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A APPENDIX

A.1 COMPLEXITY FOR DEFORMABLE ATTENTION

Supposes the number of query elements is Nq , in the deformable attention module (see Equation 2),
the complexity for calculating the sampling coordinate offsets ∆pmqk and attention weights Amqk

is of O(3NqCMK). Given the sampling coordinate offsets and attention weights, the complexity
of computing Equation 2 is O(NqC

2 + NqKC
2 + 5NqKC), where the factor of 5 in 5NqKC

is because of bilinear interpolation and the weighted sum in attention. On the other hand, we can
also calculate W ′

mx before sampling, as it is independent to query, and the complexity of computing
Equation 2 will become asO(NqC

2+HWC2+5NqKC). So the overall complexity of deformable
attention is O(NqC

2 + min(HWC2, NqKC
2) + 5NqKC + 3NqCMK). In our experiments,

M = 8, K ≤ 4 and C = 256 by default, thus 5K + 3MK < C and the complexity is of
O(2NqC

2 + min(HWC2, NqKC
2)).

A.2 CONSTRUCTING MULT-SCALE FEATURE MAPS FOR DEFORMABLE DETR

As discussed in Section 4.1 and illustrated in Figure 4, the input multi-scale feature maps of the
encoder {xl}L−1

l=1 (L = 4) are extracted from the output feature maps of stages C3 through C5 in
ResNet (He et al., 2016) (transformed by a 1×1 convolution). The lowest resolution feature map xL

is obtained via a 3×3 stride 2 convolution on the final C5 stage. Note that FPN (Lin et al., 2017a) is
not used, because our proposed multi-scale deformable attention in itself can exchange information
among multi-scale feature maps.

𝐻 8 ×𝑊 8 × 512

𝐻 16 ×𝑊 16 × 1024

𝐻 32 ×𝑊 32 × 2048

𝐻 8 ×𝑊 8 × 256

𝐻 16 ×𝑊 16 × 256

𝐻 32 ×𝑊 32 × 256

𝐻 64 ×𝑊 64 × 256

𝐶𝑜𝑛𝑣 1 × 1, 𝑠𝑡𝑟𝑖𝑑𝑒 1

𝐶𝑜𝑛𝑣 1 × 1, 𝑠𝑡𝑟𝑖𝑑𝑒 1

𝐶𝑜𝑛𝑣 1 × 1, 𝑠𝑡𝑟𝑖𝑑𝑒 1

𝐶𝑜𝑛𝑣 3 × 3, 𝑠𝑡𝑟𝑖𝑑𝑒 2

Input Multi-scale Feature Maps{𝒙𝑙}𝑙=1
4

𝑪3

𝑪4

𝑪5

ResNet Feature Maps

Figure 4: Constructing mult-scale feature maps for Deformable DETR.

A.3 BOUNDING BOX PREDICTION IN DEFORMABLE DETR

Since the multi-scale deformable attention module extracts image features around the reference
point, we design the detection head to predict the bounding box as relative offsets w.r.t. the reference
point to further reduce the optimization difficulty. The reference point is used as the initial guess
of the box center. The detection head predicts the relative offsets w.r.t. the reference point p̂q =

(p̂qx, p̂qy), i.e., b̂q = {σ
(
bqx+σ−1(p̂qx)

)
, σ
(
bqy+σ−1(p̂qy)

)
, σ(bqw), σ(bqh)}, where bq{x,y,w,h} ∈

R are predicted by the detection head. σ and σ−1 denote the sigmoid and the inverse sigmoid

function, respectively. The usage of σ and σ−1 is to ensure b̂ is of normalized coordinates, as
b̂q ∈ [0, 1]4. In this way, the learned decoder attention will have strong correlation with the predicted
bounding boxes, which also accelerates the training convergence.

A.4 MORE IMPLEMENTATION DETAILS

Iterative Bounding Box Refinement. Here, each decoder layer refines the bounding boxes based
on the predictions from the previous layer. Suppose there are D number of decoder layers (e.g.,
D = 6), given a normalized bounding box b̂d−1

q predicted by the (d− 1)-th decoder layer, the d-th
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decoder layer refines the box as

b̂dq = {σ(∆bdqx+σ−1(b̂d−1
qx )), σ(∆bdqy+σ−1(b̂d−1

qy )), σ(∆bdqw+σ−1(b̂d−1
qw )), σ(∆bdqh+σ−1(b̂d−1

qh ))},

where d ∈ {1, 2, ..., D}, ∆bdq{x,y,w,h} ∈ R are predicted at the d-th decoder layer. Prediction

heads for different decoder layers do not share parameters. The initial box is set as b̂0qx = p̂qx,
b̂0qy = p̂qy, b̂0qw = 0.1, and b̂0qh = 0.1. The system is robust to the choice of b0qw and b0qh. We tried
setting them as 0.05, 0.1, 0.2, 0.5, and achieved similar performance. To stabilize training, similar
to Teed & Deng (2020), the gradients only back propagate through ∆bdq{x,y,w,h}, and are blocked at

σ−1(b̂d−1
q{x,y,w,h}).

In iterative bounding box refinement, for the d-th decoder layer, we sample key elements respective
to the box b̂d−1

q predicted from the (d − 1)-th decoder layer. For Equation 3 in the cross-attention
module of the d-th decoder layer, (b̂d−1

qx , b̂d−1
qy ) serves as the new reference point. The sampling

offset ∆pmlqk is also modulated by the box size, as (∆pmlqkx b̂
d−1
qw ,∆pmlqky b̂

d−1
qh ). Such modifi-

cations make the sampling locations related to the center and size of previously predicted boxes.

