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Appendix for "A Convergent Federated
Clustering Algorithm without Initial Condition"

A COMPUTATION AND COMMUNICATION COMPLEXITY OF SR-FCA

Note that the complexity of the REFINE step is the same as that of IFCA in terms of both computation
time and communication since in each case, we need to find the loss of every cluster model on every
client’s data. The main blowup of O(m2) is incurred during ONE_SHOT, which is unavoidable if
an initial clustering is not known (eg. see KMeans Lloyd (1982) v/s DBSCAN Ester et al. (1996) or
Ward’s algorithm where without the initial clustering, we need to perform all pairwise comparisons
to check which clients can be clustered together).

B THE TRIMMED MEAN ALGORITHM

Algorithm 4: TrimmedMeanGD()
Input: 0≤β< 1

2 , Clustering Cr
Output: Cluster models {ωc,T }c∈rg(Cr)

for all clusters c∈rg(Cr) in parallel do
wc,0←w0

for t=0 to T−1 do
g(wc,t)←TrMeanβ({∇fi(wc,t),Cr(i)=c})
wc,t+1←projW{wc,t−ηgt}

end for
Return {ωc,T }c∈rg(Cr)

end for

C PROOF OF PROPOSITION 4.1
According to the proposition, for two users i and j, the data is generated by first sampling each
coordinate of x∈Rd fromN (0,1) iid and then computing y as –

yi=⟨x,w⋆
i ⟩+ϵi

where ϵi
iid∼N (0,σ2). Then, the distribution of yi|x isN (⟨x,w⋆

i ⟩,σ2). Therefore, the KL divergence
between yi|x and yj |x is given by

KL(p(yi|x)||p(yj |x))=
〈
w⋆

i −w⋆
j ,x

〉2
2σ2

Therefore, if we take expectation wrt x, we have

Ex[KL(p(yi|x)||p(yj |x))]=
d
∥∥w⋆

i −w⋆
j

∥∥2
2σ2

D PROOF OF LEMMA 4.6
In ONE_SHOT(), C0=C⋆, if all the edges formed in the graph are correct. This means that if i,j are
in the same cluster in C⋆, then ∥wi,T−wj,T ∥≤λ and if i,j are in different clusters, ∥wi,T−wj,T ∥>λ.
Note that,

wi,T−wj,T =(w⋆
i −w⋆

j )+(wi,T−w⋆
i )−(wj,T−w⋆

j )

Now, if we apply triangle inequality, we obtain

dist(wi,T ,wj,T )≥dist(w⋆
i ,w

⋆
j )−Ξi,j , dist(wi,T ,wj,T )≤dist(w⋆

i ,w
⋆
j )+Ξi,j

where Ξi,j=
∑

k=i,jdist(wk,T ,w
⋆
k). This decomposition forms the key motivation for our algorithm.
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Therefore, if i,j are in the same cluster, then a sufficient condition for edge (i,j) to be incorrect is
λ≤dist(w⋆

i ,w
⋆
j )+Ξi,j =⇒ Ξi,j≥λ−ϵ1

Similarly, if i,j are in different clusters, then a sufficient condition for edge (i,j) to be incorrect is
λ≥dist(w⋆

i ,w
⋆
j )−Ξi,j =⇒ Ξi,j≥ϵ2−λ

Therefore, we can set ∆λ =min{ϵ2−λ,λ−ϵ1}, and then a sufficient condition for any edge to be
incorrect is maxi,jΞi,j≥∆λ.
Thus,

Pr[C⋆ ̸=C0]≤Pr[at least 1 edge is incorrect]
≤Pr[max

i,j
Ξi,j≥∆λ]

≤Pr[max
i,j

∑
k=i,j

∥wk,T−w⋆
k∥≥∆λ]

≤Pr[max
i,j

max
k=i,j

(∥wk,T−w⋆
k∥≥

∆λ

2
]

≤Pr[max
i∈[m]
∥wi,T−w⋆

i ∥≥
∆λ

2
] (3)

The second and third inequalities are obtained by expanding the terms. The fourth inequality is
obtained by Pr[a+b≥c]≤Pr[max{a,b}≥c/2]. For the fifth inequality, we merge maxi,jmaxk=i,j

into maxi∈[m]. As we can see in Equation (3), we need to bound ∥wi,T−w⋆
i ∥ for each node i. The

subsequent Lemma allow us to bound this quantities.

