mean. From equation 19 and equation 21
we can derive that

FD
2(U, V )

 1

n2
kU1 � V 1k22 +

1

n� 1
Tr
�
UHU> + V HV >�

=
1

n2
kU1 � V 1k22 +

1

n� 1
Tr
�
UHU> + V HV >�

� 2

n� 1

q
Tr(UHU>) Tr(V HV >) +

2

n� 1

q
Tr(UHU>) Tr(V HV >)

= k sU
n

� sV
n
k22 +

1

n� 1

�
kUHkF � kV HkF

�2
+

2

n� 1

q
Tr(UHU>) Tr(V HV >),

(23)

where the last row of equation 23 is derived based on the property that HH> = H .

Further, we can derive that
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In the third row of equation 24, the fact that Tr
�
UU> + V V >� = Tr(XX>) follows from the

definition of U and V in equation 12 and equation 13, and the fact that Tr(sU s>U ) = Tr(sV s>V ) is
due to the property that sU + sV = 0. The inequality in the fourth row of equation 24 is derived
because V HV > is positive semidefinite and Tr(sU s>U ) = ksUk22 � 0. The inequality in the last row
of equation 24 is derived based on the Cauchy–Schwarz inequality.

From equation 23 and equation 24 we can derive the following for FD(U,V):
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(25)

where FFDC2(U, V ) is defined in Definition 2 of the main paper.

Based on equation 19, equation 22 and equation 25 we further have:

FFDC2(U, V )� 1

n� 1
Tr(XX>)  FD

2(U, V )  FFDC2(U, V ). (26)

Given the multiple clusters Uk|ck=1 and Vk|ck=1 defined after Definition 2 in the main paper , we
substitute Uk and Vk to equation 26 and get the following:

FFDC2(Uk, Vk)�
1
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Tr(XkX

>
k )  FD

2(Uk, Vk)  FFDC2(Uk, Vk), k = 1, 2, . . . , c. (27)
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Taking the max operation on equation 27 we get

max
k
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where FFD2({X1, X2, ..., Xk}) is defined in Definition 3 of the main paper.

D ADDITIONAL EXPERIMENT: ADULT DATASET

We conduct an experiment on the famous fairness tabular benchmark: Adult (Kohavi, 1996). Adult
data from the UCI repository (Kohavi, 1996) is a tabular dataset that contains 48,842 instances with
the features such as workclass, education, and sex. The goal is to predict whether income exceeds
50K USD per year. The feature sex is used as the sensitive feature and c = 2 clustering problem.

Table 4 summarizes the experimental results. Similar to the results in the main paper, we could
achieve significantly lower FFD while achieving similar or better accuracy and balance comparing
with other methods.

Adult
Acc (Diff) NMI Balance FFD

Perfect 1.0 (0.0) 1.0 0.481 2.01
k-means++ 0.714 (0.249) 0.170 0.111 1.95

ScFC (Backurs et al., 2019) 0.690 (0.042) 0.105 0.350 1.98
ALG (Bera et al., 2019) 0.684 (0.054) 0.095 0.356 1.98
VFC (Ziko et al., 2019) 0.690 (0.042) 0.105 0.478 2.00
DFC (Li et al., 2020) 0.686 (0.172) 0.152 0.182 12.6

Ours (only Lcls) 0.686 (0.180) 0.152 0.171 1.37
Ours 0.697 (0.178) 0.157 0.186 0.46

Table 4: Evaluation of clustering methods on Adult dataset. For accuracy and NMI, it is higher the
better. Balance is better if it is closer to perfect clustering i.e., original data statistic. For accuracy
difference, FFD, and the lower bound of FD, the lower, the better.

E ADDITIONAL EXPERIMENT: FAIR DOWNSTREAM TASK

To validate the claim that representation with lower FFD helps to improve fairness in downstream
tasks, we evaluate with learned representation from DFC (Li et al., 2020) and ours, respectively. We
train logistic regression (LR) for classification and k-means++ for clustering. In Table 5, we observe
that representation with lower FFD consistently achieves lower fairness violations for both clustering
and classification without any sacrifice of utility. This shows how distributional independence of the
sensitive attribute is critical for fair downstream tasks.
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Representation Clustering (k-means++) Classifiaction (LR)
FFD Acc (diff) Balance Acc (diff) EOD

MNIST-USPS Ours 1.82 0.831 (0.016) 0.090 0.881 (0.079) 0.069
DFC 14.13 0.824 (0.160) 0.044 0.882 (0.091) 0.078

MTFL Ours 48.64 0.726 (0.038) 0.105 0.802 (0.003) 0.129
DFC 67.84 0.733 (0.158) 0.138 0.768 (0.030) 0.375

Adult Ours 0.68 0.688 (0.188) 0.172 0.813 (0.138) 0.322
DFC 7.15 0.685 (0.172) 0.181 0.813 (0.150) 0.306

Table 5: Evaluation of downstream tasks with representation from different deep fair methods on
various datasets.
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