Two-Stage Deformable DETR. In the first stage, given the output feature maps of the encoder, a
detection head is applied to each pixel. The detection head is of a 3-layer FFN for bounding box
regression, and a linear projection for bounding box binary classification (i.e., foreground and back-
ground), respectively. Let i index a pixel from feature level li ∈ {1, 2, ..., L} with 2-d normalized
coordinates p̂i = (p̂ix, p̂iy) ∈ [0, 1]2, its corresponding bounding box is predicted by

b̂i = {σ(∆bix+σ−1(p̂ix)), σ(∆biy+σ−1(p̂iy)), σ(∆biw+σ−1(2li−1s)), σ(∆bih+σ−1(2li−1s))},

where the base object scale s is set as 0.05, ∆bi{x,y,w,h} ∈ R are predicted by the bounding box
regression branch. The Hungarian loss in DETR is used for training the detection head.

Given the predicted bounding boxes in the first stage, top scoring bounding boxes are picked as
region proposals. In the second stage, these region proposals are fed into the decoder as initial boxes
for the iterative bounding box refinement, where the positional embeddings of object queries are set
as positional embeddings of region proposal coordinates.

Initialization for Multi-scale Deformable Attention. In our experiments, the number of at-
tention heads is set as M = 8. In multi-scale deformable attention modules, W ′

m ∈ RCv×C

and Wm ∈ RC×Cv are randomly initialized. Weight parameters of the linear projection for
predicting Amlqk and ∆pmlqk are initialized to zero. Bias parameters of the linear projection
are initialized to make Amlqk = 1

LK and {∆p1lqk = (−k,−k),∆p2lqk = (−k, 0),∆p3lqk =
(−k, k),∆p4lqk = (0,−k),∆p5lqk = (0, k),∆p6lqk = (k,−k),∆p7lqk = (k, 0),∆p8lqk =
(k, k)} (k ∈ {1, 2, ...K}) at initialization.

For iterative bounding box refinement, the initialized bias parameters for ∆pmlqk prediction in the
decoder are further multiplied with 1

2K , so that all the sampling points at initialization are within the
corresponding bounding boxes predicted from the previous decoder layer.

A.5 WHAT DEFORMABLE DETR LOOKS AT?

For studying what Deformable DETR looks at to give final detection result, we draw the gradient
norm of each item in final prediction (i.e., x/y coordinate of object center, width/height of object
bounding box, category score of this object) with respect to each pixel in the image, as shown in
Fig. 5. According to Taylor’s theorem, the gradient norm can reflect how much the output would
be changed relative to the perturbation of the pixel, thus it could show us which pixels the model
mainly relys on for predicting each item.

The visualization indicates that Deformable DETR looks at extreme points of the object to deter-
mine its bounding box, which is similar to the observation in DETR (Carion et al., 2020). More con-
cretely, Deformable DETR attends to left/right boundary of the object for x coordinate and width,
and top/bottom boundary for y coordinate and height. Meanwhile, different to DETR (Carion et al.,
2020), our Deformable DETR also looks at pixels inside the object for predicting its category.
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Figure 5: The gradient norm of each item (coordinate of object center (x, y), width/height of object
bounding box w/h, category score c of this object) in final detection result with respect to each pixel
in input image I .

A.6 VISUALIZATION OF MULTI-SCALE DEFORMABLE ATTENTION

For better understanding learned multi-scale deformable attention modules, we visualize sampling
points and attention weights of the last layer in encoder and decoder, as shown in Fig. 6. For
readibility, we combine the sampling points and attention weights from feature maps of different
resolutions into one picture.

Similar to DETR (Carion et al., 2020), the instances are already separated in the encoder of De-
formable DETR. While in the decoder, our model is focused on the whole foreground instance
instead of only extreme points as observed in DETR (Carion et al., 2020). Combined with the visu-
alization of ‖ ∂c∂I ‖ in Fig. 5, we can guess the reason is that our Deformable DETR needs not only
extreme points but also interior points to detemine object category. The visualization also demon-
strates that the proposed multi-scale deformable attention module can adapt its sampling points and
attention weights according to different scales and shapes of the foreground object.
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Figure 6: Visualization of multi-scale deformable attention. For readibility, we draw the sampling
points and attention weights from feature maps of different resolutions in one picture. Each sampling
point is marked as a filled circle whose color indicates its correspoinding attention weight. The
reference point is shown as green cross marker, which is also equivalent to query point in encoder. In
decoder, the predicted bounding box is shown as a green rectangle and the category and confidence
score are texted just above it.
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A.7 NOTATIONS

Table 4: Lookup table for notations in the paper.

Notation Description
m index for attention head
l index for feature level of key element
q index for query element
k index for key element
Nq number of query elements
Nk number of key elements
M number of attention heads
L number of input feature levels
K number of sampled keys in each feature level for each attention head
C input feature dimension
Cv feature dimension at each attention head
H height of input feature map
W width of input feature map
H l height of input feature map of lth feature level
W l width of input feature map of lth feature level
Amqk attention weight of qth query to kth key at mth head
Amlqk attention weight of qth query to kth key in lth feature level at mth head
zq input feature of qth query
pq 2-d coordinate of reference point for qth query
p̂q normalized 2-d coordinate of reference point for qth query
x input feature map (input feature of key elements)
xk input feature of kth key
xl input feature map of lth feature level
∆pmqk sampling offset of qth query to kth key at mth head
∆pmlqk sampling offset of qth query to kth key in lth feature level at mth head
Wm output projection matrix at mth head
Um input query projection matrix at mth head
Vm input key projection matrix at mth head
W ′

m input value projection matrix at mth head
φl(p̂) unnormalized 2-d coordinate of p̂ in lth feature level
exp exponential function
σ sigmoid function
σ−1 inverse sigmoid function
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