Lemma D.1 (Convergence of wi,T ). Let n2/3∆4/3

D2/3L̂2/3
≲ b1d, for some constant b1 > 0. Then, after

running ONE_SHOT()with η≤ 1
L , for some constant b2>0, under assumption 4.3 ,assumption 4.4

and assumption 4.5, we have

Pr[∥wi,T−w⋆
i ∥≥

ϵ2−ϵ1
4

]≤d exp(−n b2∆

L̂
√
d
),

where ∆= µ
2 (

∆λ

2 −(1−
µ
L )

T/2D) and n=mini∈[m]ni.
This lemma follows from Yin et al. (2018). The complete proof of this Lemma is present in
appendix D.1.
Now, we can apply lemma D.1 in Eq (3).

Pr[C0 ̸=C⋆]≤Pr[max
i∈[m]
∥wi,T−w⋆

i ∥≥
∆λ

2
]

≤mmax
i∈[m]

Pr[∥wi,T−w⋆
i ∥≥

∆λ

2
]

≤md exp(−n b2∆

L̂
√
d
)

For the second inequality, we use Pr[maxi∈[m]ai≥ c]≤
∑

i∈[m]Pr[ai≥ c]≤mmaxi∈[m]Pr[ai≥ c],
which follows from union bound.
Note that for p<1, we need the separation to be order of Θ(

√
logm
n ).

D.1 PROOF OF LEMMA D.1
We utilize results from Yin et al. (2018), which hold for TrimmedMeanGD to analyze convergence
for a single node as they yield stronger guarantees under the given assumptions.
Lemma D.2 (Convergence of wi,T ). If assumption 4.3,assumption 4.4,and assumption 4.5 hold,
and η≤ 1

L , then

∥wi,T−w⋆
i ∥≤(1−κ−1)T/2D+

2

µ
Λi ∀i∈ [m] (4)

where κ= L
µ and Λi is a positive random variable with

Pr[Λi≥
√
2dr+2

√
2δL̂]≤2d(1+

D

δ
)dexp(−nmin{ r

2L̂
,
r2

2L̂2
}) (5)

for some r,δ>0.
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We provide the proof of this lemma in appendix E.8.
Using the above Lemma, we can bound the probability Pr[∥wi,T−w⋆

i ∥≥ ∆λ

2 ]

Pr[∥wi,T−w⋆
i ∥≥

∆λ

2
]≤Pr[2(1−κ−1)T/2D+

2

µ
Λi+≥

∆λ

2
]

≤Pr[Λi≥∆], where ∆=
µ

2
(
∆λ

2
−(1−κ−1)T/2D)

≤Pr[
√
2dr+2

√
2δL̂≥∆]

≤dexp(−nb2
∆

L̂
√
d
)

for some constants b1,b2,b3,b4 > 0, where we set r= b3L̂max{ ∆
L̂
√
d
,
√

∆
L̂
√
d
} and δ= b4

∆
L̂

, and for

b1d≤ n2/3∆4/3

D2/3L̂4/3
, such that

√
2dr+2

√
2δL̂≥∆ and nmin{ r

2L̂
, r2

2L̂2
}> Dd

δ in lemma D.2.

E PROOF OF THEOREM 4.8

E.1 PRELIMINARIES

First, we define certain random variables and their respective probabilities which we will use
throughout this proof. Since the edge based analysis and corresponding clique identification involves
a lot of dependent events, we try to decompose the absence/presence of edge into a combination of
independent events.
Define,

Xij=

{
1 If the edge (i,j) in C0 is incorrect in C⋆
0 Otherwise

(6)

An edge (i,j) in C0 is incorrect in C⋆ if either it is present in C⋆ and absent in C0 or vice versa. We
analyze the probability of this event for the case when C⋆ contains the edge (i,j). The case when C⋆
doesn’t contain edge (i,j) and it is present in C0 has exaclty same probability. When

∥∥w⋆
i −w⋆

j

∥∥≤ϵ1,
then edge is present is C⋆. If it is absent in C0, then

Pr[Xij=1]≤Pr[Ξi,j≥∆λ]

≤Pr[Λi+Λj≥2∆]

The analysis is similar to the proof of ONE_SHOT() in appendix D.
Note that the random variables {Xij} are not independent. We now define independent random
variables Xi such that

Xi=

{
1 If Λi≥∆

0 Otherwise
(7)

Thus, we can see that Xij≤Xi+Xj . Additionally,

Pr[Xi=1]≤Pr[Λi≥∆]≤ p

m
(8)

This follows from analysis of ONE_SHOT() in appendix D.
We can further generalize this notion to the random variables defined as Yi,γ .

