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Efficiency in Focus: LayerNorm as a Catalyst for Fine-tuning
Medical Visual Language Pre-trained Models
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ABSTRACT
In the realm of Medical Visual Language Models (Med-VLMs), the
quest for universal efficient fine-tuning mechanisms remains para-
mount, especially given researchers in interdisciplinary fields are
often extremely short of training resources, yet largely unexplored.
Given the unique challenges in the medical domain, such as limited
data scope and significant domain-specific requirements, evaluat-
ing and adapting Parameter-Efficient Fine-Tuning (PEFT) methods
specifically for Med-VLMs is essential. Most of the current PEFT
methods onMed-VLMs have yet to be comprehensively investigated
but mainly focus on adding some components to the model’s struc-
ture or input. However, fine-tuning intrinsic model components
often yields better generality and consistency, and its impact on the
ultimate performance of Med-VLMs has been widely overlooked
and remains understudied. In this paper, we endeavour to explore
an alternative to traditional PEFT methods, especially the impact of
fine-tuning Layer Normalization (LayerNorm) layers, Feedforward
Neural Networks and Attention layers on the Med-VLMs. Our com-
prehensive study spans both small-scale and large-scale Med-VLMs,
evaluating their performance under various fine-tuning paradigms
across tasks such as Medical Visual Question Answering and Medi-
cal Imaging Report Generation. The findings reveal unique insights
into the effects of intrinsic parameter fine-tuning methods on fine-
tuning Med-VLMs to downstream tasks and expose fine-tuning
solely the LayerNorm layers not only surpasses the efficiency of
traditional PEFT methods but also retains the model’s accuracy
and generalization capabilities across a spectrum of medical down-
stream tasks. The experiments show LayerNorm fine-tuning’s su-
perior adaptability and scalability, particularly in the context of
large-scale Med-VLMs. We hope this work will contribute to the
ongoing discourse on optimizing efficient fine-tuning strategies for
Med-VLMs. The code will be released upon acceptance.

CCS CONCEPTS
• Computing methodologies → Information extraction; Neu-
ral networks; • Information systems→ Multimedia streaming.

KEYWORDS
Medical Visual Language Models, Efficient Fine-tuning, Layer Nor-
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Figure 1: Illustration of the (a)extrinsic parameter fine-
tuning and (b)intrinsic parameter fine-tuning methods.

1 INTRODUCTION
Visual language models (VLMs) have become pivotal in facilitating
multimodal tasks within the medical domain, such as medical visual
question answering (Med-VQA) and medical imaging report gener-
ation (Med-IRG). The pretraining-finetuning paradigm, heralded
for its success in domain adaptation and transfer, now stands as
the predominant training approach for Medical VLMs (Med-VLMs).
Nonetheless, the substantial data and computational resource de-
mands for VLM pretraining pose significant challenges. Despite the
success of visual language pre-training paradigms like CLIP [27]
and BLIP [18] fostering a series of open-source medical visual lan-
guage pre-trained (VLP) models contributed by the community,
adapting these models for specific downstream tasks remains a
formidable task for those constrained by resource availability. Espe-
cially considering the inherent minor variability in medical imaging
across different medical centers or imaging devices, which necessi-
tates researchers to frequently and rapidly fine-tune medical VLP
models (Med-VLPs).

The recent surge in Large Visual Language Models (LVLMs)
has exacerbated these challenges. Although a series of Parameter-
Efficient Fine-Tuning (PEFT) methods[11, 12, 20, 25] have been
developed in the Large Language Model (LLM) domain, their ap-
plicability and effectiveness in the context of LVLMs are yet to be
ascertained[2]. Some empirical studies[29] have shown that the
performance of certain PEFT methods contradicts their demon-
strated competitiveness in the original LLM domain when fine-
tuning domain-specific LVLMs because fine-tuning parameters for
different parts of the LVLM can have drastically different effects.
Distinct from universal domains, the medical field presents unique
challenges, such as limited dataset size and specialized data char-
acteristics, which necessitate a tailored approach to fine-tuning.
These domain-specific requirements underscore the need for a ded-
icated evaluation of PEFT methods on Med-VLMs to ensure their
efficacy and appropriateness for medical tasks. Even so, research on
the impact of imposing different PEFT methods on different scale
Med-VLMs for different tasks remains completely blank. Mean-
while, current PEFT methods typically focus on domain adaptation

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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by adding extra components to the model structure (i.e., Reparam-
eterized Fine-tuning) [12] or prefixes to the input (i.e., Additive
Fine-tuning) [10, 20, 25], while the role of fine-tuning intrinsic
structural parameters of models has been widely neglected, espe-
cially in vertical domain fine-tuning. As shown in Figure1

In this paper, we focus on efficiently fine-tuning Med-VLP mod-
els for specific downstream tasks, aiming to explore an innovative
method that achieves task adaptation by fine-tuning a small subset
of the model’s intrinsic parameters. To find a universally efficient
fine-tuning method applicable to various types of Med-VLMs, re-
gardless of their scale, we turn our attention to common founda-
tional layers in transformer-based components, including attention
layers, Feed-forward Neural Networks (FFN), and Layer Normal-
ization (LayerNorm) layers. Through systematic experiments, we
demonstrate that LayerNorm can serve as the most efficient method
for fine-tuning Med-VLPs. To further explore the efficiency, adapt-
ability, and performance of fine-tuning the LayerNorm layer for
transferring Med-VLPs to downstream tasks, We have conducted
an extensive evaluation across both large-scale and small-scale
Med-VLPs, encompassing core medical visual language tasks like
Med-VQA and Med-IRG. Our findings expose the variability of in-
trinsic parameter fine-tuning methods in fine-tuning Med-VLMs to
a downstream task that is different from traditional extrinsic param-
eter fine-tuning methods. We not only underscore the superior effi-
ciency of LayerNorm fine-tuning over existing PEFT methods but
also its remarkable adaptability and transferability for fine-tuning
Med-VLPs across diverse downstream tasks. The main contribu-
tions of this article are as follows:

• To our best knowledge, we are the first to centre on fine-
tuning a small subset of the Med-VLP’s inherent parameters
to adapt to downstream tasks.

