
Figure 1: Inverse participation ratio (IPR) vs. excess kurtosis for NLGP
and Kur datasets, plotted as mean ± std. dev. across 30 re-initializations,
for the single-neuron model; error bars are small and may not be visible.
IPR decays from its maximum of 1.0, indicating localization, to near
zero as excess kurtosis increases. Effects on IPR across NLGP and Kur
demonstrate independence of distributional properties.

Figure 2: Four initializations trained on NLGP(g = 100) with ⇠0 = 0.3 and ⇠1 = 0.7. As expected, weights always localize. In (Left, First)
we plot IPR for empirical and analytical receptive fields (RFs) across time (defined as (# of gradient steps) ⇥ ⌧ , the learning rate). In (Left,
Second) we plot the time-evolution of `2 distance between the empirical and analytical RFs. In (Left, Third) we zoom in on (Left, First),
restricting the range to [0, 0.1] to more closely see divergence in IPR early in training. In (Right, First) and (Right, Second), we snapshot
the empirical and analytical RFs at a time before and just after, respectively, the analytical model breaks down (according to IPR and `2
distance) due to localization. Finally, in (Right, Third), we snapshot at the end of the training period. In all but the third row, the analytical
predictions are near-exact; in the third row, we predict localization, but at the wrong position. Focusing again on the first row, we see that
at t = 20, the weights have not yet become localized (from IPR in (Left, First) and visually) and analytical and empirical weights match
near exactly (confirmed by small distance in (Left, Center) above). At t = 30, a localized bump around i = 21 begins to emerge, violating
assumption (A3) and weakening analytical precision. The analytical model then underestimates the degree to which the main bump at i = 21
dominates, while it overestimates the size of competing bumps at i = 30, 37, and 90. Despite this, at t = 50, we see that predictions from
the analytical model retain a match to the empirical model.

Figure 3: Same initialization as first row, but trained on NLGP(g = 0.01) data, again with ⇠0 = 0.3 and ⇠1 = 0.7. As expected, weights
do not localize. We plot the same quantities as above, but here the predictions of our analytical model hold throughout the entire training
process as localization never emerges and so assumption (A3) is not violated as above.
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Figure 4: Receptive fields (RFs) trained on elliptical distributions, with MSE-fitted sinusoids (red dashes).This is to clarify our claim in
proposition 3.3. The `2 distances between the fitted oscillatory weights and empirical RFs, as a ratio of the `2 norm of the empirical RFs,
are (left) 9.77%, (center) 3.75%, and (right) 4.14%. (Left) appears different from the corresponding version in the manuscript; we used the
same initialization, but scaled it down to be comparable to (middle) and (right) to reveal sinusoidal structure of the final RF.