Yi,γ=

{
1 If Λi≥γ∆,γ∈(0,2)
0 Otherwise

(9)

Then,

Pr[Yi,γ=1]≤Pr[Λi≥γ∆]≤dexp(−nb2
γ∆

L̂
√
d
)=(

p

m
)γ

Note that the set of random variables {Yi,γ}mi=1 are mutually independent random variables.
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Further, we define the ω⋆
c for every cluster c∈ rg(C0). Let c′ ∈ C⋆ be the cluster label of node c. If

Gc={i : i∈ [m],C⋆(i)=c′}, which is the set of nodes in c which were from c′ in the original clustering,
then we can define ω⋆

c and Fc(w) as

ω⋆
c =argmin

w∈W
E[

1

|Gc′ |
∑
i∈Gc′

fi(w)] (10)

=argmin
w∈W

1

|Gc′ |
∑
i∈Gc′

Fi(w)=argmin
w∈W

Fc(w) (11)

We use this definition of ω⋆
c in the appendices E.5 and E.6.

E.2 ANALYSIS OF REFINE()

Our goal is to compute total probability of error for REFINE() to fail. If we define this error as
C1 ̸=C⋆, then we can define the main sources of error for this event.

1. ∃c ∈ rg(C⋆) such that no cluster in C0 has cluster label c : If the a cluster c ∈ rg(C⋆) is
absent in C0, then subsequent steps of REFINE() will never be able to recover it, as they
only involve node reclustering and merging existing clusters. The lemma presented below
gives an upper bound on the probability of this event.
Lemma E.1. Under the conditions of lemma 4.6 and if t = Θ(cmin), then there exists
constant a1>0 such that

Pr[∃c∈rg(C⋆) such that no cluster in C0 has cluster label c]

≤ m

cmin
exp(−a1cmin)

The proof of this Lemma is presented in appendix E.3
2. Each cluster c∈ rg(C)0 should have <α fraction of impurities for some 1

2 >β>α: If
some cluster has more than α-fraction of impure nodes, then we cannot expect convergence
guarantees for TrimmedMeanGDβ .
The below lemma bounds the probability of this error as
Lemma E.2. . For some constants 0<α<β< 1

2 ,a2≥0,γ1∈ (1,2) and αt=Θ(m), under
the conditions in lemma 4.6, we have

Pr[∃c∈rg(C0) which has >α fraction of impurities ]

≤m

t
exp(−a2m)+(1−α)m(

p

m
)γ1

The proof of this Lemma is presented in appendix E.4.
3. MERGE() error: We define this as the error for theMERGE() to fail. Even thoughMERGE()

operates after RECLUSTER(), RECLUSTER() does not change the cluster iterates. The
goal of MERGE() is to ensure that all clusters in C0 with the same cluster labels are merged.
Therefore, we define MERGE() error as the event when either two clusters with same cluster
label are not merged or two clusters with different cluster labels are merged. The below
lemma bounds this probability.

Lemma E.3. If min{ n
2/3∆4/3

D2/3L̂2/3
, n2∆′2

L̂2log(cmin)
}≥u1d for some constants u1>0, then for some

constant a′3>0, where ∆′=∆− µB
2 >0, where B=

√
2L̂ϵ1
µ , we have

Pr[MERGE() Error]≤ 4dm

t
exp(−a′3n

∆′

2L̂
)

The proof of this Lemma is presented in appendix E.5.
4. RECLUSTER() error: This event is defined as a node going to the wrong cluster after both

MERGE() and REFINE() operations. After MERGE(), each cluster in C0 corresponds to
a single cluster in C1. Therefore, we incur an error due to the RECLUSTER() operation if
any node i does not go to the cluster c∈C1 which has cluster label C⋆(i). The below lemma
provides an upper bound on the probability of this error.
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Lemma E.4. If min{ n
2/3∆4/3

D2/3L̂2/3
, n2∆′2

L̂2log(cmin)
}≥u2d for some constants u2>0, then for some

constants a′′3 >0 and γ2∈(1,2− µB
2∆ ), we have

Pr[RECLUSTER()error]≤4d
m

t
exp(−a′′3n

∆′

2L̂
)+m(

p

m
)γ2 (12)

The proof of this Lemma is presented in appendix E.6.
The total probability of error after for a single step of REFINE() is the sum of probability of errors
for these 4 events by the union bound. Therefore,

Pr[C1 ̸=C⋆]≤
m

cmin
exp(−a1cmin)+

m

t
exp(−a2m)

+(1−β)m(
p

m
)γ1+8d

m

t
exp(−a3n

∆′

2L̂
)+m(

p

m
)γ2

where we set a3=min{a′3,a′′3} .
For some small constants ρ1 > 0, ρ2 ∈ (0, 1), we can choose γ1 ∈ (1, 2), β ∈ (0, 1