• We conduct a comprehensive series of experiments fine-
tuning foundational components of Med-VLMs, including
systematic comparisons with existing PEFT methods centred
on tuning extrinsic components.

• Our research identifies LayerNorm fine-tuning as a highly
efficient strategy for adapting Med-VLPs to specific down-
stream tasks within the medical domain.

2 RELATEDWORK
2.1 Medical Visual Language Models
In the medical domain, Med-VLMs play a pivotal role in automating
visual-language tasks, such as VQA and IRG. Initially, these mod-
els [7, 9, 21, 26] leverage Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) to extract visual and lin-
guistic features separately. Yet, such approaches frequently fell
short in terms of generalizability and transferability across differ-
ent tasks due to the limitations of their structure. Modern Med-
VLMs [2–4] primarily adopt the transformer architecture, following
a pretraining-finetuning paradigm. They undergo initial pretrain-
ing on extensive, generalized medical image-text pair datasets, fol-
lowed by comprehensive fine-tuning on more focused, task-specific
datasets. For example, MISS [3], utilizing the ALBEF [19] method-
ology, begins its training on 38,800 selectively curated image-text
pairs from the MedICaT dataset before undergoing fine-tuning for

VQA tasks. Similarly, LLaVA-Med [16] employs a dual-phase pre-
training strategy, starting with image-text feature alignment on
two million pairs from PubMed, then enhancing conversational
capabilities using instruction-format data, culminating in full-scale
fine-tuning for VQA tasks. These approaches consistently rely on
full-model fine-tuning for task adaptation, a method that, despite its
efficacy, demands substantial resources, particularly for large-scale
models such as LLaVA-Med. The restricted dataset sizes available for
downstream task training further jeopardize the model’s generaliz-
ability, leading to potential catastrophic forgetting and diminishing
its broader applicability in medical contexts.

2.2 Efficient Fine-tuning Techniques
The fine-tuning of large-scale Pre-trained Language Models (PLMs)
is a demanding process [1, 32, 34], requiring extensive computa-
tional resources and data. To alleviate these burdens, PEFT tech-
niques [10, 20, 25, 29, 31], have been introduced. These methods [11,
12, 24] typically incorporate trainable components into the PLMs
while maintaining the rest of the model’s parameters in a frozen
state. Some strategies [15, 20, 25] also involve the nuanced manipu-
lation of input embeddings across different layers to minimize or
negate modifications to the original model’s architecture.

PEFT methods have demonstrated efficacy in transitioning large-
scale PLMs to new tasks or downstream applications and have
been instrumental in converting LLMs into multimodal LLMs [5,
17, 32, 34]. For instance, LLaVA [23] uses an MLP adapter to con-
nect a vision feature extractor with a large language model, selec-
tively training the MLP adapter while keeping both components
static, thus adapting the LLM into a VLM. [33] introduces an ef-
ficient strategy where tuning LayerNorm layers suffices to yield
strong performance to transform an LLM into an LVLM. Nonethe-
less, the capability of existing PEFT methods to efficiently adapt
pre-trained VLMs to specialized, especially medical, tasks remains
largely uninvestigated. With the diverse architectures of LVLMs,
the most effective application of PEFT methods is uncertain, and
their generalizability to non-textual encoders/decoders is limited
(e.g., prefix-tuning and p-tuning are not viable for Vision Trans-
formers (ViT) [8]). Consequently, investigating the adjustment of a
model’s intrinsic parameters for efficient fine-tuning emerges as a
critical necessity. In this paper, we propose a novel method that es-
chews adding components to the original model structure or input,
focusing instead on fine-tuning the model’s inherent parameters.
This strategy is designed to ensure the method’s broad applicability
for efficient fine-tuning across various Med-VLM types.

3 PRELIMINARIES
3.1 Mainstream Architectures of Med-VLMs
Contemporary generativeMed-VLMs, irrespective of their scale—be
it large-scale or small-scale, tend to follow a similar architectural
framework. This typical structure comprises a vision feature ex-
tractor, a text feature extractor, a connector that integrates the
former two, and a Language Model (LM) head. Most Med-VLMs
opt for ViT [8] as the vision feature extractor, while the text en-
coder is based on mainstream frameworks such as BERT [6] or
GPT [1]. Despite possible minor variations in their structural imple-
mentations, the transformer-based layer serves as their common
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denominator, with FFN, Attention mechanisms, and LayerNorm
being indispensable core components.

3.2 Previous PEFT Methods
Transitioning from the core mechanisms of attention and layer
normalization, which provide stability and specificity within the
model’s architecture, we delve into the domain of extrinsic PEFT
methods. These methods are categorized primarily into two types:
Reparameterized Fine-tuning (i.e., LoRA (Low-Rank Adaptation)
and Additive Fine-tuning (i.e., Prefix-tuning).
LoRA-Tuning: LLM maps data into a high-dimensional space for
processing. LoRA indirectly trains the dense layers in the network
by optimizing the rank-decomposition matrix that changes in the
adaptation process of the dense layer, thereby achieving the best
fine-tuning effect by optimizing only the rank-decomposition ma-
trix of the dense layer. For the pretrained parameters 𝜃𝐷0 , the dense
layer weight parameter matrix on a specific downstream task is
defined as𝑊0 ∈ R𝑑×𝑘 and the intrinsic rank of it is 𝜃𝑑 ; the specific
downstream task’s parameters 𝜃𝐷 is calculated as 𝜃𝐷 = 𝜃𝐷0 + 𝜃𝑑𝑀 ,
where𝑀 is the rank-decomposition matrix. For𝑊0 ∈ R𝑑×𝑘 , LoRA
updates it with the following equation:

𝑊0 + Δ𝑊 =𝑊0 + 𝐵𝐴, 𝐵 ∈ R𝑑×𝑟 , 𝐴 ∈ R𝑟×𝑘 , (1)

where 𝑑 is the output dimension of the previous layer, and 𝑘 is
the input dimension of the next layer. For input 𝑥 , the forward
propagation process is calculated as follows:

ℎ =𝑊0𝑥 + Δ𝑊𝑥 =𝑊0𝑥 + 𝐵𝐴𝑥. (2)

