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This supplementary material contains complete experimental setup
and additional experimental results in our paper “Category-Prompt
Refined Feature Learning for Long-Tailed Multi-Label Image Classi-
fication”, including the comparison results with CLIP-based meth-
ods, further analysis on components of CPRFL, the effect of expan-
sion coefficient 𝜏 , and more visualization examples.

1 EXPERIMENTAL SETUP
1.1 More Experimental Details
Without otherwise stating, we set visual features and category-
prompts, both with a dimensionality of 2048. As for the pretrained
CLIP models, we adopt CLIP ResNet-50 or ViT-Base/16 [4] and use
the corresponding CLIP Transformer as the text encoder. During
training, the parameters of the text encoder are kept frozen, and only
learnable modules are optimized. For the Transformer encoder in
the VSI network, the number of attention heads is 8, the dimension
of each head is set to 512, and the hidden dimension of the FFN
is set to 2048. In both two sub-networks, we adopt GELU as the
non-linear activation function, which leads to faster convergence
in experiments. We use ResNet-101 [1] as the backbone, which
is a widely used feature extractor in MLC. During training, the
input images are randomly cropped and resized into 448× 448 with
RandAugment [7] for data augmentation. For network optimization,
we use the Adam optimizer [2] with a weight decay of 1𝑒−4 and the
training epochs are set to 30. The batch size is 32, and the learning
rates for COCO-LT, and VOC-LT are empirically initialized with
1𝑒−5, 5𝑒−5. All experiments are performed on one Nvidia RTX-3090
GPU, and our model is implemented in PyTorch 1.12.0.

1.2 Evaluation Metrics
Consistent with the evaluation metrics in [3], the classes in both
datasets are categorized into head, medium, and tail groups based on
the number of training samples. Specifically, head classes comprise
over 100 samples, medium classes consist of 20 to 100 samples each,
and tail classes contain fewer than 20 samples each. We use mean
average precision (mAP) as the evaluation metric to assess the
performance of long-tailed multi-label visual recognition across all
classes.

2 ADDITIONAL EXPERIMENTAL RESULTS
2.1 Comparison Results with CLIP-Based

Methods
To further demonstrate the effectiveness of our CPRFL, we compare
it with several existing CLIP-based methods on two long-tailed
multi-label datasets. These methods include zero-shot CLIP [4] and
popular prompt tuning methods, i.e., CoOp [9], CoCoOp [8], Dual-
CoOp [5] and LMPT [6]. We present the results using CLIP ResNet-
50 and ViT-Base/16. Table 1 illustrates the mAP performance of
different methods. Notably, these CLIP-based methods all utilize

the pretrained CLIP’s image encoder and we use “∗” to indicate this.
Experimental results indicate that our proposed method outper-
forms previous CLIP-based methods, achieving a remarkable 7.72%
increase in total mAP with CLIP-RN50 on the COCO-LT dataset.
Although the CLIP-based methods tend to outperform our method
on tail classes, this is primarily due to the CLIP image encoder’s
pretraining on a vast dataset containing many tail samples, inadver-
tently leveraging prior visual data exposure and potentially creating
an unfair comparison. Furthermore, these CLIP-based methods tend
to compromise the performance of the head classes while improv-
ing the tail classes. In contrast, our CPRFL can achieve synchronous
improvements in head-to-tail recognition performance for LTMLC,
addressing the imbalance class distribution effectively.

2.2 Further Analysis on Components of CPRFL
To further evaluate the contributions of various components to our
method for long-tailed multi-label classification, we present the
mAP improvements over baseline by integrating VSI, PI, and RW
components of the proposed CPRFL in Figure 1. As illustrated in the
figure, our method yields themost significant performance boost for
tail classes compared to the baseline, with the tail mAP surpassing
the baseline by 14.87% on VOC-LT and 19.19% on COCO-LT. These
results underscore the effectiveness of our CPRFL approach in
enhancing recognition performance for tail classes in LTMLC tasks.
The improvements achieved through the integration of VSI, PI,
and RW components highlight the comprehensive strengths of
our method in addressing challenges posed by the imbalanced
distribution of class frequencies and its ability to recognize a broader
range of categories accurately.

2.3 Ablation Study on Expansion Coefficient
The expansion coefficient 𝜏 plays a pivotal role in determining the
dimensionality of the hidden layers within the Prompt Initializa-
tion (PI) network. To assess the impact of varying values of 𝜏 on
category-prompt initialization, we present the results in Figure 2.
A key observation is that a value of 𝜏 = 0 represents the use of
a single linear layer for projection. The results indicate that opti-
mal performance tends to emerge around 𝜏 = 0.5. Notably, using
a single linear layer (𝜏 = 0) for projection does not achieve the
same level of performance as using a nonlinear extraction structure.
Lower values of 𝜏 may facilitate easier learning and generalization
for the model; however, the single linear layer’s ease of use cannot
fully offset its limitations when projecting from semantic space to
the visual-semantic joint space.

2.4 Additional Qualitative Analysis
To better understand how our method handles long-tailed multi-
label data, we conduct additional qualitative experiments using
ResNet-50, CLIP, and our proposed CPRFL. Figure 3 presents more
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Table 1: The mAP (%) performance of the proposed CPRFL and CLIP-based methods on two long-tailed multi-label datasets. We
present the mAP results on overall, head, medium, and tail classes under CLIP ResNet-50 and ViT-Base/16. ∗ indicates that the
method uses CLIP’s image encoder. Bold indicates the best scores.

Datasets VOC-LT COCO-LT
Methods total head medium tail total head medium tail
CLIP:RN50

Zero-Shot CLIP∗ 84.30 63.60 88.03 97.03 56.19 35.73 60.52 68.45
CoOp∗ [9] 81.34 65.10 81.54 93.37 54.94 38.06 56.67 67.51

CoCoOp∗ [8] 78.63 64.33 80.51 87.94 46.02 36.02 50.57 48.82
DualCoOp∗ [5] 81.03 66.45 80.53 92.33 53.11 40.48 55.20 62.11
LMPT∗ [6] 85.44 66.45 88.11 97.86 58.97 41.87 61.60 69.60

CPRFL-CLIP(ours) 86.28 81.84 90.51 86.43 66.69 66.35 70.99 61.33
CLIP:ViT16

Zero-Shot CLIP∗ 85.77 66.52 88.93 97.83 60.17 38.52 65.06 72.28
CoOp∗ [9] 86.02 67.71 88.79 97.67 60.68 41.97 63.18 73.85

CoCoOp∗ [8] 84.47 64.58 87.82 96.88 61.49 39.81 64.63 76.42
LMPT∗ [6] 87.88 72.10 89.26 98.49 66.19 44.89 69.80 79.08

CPRFL-CLIP(ours) 85.84 82.65 89.49 85.49 66.84 66.55 71.45 61.01

(a) (b)

Figure 1: The mAP (%) improvements over baseline by integrating three components of the proposed CPRFL on VOC-LT and
COCO-LT datasets.

visualization examples from these different models, with CPRFL
demonstrating superior performance, particularly for the tail classes.
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Figure 2: The mAP (%) performance with different expansion coefficient 𝜏 of on VOC-LT and COCO-LT datasets.

GT: {person, bicycle, skateboard}

(a)

GT: {car, stop sign, parking meter}

(b)

Figure 3: More visualization examples of Top-3 predicated categories by ResNet-50, CLIP and our CPRFL.
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