2 ) and
γ2 ∈ (1,2− µB

2∆ ) such that (1−β)( p
m )γ1−1+( p

m )γ2−1≤ ρ1

2m1−ρ2
and for large enough m,∆′ and n,

m
cmin

exp(−a1cmin)+
m
t exp(−a2m)+ 8dm

t exp(−a3n
∆′

2L̂
) ≤ ρ1

2m1−ρ2
p. This happens because we

have terms of exp(−m),exp(−cmin) and exp(−n∆′), which decrease much faster than p
m which has

terms of O(mexp(−n∆)), where ∆ and ∆′ are of the same order. Therefore, the total probability
of error can be bounded by

Pr[C1 ̸=C⋆]≤
ρ1

m1−ρ2
p (13)

E.3 PROOF OF LEMMA E.1
Pr[∃c∈rg(C⋆) such that no cluster in C0 has cluster label c]

≤
∑
c∈C⋆

Pr[No cluster in C0 has cluster label c] (14)

Here, we use union bound over the clusters for the second inequality. Now, we analyze the probability
that no cluster in rg(C0) has cluster label c for some c∈ rg(C⋆). Consider a cluster in rg(C0). This
cluster has cluster label c if a majority of its nodes are from cluster c∈rg(C⋆). Since the size of each
cluster in rg(C0) is atleast t and there are C clusters in rg(C⋆), if all clusters in rg(C0) have≤ t

C nodes
from cluster c, then no cluster will have cluster label c.
Assume that the clique formed by nodes from cluster c has r nodes. Then, every node i in cluster c,
must have Sc−r edges absent, which correspond to the edges between a node of the clique and those
outside it. Thus, we obtain,

Pr[No cluster in C0 has cluster label c]≤Pr[ ∩
C⋆(i)=c

{
∑

j ̸=i,C⋆(i)=c

Xij>Sc−
t

C
}]

≤Pr[
∑∑

C⋆(i)=C⋆(j)=c

Xij>Sc(Sc−
t

C
)]

≤Pr[
∑∑

C⋆(i)=C⋆(j)=c

(Xi+Xj)>Sc(Sc−
t

C
)]

≤Pr[ 1
Sc

∑
C⋆(i)=c

Xi>1− t

CSc
)]

≤exp(−
(
1− t

CSc
− p

m

)2

Sc)

≤exp(−a1cmin)

In the first step, we require each node i to have Sc− t
C wrong edges. For the second inequality, we

remove the intersection and thus, the total number of incorrect edges has to be Sc(Sc− t
C ), since each

node has Sc− t
C incorrect edges. For the third inequality, we use Xij≤Xi+Xj and collect the terms
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of Xi for the fourth inequality. In the fifth inequality, we obtain a condition on the sum of independent
Bernoulli random variables each with mean p

m . Therefore, we can apply Chernoff bound for their
sum to obtain the fifth inequality.
A necessary condition for us is 1− t

CSc
− p

m > 0 which translates to t < CSc(1− p
m ). If we select

t≤ cmin−1, this inequality is always satisfied. Note that we want the term
(
1− t

CSc
− p

m

)2

>a1,

for some positive constant a1. If we choose t=Θ(m), which is possible if t=Θ(cmin) as we assume
cmin = Θ(m), then this is satisfied. We use the lower bound a1 and Sc ≥ cmin to obtain the final
inequality. Plugging this in Eq (14), we obtain our result.

E.4 PROOF OF LEMMA E.2
Pr[∃c∈rg(C0) which has≥α fraction of impurities]

≤
∑

c∈rg(C0)

Pr[cluster c has≥α fraction of wrong nodes] (15)

We use a simple union bound on clusters in C0 for the above inequality. Let the set of nodes in the
cluster c which are from same cluster of C⋆ as the cluster label of c, i.e., which are not impurities, be Rc.
Then let Qc= |Rc|. Let Q′

c denote the number of impurities in cluster c.

Pr[cluster c has≥α fraction of wrong nodes]≤Pr[Q′
c≥

α

1−α
Qc]

Pr[Q′
c≥αt]

We use the fact that Qc+Q′
c≥ t, which is the minimum size of any cluster, for the second inequality.

Now, we analyze the probability of a single node to be incorrect. A node is an impurity in cluster c
if it has an edge to each of nodes in Rc.