Prefix-Tuning: Inspired by the In-Context Prompting method
adopted by GPT3 [1], Li et al [20] propose the Prefix-tuning method
for generation tasks. Instead of the discrete text used in prompt tun-
ing, continuous vectors are prefixed to the input text. Specifically,
the generation task is deemed as a table-to-text task, the input 𝑥
is treated as a linear table and the output 𝑦 represents a short text.
For an encoder-decoder model, different prefixes are attached to
the beginning of the encoder and decoder with the input defined
as: 𝑧 = [𝑃𝑅𝐸𝐹𝐼𝑋, 𝑥, 𝑃𝑅𝐸𝐹𝐼𝑋 ′], and the prefixes are generated by a
trainable matrix 𝑃𝜃 ∈ R |𝑃𝑖𝑑𝑥 |×𝑑𝑖𝑚 (ℎ𝑖 ) , the global training objective
is defined as:

max
𝜙

log 𝑃𝜙 (𝑦 |𝑥) = max
𝜙

∑︁
𝑖∈𝑌𝑖𝑑𝑥

log 𝑃𝜙 (𝑧𝑖 |ℎ<𝑖 ). (3)

3.3 Medical Visual Language Tasks
Medical Visual Language Answering: The primary objective of
Med-VQA is to provide answers based on professional questions
posed by the inquirer regarding medical images, enhancing the un-
derstanding of medical images, and facilitating patient care through
the automated interpretation of visual data. The tasks are catego-
rized into open-ended questions, which require detailed descriptive
answers, and close-ended questions, which demand concise, often
binary responses like “yes” or “no”. This interdisciplinary domain re-
quires the Med-VLM to interpret and provide insights into complex
medical imagery, such as X-rays, MRI scans, and CT images.
Medical Imaging Report Generation: Medical IRG involves the
automatic creation of textual descriptions for medical images, using

Med-VLMs. This task aims to analyze visual medical data and pro-
duce accurate, coherent, and clinically relevant reports. The goal is
to assist radiologists and healthcare professionals by reducing their
workload and improving diagnostic efficiency while maintaining
high standards of patient care.

3.4 Difference between Universal VLMs and
Med-VLMs’ Downstream Tuning

The differences between Med-VLMs and Universal VLMs make it
necessary to study tuning of Med-VLMs separately in addition to
the PEFT approach for Universal VLMs.

From the data perspective, the dataset used for downstream task
fine-tuning in the medical domain is extremely narrow compared
to the universal domain, for example, the current largest radiologi-
cal image dataset used for the Med-VQA task includes only 14,028
image-question pairs, which makes the fine-tuning of LVLMs fall
into the problems of overfitting and catastrophic forgetting. At the
same time, the answers of the textual Instruction pairs embedded
in the dataset usually include only one or two simple words. Fur-
thermore, the current training loss used by generative models in
the fine-tuning process makes it very easy to fall into the learning
of the data distribution from the long text to its short text rather
than the learning of the correct image-text association. From the
model perspective, most Med-VLMs are obtained by transfer learn-
ing from VLMs in the universal domain, a process where the visual
coder is usually frozen, however, the domain gap between natural
images and medical images affects the performance of Med-VLMs
on medical tasks, where most of the current PEFT methods are not
available for ViTs or or have not demonstrated their effective impact
on visual encoders for transfer learning from general domain to
medical domain. Therefore, a separate study of efficient fine-tuning
methods for Med-VLM on downstream tasks is necessary.

4 TUNING SETTINGS
4.1 Baseline Model
To explore a method that achieves task adaptation by fine-tuning
a small subset of the model’s own parameters, we choose two
different-scale pre-trained Med-VLMs for different tasks: 1) small-
scale VLM MISS [3] and 2) large-scale VLM LLaVA-Med [16] for
Med-VQA and Med-IRG. These baseline models cover generative
Med-VLM at different scales and for different tasks so that we can
provide comprehensive insights into the impact of different PEFT
methods on fine-tuning Med-VLM to downstream tasks.

4.2 Tuning within Transformer-based Layer
The transformer-based layer, serving as a fundamental structure
across vision encoders, language models, and certain VLM con-
nectors, undergoes fine-tuning through both intrinsic parameter
adjustments and the application of extrinsic component fine-tuning
methods. This process aims to assess the impact of various tuning
approaches on the overall model performance.
Strategic Intrinsic Adjustments: We emphasize the transformer-
based layer’s role as the computational core of the model and se-
lectively fine-tune its intrinsic parameters. Attention layers, Layer-
Norm layers, and FFNs constitute the critical units of this layer. As
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Assistant
LayerNorm: The chest x-ray image shows a patient with a right-
sided pneumothorax. A pneumothorax is a condition where air 
accumulates in the pleural space, which is the area between the 
lung and the chest wall.  This can cause the lung to collapse, 
leading to difficulty breathing and chest pain. In this case, the 
pneumothorax is located on the right side of the patient's chest.

Attention: The chest x-ray shows no acute abnormalities. The 
cardiac and mediastinal contours are normal, and there is no 
evidence of pneumothorax or pleural effusion. The lungs are clear, 
and there is no focal airspace consolidation. The impression is that 
there is no acute cardiopulmonary abnormality.

FFN: The chest x-ray shows no acute abnormalities. The heart size 
and mediastinal contour are normal, and there is no evidence of 
focal consolidation, pneumothorax, or pleural effusion.  Additionally, 
there is no visible free intraperitoneal air under the diaphragm. The 
impression is that there are no acute cardiopulmonary findings.

LoRA: The chest x-ray image shows a patient with a right-sided 
pleural effusion. A pleural effusion is an abnormal accumulation of 
fluid in the pleural space, which is the area between the layers of 
tissue that line the lungs and the chest cavity. The image displays a 
silhouette of the heart and lungs, The presence of a pleural effusion 
may cause the heart and lungs to appear differently than expected, 
such as having a more pronounced silhouette.

Prefix: The chest x-ray image shows a patient with a right-sided 
pneumothorax. A pneumothorax is a condition where air 
accumulates in the pleural space, which is the area between the 
lung and the chest wall. This can cause the lung to collapse, 
leading to difficulty breathing and chest pain.