Pr[Node i is an impurity in cluster c]≤Pr[min
j∈Rc

∥wi,T−wj,T ∥≤λ] (16)

≤Pr[min
j∈Rc

(
∥∥w⋆

i −w⋆
j

∥∥−Ξi,j)≤λ]

≤Pr[Λi+max
j∈Rc

Λj≥2∆]

Now, if maxj∈Rc
Λj≤γ1∆, for γ1∈(1,2), then we need Λi≥(2−γ1)∆ for error.

Using the definition of random variables in appendix E.1

Pr[Q′
c≥αt]≤Pr[Q′

c≥αt|max
j∈Rc

Λj≤γ1∆]+Pr[max
j∈Rc

Λj≥γ1∆]

≤Pr[
m∑
i=1

Yi,2−γ1
≥αt]+Pr[max

j∈Rc

Λj≥γ1∆]

For the first inequality, we use union bound over the value of maxj∈Rc
Λj and for the second inequality,

we need atleast αt impurities, so atleast αt of all Yi,2−γ1
should be 1.

We now bound the two terms in the final inequality separately.
For the second term, if maxj∈Rc

Λj≥γ1∆.

Pr[max
j∈Rc

Λj≥γ1∆]≤QcPr[Yj,γ1 =1]≤Qc(
p

m
)γ1

Here, we use union bound over all elements in Rc for the first inequality and the second inequality is
plugging in the value of Pr[Yj,γ1

=1], which we have already computed.
Now, we need to provide a bound on Qc. Note that if Qc denotes the correct number of nodes, which
corresponds to the majority of nodes, then Qc≤(1−α)Sc, where Sc is the size of the cluster c.
For the first term, we can use Chernoff bound as Yi,2−γ1 are independent random variables with
expectation p

m

Pr[
1

m

m∑
i=1

Yi,2−γ1≥α
t

m
]≤exp(−(α t

m
−E[Yi,2−γ1 ])

2m)≤exp(−a2m)

We need α t
m≥E[Yi,2−γ1

],which implies αt≥1, since Yi,2−γ1
is a bernoulli random variable. Further,

we require αt=Θ(m), so that we can bound the probability using a constant a2≥ 0. If we choose
γ1 as a constant independent of m, then we are done.
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Now, plugging all these inequalities into Eq (15), we get

Pr[∃c∈rg(C0) which has≥α fraction of wrong nodes]

≤rg(C0)exp(−a2m)+
∑

c∈rg(C0)

(1−α)Sc(
p

m
)γ1

≤|rg(C0)|exp(−a2m)+(1−α)m(
p

m
)γ1

≤m

t
exp(−a2m)+(1−α)m(

p

m
)γ1

For the second inequality, we use
∑

c∈C0
Sc=m and for the third inequality, we use |rg(C0)|t≤m.

E.5 PROOF OF LEMMA E.3

First, let i, j ∈ [m] be a node in cluster c, c′ ∈ rg(C0) respectively such that C⋆(j) and C⋆(i) are
the cluster labels of clusters c and c′ respectively. Then, if we repeat our thresholding analysis for
MERGE() operation, we obtain

dist(w⋆
i ,w

⋆
j )−Ψc,c′≤dist(ωc,T ,ωc′,T )≤dist(w⋆

i ,w
⋆
j )+Ψc,c′

where Ψc,c′ =dist(ω⋆
c ,w

⋆
i )+dist(ω⋆

c′ ,w
⋆
j )+

∑
k=c,c′

dist(wk,T ,w
⋆
k)

We obtain the above equations by a simple application of triangle inequality. Here, ω⋆
c is as defined in

appendix E.1.
To analyze the above quantities, we need to bound ∥ω⋆

c−ωc,T ∥ and
∥∥ω⋆

c−w⋆
j

∥∥ for some j∈Gc. The
following Lemmas provide these bounds.

Lemma E.5 (Convergence of ωc,T ). If assumption 4.3,assumption 4.4 and assumption 4.5 hold, and
η≤ 1

L , then

∥ωc,T−ω⋆
c∥≤(1−κ−1)T/2D+

2

µ
Λc ∀c∈rg(C0) (17)

where κ= L
µ and Λc is a positive random variable with

Pr[Λc≥
√
2d

r+3βs

1−2β
+
√
2
2(1+3β)

1−2β
δL̂]

≤2d(1+
D

δ
)d(exp(−(1−α)Scnmin{ r

2L̂
,
r2

2L̂2
})

+(1−α)Scexp(−nmin{ s

2L̂
,
s2

2L̂2
}))

(18)

for some r,s,δ>0 where Sc is the size of cluster c.