Question: Describe the given chest x-ray image in detail. Question: What modality is used to take this image? (Open-ended)

Assistant
LayerNorm: The image is taken using a computed tomography (CT) 
scan.

Attention: Computed tomography (CT) is the modality used to take 
this image.

FFN: CT scan, or computed tomography scan, is the modality used to 
take this image.

LoRA: The image is taken using a computed tomography (CT) scan.

Prefix: The image is taken using a computed tomography (CT) scan.

Question: Does this image look normal? (Closed-ended)

Assistant
LayerNorm: No, the image does not appear to be normal. It shows 
bilateral infiltrates, which are abnormal substances or collections of 
cells within the lung tissue. This can be indicative of various 
conditions, such as infection, inflammation, or other lung diseases.

Attention: No, this image does not look normal. It shows bilateral 
patchy infiltrates, which are abnormal areas of increased opacity in 
the lungs.

FFN: No.

LoRA: No, this chest X-ray does not look normal. It shows bilateral 
infiltrates, which are abnormal opacities or densities in both lungs.

Prefix: No, the image does not appear to be normal. It shows 
bilateral infiltrates, which are abnormal substances or collections of 
cells within the lung tissue. This can be indicative of various 
conditions, such as infection, inflammation, or other lung diseases.

Vision Encoder

Image
Embeddings

Language modelQuestion
“Is there any 
pneumonia in 
the X-ray?”

Ground-truth
“Yes”

Connector

LM head
Text Output

Prompt for Eval

You will act as an intelligent evaluator of answers generated by Generative Medical 
Visual Language Model (Med-VLM). Please note that Med-VLM answers may be 
more varied than benchmark answers. If a Med-VLM answer is approximately correct 
about the image from a medical point of view, it should be regarded as correct even 
if there are some differences from the benchmark answer, so do not arbitrarily give 
an incorrect assessment. I'll give you the $questions$, $Med-VLM answer$, and 
$ground_truth$. You must output a word $correct$ or $incorrect$:

$questions$: What modality is used to take this image?
$Med-VLM answer$: The image is taken using a computed tomography (CT) scan.
$ground_truth$: CT

or

Figure 2: The pipeline of our study. The flowchart details the step-by-step process from input reception to output generation,
showcasing the model’s method for processing medical images and questions to generate contextually relevant responses. The
right side presents the fine-tuning results across different paradigms, including both Med-VQA and Med-IRG tasks.

depicted in Figure1, when one of these three components is set to be
trainable, the remaining parameters within the transformer-based
layer are kept frozen.
Incorporation of PEFT Techniques: LoRA-tuning and Prefix-
tuning, representing the forefront of Parameter-Efficient Fine-Tuning
(PEFT) methods, are chosen for comparison against intrinsic pa-
rameter adjustments. Figure1 illustrates the application details of
these PEFT methods within our study. For LoRA-tuning, low-rank
matrices are selectively applied to the parameters of the query and
value matrices within the attention layer, mapping data into a low-
dimensional subspace for processing. In the case of Prefix-tuning,
we follow prevalent practices by appending prefix vectors to the
origin input 𝑥 of the key and value within the attention layer, and
the final input embeddings can be defined as 𝑧 = [𝑃𝑅𝐸𝐹𝐼𝑋, 𝑥].

4.3 Tuning within the VLM Architecture
In our pursuit to uncover the nuanced impact of various modules
within the full VLM’s architecture on overall model performance,
we embark on a strategic fine-tuning expedition which entails selec-
tively training specific modules within the VLM framework while
employing efficient fine-tuning methods for certain components
or maintaining others in a frozen trainable state. Such a strategy
allows us to dissect the individual contributions of each component
to the model’s efficacy in medical visual language tasks, offering
insights into optimizing Med-VLMs for enhanced performance and
efficiency. This selective fine-tuning approach aims to validate the
hypothesis that certain components within the Med-VLM architec-
ture wield more significant influence over the model’s performance
on medical tasks. By applying focused fine-tuning strategies to

individual modules, we seek to delineate the performance impact
of targeted adjustments versus broad model updates.
Details for Small-scale Med-VLMs: For small-scale Med-VLMs,
such as MISS, we experiment with applying efficient fine-tuning
techniques to some modules at a time, with the rest of the model’s
parameters set to remain fully trainable This is because for small-
scale med-VLM, making either module completely frozen may
make the model unable to transfer to downstream tasks [2]. For in-
stance, when the languagemodel undergoes LayerNorm-tuning(LN-
tuning), the vision feature extractor, connector, and LM head are
kept in a state that allows full parameter adjustments. This strategy
allows us to compare the impact of different efficient fine-tuning
methods on model performance under the premise that we can
evaluate the impact of fine-tuning different module parameters of
small-scale Med-VLMs on the overall task performance.
Strategy for Large-scale Med-VLMs: In the case of large-scale
Med-VLMs, like LLaVA-Med, our fine-tuning strategy is more nu-
anced, reflecting the diverse requirements of comparative analysis.
As shown in Figure 2, ’Snowflakes or flames’ indicate that any
module has the option to be adjusted or frozen. Depending on the
specific experimental setup, modules within these larger models
may be categorized into three states: fully trainable (T), efficiently
fine-tuned some of the parameters (PEFT), and completely frozen
(F). This flexible approach comprehensively evaluates how different
tuning states across various modules influence large-scale VLMs’
performance on complex medical visual language tasks.
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4.4 Downstream Fine-tuning
Benchmarks: In this paper, we use a total of four datasets, Slake
Dataset [22] and VQA-RAD dataset [14] for Med-VQA, and OpenI
dataset [30] and MIMIC dataset[13] for Med-IRG. The Slake dataset
consists of 14,028 QA pairs, of which 70% are used for training,
15% for validation, and 15% for testing. The VQA-RAD dataset is
used for the zero-shot performance of the model on the VQA task
including 3515 QA pairs, of which 451 pairs are used for testing.
The OpenI dataset [30] is used for the training of the Med-IRG task
including 6,459 images and 3,955 reports, the instructions are the
same as those adopted in [28]. The MIMIC test set [13] was chosen
for the evaluation of the model’s Med-IRG performance, which
includes 5,159 images and 3,269 reports. For the inference of the
IRG task, we uniformly use the phrase “Describe the given chest
x-ray image in detail.” as the instruction.
Application Details: For the fine-tuning of our chosen models
(MISS and LLaVA-Med), a consistent set of hyperparameters is em-
ployed to ensure uniformity across our experiments. Each model
is fine-tuned with an initial learning rate of 2e-5, utilizing the
Adam optimizer for its well-regarded efficiency in handling the
optimization landscapes of deep learning models. Specifically, MISS
underwent training for 120 epochs with a batch size of 16, adopt-
ing a weight decay of 0.05 to encourage regularization. In contrast,
LLaVA-Med’s fine-tuning is characterized by a warmup ratio of 0.03
and a cosine learning rate scheduler, alongside specific adjustments
such as enabling tensor float 32 for enhanced computational perfor-
mance, and employing FSDP strategies for memory efficiency, with
settings like “full_shard auto_wra” and targeting the “LlamaDe-
coderLayer” for wrapping. During all the inferences, Med-LLaVA
generates outputs using a set of predefined generation parameters,
including sampling methods and beam search configurations (num-
beams=1), and the temperature is kept at 0.2. Detailed information
regarding the hyperparameter settings for each model, along with
additional configurations and the rationale for their selection, is
provided in the Appendix for further reference.

5 EXPERIMENT RESULTS AND DISCUSSION
5.1 Small-scale MISS Result
As shown in Table 1, we employ both supervised fine-tuning (SFT)
and performance assessment on the Slake dataset’s training and
testing sets. The reported performance metrics include accuracy
rates for ‘opened’ and ‘closed’ types, which means open-ended
and closed-ended questions, as well as a global accuracy rate that
averages the performance across both types.

Given the potentially catastrophic impact of freezing any mod-
ule on the overall performance of small-scale models, when cer-
tain modules underwent efficient fine-tuning, the remaining mod-
ules were maintained fully trainable. In the context of the MISS
model, ViT, JTM, and DEC represent the visual encoder, joint text-
multimodal encoder, and text decoder, respectively. The term “train-
able params” refers to the total volume of trainable model param-
eters, with “#Params” indicating the ratio of trainable to total pa-
rameters. “PEFT params” denotes the proportion of parameters
fine-tuned using PEFT methods, with “#PEFT Params” reflecting
the proportion of PEFT-tuned parameters relative to the total pa-
rameters within the corresponding module.

When the baseline model is fully fine-tuned, it achieves the
highest open-ended question accuracy and global accuracy rates of
82.91% and 82%, respectively. Under the premise of maintaining the
visual encoder fully trainable and only efficiently tuning onemodule
at a time, keeping the JTM encoder fully trainable enabled themodel
to achieve optimal performance. Compared to scenarios where DEC
underwent full parameter training while JTM was efficiently tuned,
the model’s global accuracy rates under LayerNorm, attention, and
FFN intrinsic parameter tuning methods were higher by 4%, 9%,
and 12%, respectively. However, the outcomes with LoRA-tuning
and Prefix-tuning are inconsistent with intrinsic parameter tuning
methods, attributed to the total volume of parameters trained under
these two scenarios being inversely related.

Maintaining the visual encoder fully trainable while efficiently
tuning all the remaining modules resulted in significantly poor
model performance, failing to correctly judge the closed-source
questions in all the fine-tuning methods except attention-tuning.
Under LayerNorm, FFN, LoRA, and Prefix-tuning methods, the
model never answered ‘yes’ to any close-ended question, with ac-
curacy rates lower than random guessing at 38.03%, 54.65%, 50.70%,
and 32.95%, respectively.

Comparing different fine-tuningmethods, the effect of LN-tuning
is remarkable, achieving the best accuracy on close-ended ques-
tions with the lowest PEFT Params, even surpassing full parameter
tuning and reaching 84.51%. In contrast, although attention-tuning
and FFN-tuning slightly outperform LN-tuning in terms of global
accuracy, this came at the cost of tuning over 40% of the param-
eters in their respective modules. The LoRA method fine-tuning
model using the [T, PEFT, T] paradigm tuned approximately five
times more PEFT parameters than LN-tuning (only 56,823), with
Prefix-tuning at twenty times more. This underscores the viabil-
ity of LN-tuning as a comparable method to the most classical
PEFT methods in small-scale fine-tuning scenarios that require
saving certain parameter volumes. From a global parameter tuning
perspective, attention-tuning achieved performance closest to full
fine-tuning by saving 23% of trainable parameters, marking it as
another viable fine-tuning approach for small-scale Med-VLMs.

5.2 Large-scale LLaVA-Med Result
Furthermore, we conduct comprehensive evaluations on LLaVA-
Med, a large-scale model designated for Med-VQA tasks. Our ap-
proach encompassed three distinct training paradigms: [PEFT, F,
PEFT, F], [PEFT, T, PEFT, T], [F, F, PEFT, F], and [F, T, PEFT, T].
Considering the substantial parameter size of LVLMs, we aimed
to restrict the volume of fine-tuning parameters to within about
40%, thereby excluding full parameter training of the ViT and FFN-
tuning methods that involve adjusting ViT. Table 2 showcases the
experimental results of LLaVA-Med, trained and tested on the Slake
dataset, employing the aforementioned fine-tuning paradigms.

When opting to keep both the connector and LM head trainable,
the model’s performance did not exhibit significant improvement,
despite a substantial increase in the volume of adjusted parameters.
Specifically, when fine-tuning adopted the [F, T, PEFT, T] paradigm,
changes in global accuracy rates for LN, attention, and FFN tuning
compared to [F, F, PEFT, F] are -0.5%, -2.1%, and -3.3% respectively.
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Table 1: Comparison of accuracy (ACC-%) of MISS on Slake dataset using different methods of fine-tuning. ‘T’ stands for
trainable while ‘F’ stands for frozen.