Proof is presented in appendix E.7

Lemma E.6 (Distance between cluster minima and node minima). If assumption 4.3 and assump-
tion 4.5 are satisfied then, for all j∈ [m], where j is a node in cluster c∈C0 where C⋆(j) is the cluster
label of node c, we have ∥∥ω⋆

c−w⋆
j

∥∥≤
√

2L̂ϵ1
µ

:=B (19)

Proof is presented in appendix E.9.
Now, that we have our required quantities, we are ready to analyze the probability of error after the
merge and reclustering operations.
First, we analyze the probabilty of MERGE() operation. Note that if correct nodes of c and c′ were
from the same cluster C⋆ then,

∥∥w⋆
i −w⋆

j

∥∥≤ϵ1,∀i∈Gc,j∈Gc′ . If correct nodes of c′ and c were from
different clusters in C⋆, then,

∥∥w⋆
i −w⋆

j

∥∥≥ϵ2,∀i∈Gc,j∈Gc′ . Therefore, the probability of MERGE()
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error is upper bounded by
Pr[MERGE() Error]≤Pr[at least 1 edge is incorrect]

≤Pr[max
c,c′

Ψc,c′≥∆λ]

≤Pr[max
c,c′

∑
k=c,c′

2Λk

µ
≥∆λ−2(1−κ−1)T/2D−2B]

≤ max
c∈rg(C0)

Pr[Λc≥
µ

2
(
∆λ

2
−(1−κ−1)T/2D−B)]

≤ max
c∈rg(C0)

Pr[Λc≥∆′] (20)

≤ max
c∈rg(C0)

4dexp(−a′3n
∆′

2L̂
)

≤
∑

c∈rg(C0)

4dexp(−a′3n
∆′

2L̂
)≤ 4dm

t
exp(−a′3n

∆′

2L̂
) (21)

For the second inequality, we expand all the terms of Φc,c′ . We set ∆′ = µ
2 (

∆λ

2 − (1 −
κ−1)T/2D − B). Then, we set r = Θ(L̂max{ ∆′

Sc

√
dL̂

,
√

∆′

Sc

√
dL̂
}), s = Θ(L̂max{ ∆′

Sc

√
dL̂

+

2log(Sc)
n ,

√
∆′

Sc

√
dL̂

+ 2log(Sc)
n }) and δ=Θ(Dd3/2L̂

n∆′ ). Now, if

d=Ω(min{ n
2/3∆4/3

D2/3L̂2/3
, n2∆′2

L̂2log(cmin)
}), such that

√
2d r+3βs

1−2β +
√
2 2(1+3β)

1−2β δL̂≥∆′, then there exist some
constant a′3>0 such that the second inequality is satisfied by lemma E.5. We then use the union bound,
followed by |rg(C0)|≤ m

t .

E.6 PROOF OF LEMMA E.4
We can apply our thresholding analysis to
∥ωc,T−wi,T ∥ for c∈rg(C0). First, let j be a node in cluster c such that C⋆(j) is the cluster label of c.

dist(w⋆
j ,w

⋆
i )+Φc,i≤dist(ωc,T ,wi,T )≤dist(w⋆

j ,w
⋆
i )+Φc,i

where Φc,i=dist(ωc,T ,ω
⋆
c )+dist(ω⋆

c ,w
⋆
j )+dist(wi,T ,w

⋆
i )

From appendix D and appendix E.5, we have bounds for all the terms involved. Note that after
merging, each cluster in C⋆ should have only 1 cluster in C1. Therefore, after we recluster according
to ∥ωc,T−wi,T ∥, we incur an error if i goes to the wrong cluster. Suppose that the c corresponds to
the correct cluster for i and c′ is the cluster to which it is assigned , with c,c′∈rg(C1),c ̸=c′. Then,

Pr[Reclustering Error]≤Pr[max
i∈[m]

max
c′ ̸=c
∥ωc′,T−wi,T ∥≤∥ωc,T−wi,T ∥]

≤Pr[max
i∈[m]

max
c′ ̸=c

ϵ2−Φc′,i≤ϵ1+Φc,i]

≤Pr[max
i∈[m]

max
c′∈C′

0

Φc,i≥
ϵ2−ϵ1

2
]

≤Pr[max
i∈[m]

max
c′∈C′

0

(Λc+Λi)≥∆+∆′] (22)

≤Pr[max
c∈C′

0

Λc≥∆′−(γ2−1)∆]+Pr[max
i∈[m]

Λi≥γ2∆]

≤ max
c∈rg(C0)′

Pr[Λc≥∆′′]+max
i∈m

Pr[Λi≥γ2∆] (23)