ViT JTM DEC Opened ↑ Closed ↑ Gobal ↑ Trainable Params #Params PEFT Params #PEFT Params
T T T 82.91 81.47 82.00 361,478,972 100% - -
T LayerNorm LayerNorm 40.79 38.03 39.87 86,454,528 23.92% 115,200 0.04%
T LayerNorm T 75.64 84.51 78.61 224,277,308 62.04% 56,832 0.04%
T T LayerNorm 73.65 77.46 74.93 223,656,192 61.87% 58,368 0.04%
T Attention Attention 64.51 74.65 71.25 199,806,720 55.27% 113,467,392 41.24%
T Attention T 78.47 85.92 80.96 280,954,172 77.72% 56,733,696 41.33%
T T Attention 75.5 64.23 71.72 280,331,520 77.55% 56,733,696 41.15%
T FFN FFN 74.79 54.65 68.05 199,677,696 55.24% 113,338,368 41.19%
T FFN T 76.63 84.51 79.26 280,889,660 77.71% 56669184 41.27%
T T FFN 76.20 49.86 67.39 280,267,008 77.53% 56669184 41.10%
T LoRA LoRA 68.14 50.70 62.29 86,929,152 24.05% 589,824 0.21%
T LoRA T 76.77 82.81 78.79 224,515,388 62.11% 294,912 0.21%
T T LoRA 78.52 79.44 78.83 223,892,736 61.94% 294,912 0.21%
T Prefix Prefix 41.50 32.95 38.61 115,884,288 32.06% 29,544,960 10.74%
T Prefix T 75.92 83.38 78.42 238,992,956 66.12% 14,772,480 10.76%
T T Prefix 76.82 82.25 78.65 238,370,304 65.94% 14,772,480 10.71%

Table 2: Comparison of SOTA methods adopting pre-training and fine-tuning paradigm but with different numbers of pre-
trained images on open-ended accuracy (ACC).

Vision Tower Connector LLM LM head Slake Dataset #Params Trainable Params BERTS-Recall Mean TokenOpened ↑ Closed ↑ Global ↑
LayerNorm F LayerNorm F 59.53 69.95 63.62 3.79% 266,737,664 46.35% 28.27

F F LayerNorm F 58.76 69.71 63.05 0.00372% 262,144 46.24% 27.81
LayerNorm T LayerNorm T 59.84 67.55 62.87 3.79% 266,737,664 46.93% 26.81

F T LayerNorm T 60.31 66.11 62.58 3.78% 266,637,312 46.93% 26.50329877
Attention F Attention F 61.4 67.79 63.9 31.91% 2,248,245,248 49.25% 25.246

F F Attention F 61.71 68.03 64.18 30.48% 2,147,483,648 49.11% 25.95
Attention T Attention T 60.93 65.87 62.87 35.69% 2,514,620,416 48.47% 25.89066918

F T Attention T 58.76 66.83 61.92 34.26% 2,413,858,816 48.49% 25.8539114
F T FFN T 64.5 62.26 63.62 44.74% 3,152,056,320 51.98% 16.42318567
F F FFN F 64.34 66.59 65.22 40.96% 2,885,943,296 52.07% 17.37983035
F F LoRA F 58.14 64.42 60.6 0.14% 9,994,240 47.55% 25.43
F T LoRA T 58.76 65.38 61.36 3.92% 276,369,408 47.26% 25.72196041
F F Prefix F 56.9 67.07 60.89 15.48% 1,090,805,760 46.19% 26.61639962
F T Prefix T 59.22 70.19 63.52 19.26% 1,357,180,928 46.28% 26.58906692

This contradicts the common notion that more parameter adjust-
ments correlate with better SFT performance, indicating that full
parameter adjustments of the connector and LM head during effi-
cient fine-tuning of LLMs do not guarantee the expected outcomes.

The performance changes are inconsistent under the [PEFT, F,
PEFT, F] and [PEFT, T, PEFT, T]. For LayerNorm (LN)-tuning, fine-
tuning the image encoder led to respective increases in global accu-
racy of 0.57% and 0.29%, while attention-tuning resulted in changes
of -0.28% and +0.85%. Such subtle differences do not conclusively
indicate whether adjusting parameters of the image encoder ben-
efits or hinder model performance, especially when considering
Recall metrics. The increase in ViT-adjusted parameter volume did
not regularly alter recall, suggesting that larger adjustments to ViT
parameters do not consistently improve model recall.

Comparing different intrinsic parameter adjustments revealed
that increasing the volume of fine-tuned parameters indeed en-
hances the model’s recall of generated content: as fine-tuning pa-
rameters shifted from 0.003% to 44%, recall correspondingly in-
creased from 46.24% to 52.07%. This indicates that enlarging the
volume of fine-tuned parameters allows the model to learn the

distribution of ground-truth tokens in the vocabulary space more
effectively, both quantitatively and spatially. However, considering
accuracy—a gold standard in medical tasks—significant increases in
parameter volume do not necessarily elevate all accuracy metrics
concurrently. LN-tuning under the [PEFT, F, PEFT, F] paradigm once
again achieved state-of-the-art (SOTA) accuracy for close-ended
questions, which was consistent with observations in small-scale
VLMs. Across two models of different scales, pre-trained on distinct
datasets and tasks, LN-based fine-tuning consistently enhanced
their accuracy on close-ended questions.

While attention-tuning and FFN-tuning marginally surpassed
LN-tuning in global accuracy, achieving peak open-ended question
accuracies of 64.34% and global accuracy of 65.22%, this came at
the cost of escalating the volume of tuned parameters from 262,144
to 2,885,943,296—a millionfold increase. Furthermore, following
peak performance under current fine-tuning paradigms, the model
ceased learning intrinsic relations of the features, instead focusing
on the quantitative distribution of ground-truth tokens. This shift
manifested in minimal accuracy improvements and a dramatic re-
duction in average output length, with mean tokens dropping from
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Figure 3: Loss curves for various methods under the [F, T,
PEFT, T] fine-tuning paradigm.

28.27 to 17.38. Figure 2 compares the generated outcomes across
different intrinsic and extrinsic fine-tuning methods under the [F,
F, PEFT, F] paradigms, illustrating this phenomenon driven by in-
herent large model training patterns and suboptimal training data.
Most datasets employed for fine-tuning Med-VQA tasks comprise
answers in short text formats, with close-ended answers typically
being ‘yes’ or ‘no’, and open-ended answers containing only a few
words. For LLMs seeking interpretability of the answer, adjusting
more parameters paradoxically impairs generative performance.

When applying LoRA-tuning and Prefix-tuning to LLaVA-Med,
the model’s performance did not exhibit notable improvement.
LoRA-tuning’s recall reached 47.55% and 47.26%, indicating a closer
alignment of the model’s output with the ground truth distribution
in the vocabulary space. However, this did not translate to enhanced
evaluation accuracy, with accuracies under [F, F, PEFT, F] and [F,
T, PEFT, T] fine-tuning paradigms reaching only 60.6% and 61.36%,
respectively. This suggests that LoRA-tuning failed to deepen the
multimodal model’s understanding of joint image-text features,
merely aligning output closer to the ground truth distribution.

Figure 3 displays the loss curves for variousmethods under the [F,
T, PEFT, T] fine-tuning paradigm. Compared to LN-tuning, LoRA-
tuning’s minimum fine-tuned parameter volume is approximately
fifty times larger, yet its accuracy is roughly 3% lower, with average
output lengths of 25.43 and 25.72, trailing behind LN-tuning. These
factors collectively indicate that existing PEFT methods may not
directly enhance text-based accuracy in discerning medical images
in multimodal model downstream fine-tuning, underscoring the
advantages of LN-tuning over traditional PEFT approaches.

5.3 Large-scale VLM IRG Result
To further explore the impact of various fine-tuning methods on
the performance of large-scale Med-VLMs in the Medical Imaging
Report Generation (Med-IRG) context, we employed the [F, F, PEFT,
F] fine-tuning paradigm using the OpenI dataset to fine-tune Med-
LLaVA. The model’s OOD performance was then tested on the
MIMIC dataset’s test set to assess how it handles variations in input
text domains. As shown in Table3, the performance of the models
fine-tuned with LN, Attention, LoRA, and Prefix methods showed
minimal differences, with output text lengths averaging around
122.7. In contrast, FFN tuning significantly outperformed other

Table 3: Comparison of LLaVA-Med competence on the
MIMIC test dataset which SFT on the OpenI dataset.

Vision
Tower Connector LLM LM

head
METEOR
score

Rouge-L Mean
TokenRecall Precision F1

F F LayerNorm F 12.85% 12.58% 15.92% 13.61% 122.66
F F Attention F 12.85% 12.58% 15.92% 13.61% 122.66
F F FFN F 24.53% 17.01% 23.84% 19.34% 123.11
F F LoRA F 12.95% 12.57% 15.93% 13.62% 122.70
F F Prefix F 12.99% 12.47% 15.92% 13.54% 122.72

fine-tuning approaches, demonstrating its superior capability in
learning the underlying representations of ground-truth in long
text generation tasks like Med-IRG.

5.4 Out of Distribution Performance Testing
To assess whether the performance of LLaVA-Med on a familiar
dataset like Slake correlates with its performance on a novel dataset,
we conducted an OOD testing on the VQA-RAD dataset. This test
serves to evaluate the model’s robustness and flexibility by applying
it to a different domain within the same field but with unseen data.
More specifically, the images in the VQA-RAD dataset belong to
the proximity domain with the Slake dataset but are quite different
from the Slake dataset in terms of question formulation. Such exper-
iments allow us to consider the ability of different fine-tuning meth-
ods to reason on non-proximity-domain text over similar medical
images, in order to speculate on the ability of the models fine-tuned
with the VQA dataset to be applied to the real Med-VQA scenarios.

In this experiment, we observe various fine-tuning paradigms,
focusing particularly on the role of the transformer-based Layer-
Norm, Attention, and FFN adjustments. The results show a notable
variance in the model’s ability to generalize the learned features
to the VQA-RAD dataset. As Table4 shows, fine-tuning methods
that show comparable results on the Slake dataset exhibit signif-
icant performance variances on the OOD VQA-RAD dataset. No-
tably, under the [F, T, PEFT, T] training paradigm, LoRA-tuning
underwent a remarkable reversal, surpassing the performances of
attention-tuning and FFN-tuning, which were previously effective
on the Slake dataset. It achieves a global accuracy of 65.41% and
matches the best closed question accuracy of 73.71%, initially noted
with LN-tuning. Conversely, FFN-tuning, despite being superior
at learning adjacent training text representations, disappointed in
its OOD performance. While it excelled in Rouge-L metrics with
scores of 26.35%, 9.80%, and 13.51%, significantly surpassing other
fine-tuning methods, it only managed accuracy scores of 56.50%,
64.54%, and 60.98%. Moreover, its mean output length plummeted
to 18.51, the lowest among all methods. This combination of met-
rics further validates that although FFN-tuning can closely fit the
training data during SFT, it predominantly learns the distribution
of ground-truth tokens rather than enhancing the model’s ability to
generalize image-text reasoning. A similar pattern is observed with
attention-tuning, the global accuracy decreases by 7.54% compared
to LN-tuning when the connector and LM head are trained more,
however, the text length is optimal at this time. Comprehensively,
the mean token length of attention tuning under the same paradigm
in Table 1 can show that attention tuning slightly overlearns the
text in the adjacent domains during SFT training, but does not cause
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Table 4: Comparison of LLaVA-Med competence on the VQA-RAD test dataset which SFT on the Slake dataset.