For the second inequality, we use the thresholding analysis on ∥ωc,T−wi,T ∥. For the third inequality,
we rearrange the terms and combine max over c′ ̸= c with c, and use. For the fourth inequality, we
expand the terms of Φc,T and substitute the values of ∆ and ∆′, using the inequality ∆λ≤ ϵ2−ϵ1

2 . For
the fifth inequality, we use consider some γ2 ∈ (1,2− µB

2∆ ) and break the terms using union bound
such that ∆′′=∆′−(γ2−1)∆≥0. Finally, we use the union bound on c∈rg(C0)′ and i∈ [m].
Now, we bound the two terms in Eq (23) separately. The second term can be bounded in terms of Yi,γ2

.
Thus,

max
i∈[m]

Pr[Λi≥γ2∆]=max
i∈[m]

Pr[Yi,γ2
=1]≤m(

p

m
)γ2 (24)
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We use expectation of Yi,γ2
calculated in appendix E.4 and then bound max by sum.

For the first term, our analysis is similar to that of MERGE() error. Assume that there is some
constant u2 > 1 such that ∆′′ ≥ u2∆

′. We set δ = Θ(Dd3/2L̂
n∆′ ), r = Θ(L̂max{ ∆′

Sc

√
dL̂

,
√

∆′

Sc

√
dL̂
}),

s = Θ(L̂max{ ∆′

Sc

√
dL̂

+ 2log(Sc)
n ,

√
∆′

Sc

√
dL̂

+ 2log(Sc)
n }), and if d = Ω(min{ n

2/3∆4/3

D2/3L̂2/3
, n2∆′2

L̂2log(cmin)
}),

such that
√
2d r+3βs

1−2β +
√
2 2(1+3β)

1−2β δL̂≥∆′, then there exist some constant a′′3 >0 such that the second
inequality is satisfied by lemma E.5. We then use the union bound, followed by |rg(C0)|≤ m

t .

max
c∈rg(C0)′

Pr[Λc≥∆′′]≤ max
c∈rg(C0)′

4dexp(−a′′3n
∆′

2L̂
) (25)

≤
∑

c∈rg(C0)′

4dexp(−a′′3n
∆′

2L̂
) (26)

≤4dm

t
exp(−a′′3n

∆′

2L̂
) (27)

E.7 PROOF OF LEMMA E.5

First, we use an intermediate Lemma from Yin et al. (2018). This characterizes the behavior of
TrimmedMeanβ gradient estimator.

Lemma E.7 (TrimmedMean Estimator Variance). Let gc(w) be the output of TrMeanβ estimator
for cluster c∈C0 with size of cluster Sc. If assumption 4.5 holds, then

∥gc(w)−∇Fc(w)∥≤Λ

where Pr[Λ≥
√
2d

r+3βs

1−2β
+
√
2
2(1+3β)

1−2β
δL̂]

≤2d(1+
D

δ
)d
(
exp(−(1−α)Scnmin{ r

2L̂
,
r2

2L̂2
})

+(1−α)Scexp(−nmin{ s

2L̂
,
s2

2L̂2
})
)

(28)

for some r,s,δ>0.

Proof. The proof of this Lemma follows from coordinate-wise sub-exponential distribution of∇Fc.
Since loss per sample f(w,z) is Lipschitz in each of its coordinates with Lipschitz constant Lk for
k∈ [d]. Thus, Fc(w) is also Lk-Lipschitz for each coordinate k∈ [d] from corollary G.6. Now, every
subgaussian variable with variance σ2 is σ-sub exponential. Thus, each coordinate of∇wf(w,z) is
L̂-sub-exponential, since L̂>Lk,∀k∈ [d]. The remainder of proof can be found in Appendix E.1 in
Yin et al. (2018).

Now, using the above Lemma, we can bound the iterate error for a cluster c ∈ C0. Consider
∥ωc,t+1−ω⋆

c∥
2,

∥ωc,t+1−ω⋆
c∥≤∥projW{ωc,t−η∇g(ωc,t)}−ω⋆

c∥
≤∥ωc,t−η∇g(ωc,t)−ω⋆

c∥
≤∥ωc,t−η∇F (ωc,t)−ω⋆

c∥+η∥g(ωc,t)−∇F (ωc,t)∥
≤∥ωc,t−η∇F (ωc,t)−ω⋆

c∥+ηΛ

Now, we bound ∥ωc,t−η∇F (ωc,t)−ω⋆
c∥

2 using µ-strong convexity and L-smoothness of Fc. The
analysis is similar to the convergence analysis in appendix D.1. Thus, for η≤ 1

L

∥ωc,t−η∇F (ωc,t)−ω⋆
c∥

2≤(1−ηµ)∥ωc,t−ω⋆
c∥

2
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Using this bound we can analyze the original term with ∥ωc,t+1−ω⋆
c∥.