Vision Tower Connector LLM LM head VQA-RAD Bertscore METEOR Score Rouge-L Mean TokenOpened↑ Closed↑ Global↑ Precision Recall F1 Recall Precision F1
F T LayerNorm T 54.50 73.71 65.19 29.77% 49.00% 36.53% 12.53% 7.91% 1.48% 2.30% 29.52
F T Attention T 50.50 63.35 57.65 29.97% 49.27% 36.73% 11.87% 7.97% 1.46% 2.30% 31.12
F T FFN T 56.50 64.54 60.98 35.44% 52.05% 41.89% 19.23% 26.35% 9.80% 13.51% 18.50
F T LoRA T 55.00 73.71 65.41 30.06% 49.52% 36.87% 12.03% 7.89% 1.50% 2.29% 27.52
F T Prefix T 51.00 70.12 61.64 29.89% 48.85% 36.58% 12.71% 8.53% 1.57% 2.45% 28.87
F F LayerNorm F 54.50 75.30 66.08 29.90% 48.84% 36.60% 12.97% 7.84% 1.50% 2.33% 29.52
F F Attention F 55.50 71.71 64.52 30.25% 49.64% 37.08% 8.44% 8.44% 1.66% 2.58% 29.45
F F FFN F 52.00 61.35 57.21 35.20% 51.76% 41.60% 18.43% 24.31% 8.96% 12.40% 19.16
F F LoRA F 49.50 70.92 61.42 30.08% 49.80% 36.96% 12.46% 7.91% 1.51% 2.33% 29.04
F F Prefix F 51.00 69.72 61.42 29.76% 48.49% 36.36% 12.81% 8.11% 1.54% 2.41% 29.21

Table 5: Comparison of LLaVA-Med zero-shot competence
on the MIMIC test dataset which SFT on the Slake dataset.

Vision
Tower Connector LLM LM

head
METEOR
score

Rouge-L Mean
TokenRecall Precision F1

F T LayerNorm T 11.86% 11.27% 18.54% 13.54% 71.78
F T Attention T 11.88% 11.15% 17.98% 13.33% 73.73
F T FFN T 12.12% 11.24% 18.07% 13.42% 73.23
F T LoRA T 11.57% 10.99% 17.91% 13.18% 71.51
F F LayerNorm F 12.07% 11.40% 18.26% 13.56% 75.00
F F Attention F 12.17% 11.50% 18.20% 13.65% 75.01
F F FFN F 12.81% 11.48% 17.84% 13.53% 76.88
F F LoRA F 11.91% 11.25% 18.07% 13.40% 72.93

large damage to the model’s output ability of textual diversity in
textual reasoning in the non-adjacent domains.

When enlarging the perspective to compare the accuracy per-
formances across different fine-tuning methods, LN-tuning con-
sistently displayed formidable strength. Under the [F, F, PEFT, F]
tuning paradigm, LN-tuning, utilizing the smallest parameter ad-
justment, reached the highest scores in opened, closed and global
accuracy—54.5%, 75.3%, and 66.08%, respectively. It also maintained
a longer mean text output than any other methods under the same
tuning conditions. These results, coupled with the Rouge-L met-
rics from Table1, indicate that LN-tuning manages to enhance the
model’s understanding of multimodal feature interrelations, signif-
icantly minimizing the model’s overemphasis on learning ground-
truth text token distributions due to low training data quality. This
is evidenced by the lowest recall rate of 1.5% and the highest global
accuracy of 66.08%. In contrast, LoRA-tuning, despite adjusting 50
times more parameters, did not significantly outperform LN-tuning.

5.5 Zero-shot Capability Investigation
To further investigate the zero-shot capabilities of different fine-
tuning paradigms on Med-VLMs, we conduct extensive evaluations
of the LLaVA-Med model on the MIMIC test dataset after SFT on
the Slake dataset. This analysis aims to understand the impact of
various intrinsic tuning methods on the model’s ability to general-
ize and adapt to new tasks within the medical domain, particularly
for IRG tasks. The evaluation employs metrics such as METEOR
score, Rouge-L, and mean token length to measure factual accuracy,
linguistic precision, and diversity of output in medical report gen-
eration. From Table 5, experimental results indicate that different
tuning methods exhibit varying impacts on the model’s zero-shot
performance. LN-tuning consistently showed robust performance
across different configurations, achieving the highest precision

scores (18.54% and 18.26% under different paradigms), which un-
derscores its effectiveness in preserving the factualness of model
outputs. In contrast, the Attention and FFN methods, although ef-
fective in some scenarios, demonstrated greater variability in their
influence on model generalization.

Notably, FFN-tuning, which previously excelled in VQA tasks,
scored the lowest in precision (17.84%) under the [F, F, FFN, F]
paradigm on the MIMIC dataset. This suggests that the model may
have overlearned task-specific features from the Slake dataset, thus
hindering its generalization and transfer capabilities. Furthermore,
METEOR scores positively correlated with the number of adjusted
parameters, increasing from 11.86% to a high of 12.81%, indicating
that a larger volume of tuned parameters enhances the model’s
linguistic alignment capabilities in medical text generation tasks.
Examining the effects of freezing versus tuning the connector and
LM head reveals no clear pattern in performance metrics between
[F, T, PEFT, T] and [F, F, PEFT, F] configurations. Changes in Rouge-
L scores and precision were minimal, suggesting that extensive
fine-tuning of the connector and LM head does not necessarily
contribute to improved zero-shot performance across these metrics.

Comparison between intrinsic tuning and traditional methods
such as LoRA-tuning did not exhibit standout performance in the
zero-shot setting. Under the [F, T, PEFT, T] paradigm, LoRA-tuning
shows lower METEOR scores, Rouge-L, and mean token length
compared to intrinsic methods, indicating that LoRA-tuning might
not effectively maintain the overall transferability and generaliza-
tion of the model in medical applications. Thus, intrinsic tuning
methods, particularly LN-tuning with minimal parameter adjust-
ments, might be a better choice, especially under the [F, F, PEFT, F]
paradigm, where it outperforms more parameter-intensive methods
like attention-tuning in maintaining the generalization capabili-
ties. These observations underscore the efficacy of LN-tuning in
preserving the generalization of LVLMs for diverse medical tasks.

6 CONCLUSION
This study presents a thorough examination of intrinsic param-
eter fine-tuning and exposing LN-tuning, as a potent alternative
to traditional PEFT methods for Med-VLMs. Our extensive experi-
mental analysis across both small-scale and large-scale Med-VLMs
demonstrated that fine-tuning the LayerNorm layers significantly
enhances the models’ adaptability, efficiency, and scalability in
performing specialized medical tasks, such as Med-VQA and Med-
IRG. We hope this work will enhance the clinical applicability of
Med-VLMs in real-world medical settings.
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