∥ωc,t+1−ω⋆
c∥≤

√
1−ηµ∥ωc,t−ω⋆

c∥+ηΛ

∥ωc,T−ω⋆
c∥≤(1−ηµ)T/2∥ωc,0−ω⋆

c∥+ηΛ(

T−1∑
t=0

(1−ηµ)t/2)

≤(1−κ−1)T/2∥ωc,0−ω⋆
c∥+ηΛ(

∞∑
t=0

(1− ηµ

2
)t)

≤(1−κ−1)T/2D+
2

µ
Λ

For the second inequality, we use κ= L
µ and unroll the recursion for T steps. For the third inequality,

we use
√
1−x≤1− x

2 and upper bound the finite geometric sum by its infinite counterpart. Finally
we use the boundedness ofW and the sum of the geometric series to get our result.

E.8 PROOF OF LEMMA D.2
We present the proof for this lemma here as it is a corollary of lemma E.5.
We utilize the intermediate lemma E.7. Now, if we set α = β = 0 and Sc = 1, we obtain the
generalization guarantee for GD on a single node i∈ [m]. Further, we do not need the terms of s as
they appear with β, and thus, we can choose s very large, so that we can ignore its contribution to
error probability. The remainder of the proof follows that of lemma E.5.

E.9 PROOF OF LEMMA E.6
Since Fc is L̂-Lipshchitz and µ-strongly convex with minima ω⋆

c ,

Fc(w
⋆
i )−Fc(ω

⋆
c )=

Fi(w
⋆
i )−Fi(ω

⋆
c )

Qc
+

∑
j ̸=i,C0(j)=c

Fj(w
⋆
i )−Fj(ω

⋆
c )

Qc

≤Fi(w
⋆
i )−Fi(ω

⋆
c )

Qc
+

∑
j ̸=i,C0(j)=c

Fj(w
⋆
i )−Fj(w

⋆
j )

Qc

≤−µ∥w⋆
i −ω⋆

c∥
2

2Qc
+

∑
j ̸=i,C0(j)=c

L̂
∥∥w⋆

i −w⋆
j

∥∥
Qc

µ

2
∥w⋆

i −ω⋆
c∥

2≤−µ∥w⋆
i −ω⋆

c∥
2

2Qc
+
(Qc−1)L̂ϵ1

Qc

µ

2
∥w⋆

i −ω⋆
c∥

2≤−µ∥w⋆
i −ω⋆

c∥
2

2Qc
+
(Qc−1)L̂ϵ1

Qc

∥w⋆
i −ω⋆

c∥
2≤2L̂ϵ1

µ

∥w⋆
i −ω⋆

c∥≤

√
2L̂ϵ1
µ

For the first equation, we expand Fc into its component terms, where Qc denotes the number of
correct nodes in cluster c. For the second inequality, we use the fact that w⋆

j =argminw∈WFj(w).
For the third inequality, we use strong-convexity of Fi and L̂-Lipschitzness for Fj ,j ̸= i. For the fourth
inequality, we use a lower bound on Fc(w

⋆
i )−Fc(ω

⋆
c ) using µ-strong convexity of Fc. Finally, we

manipulate the remaining terms to obtain the final bound.

F PROOF OF THEOREM 4.14
By theorem 4.8, CR ̸=C⋆, with probability

(
ρ2

m(1−ρ1) p
)R

. For the (R+1)th step, we bound probability
of error by 1. Therefore, with probability 1−exp(− 5

8R)p. For the (R+1)th step, we optimize the
cluster iterates from TrimmedMeanGD() to improve convergence instead of clustering error. Since
CR+1=CR, each cluster in CR+1 maps to some cluster in C⋆. Without loss of generality, assume that
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cluster c∈rg(CR+1) maps to the same cluster c∈C. Now, if {c1,c2,...,cl} are the clusters in CR which
merged to form cluster c∈rg(CR+1). Then, we can write

∥ωc,T−ω⋆
c∥=

∥∥∥∥∥∥1l
l∑

j=1

(ωcj ,T−ω⋆
c )

∥∥∥∥∥∥
≤1

l

l∑
j=1

∥∥ωcj ,T−ω⋆
c

∥∥
≤1

l

l∑
j=1

(
∥∥∥ωcj ,T−ω⋆

cj

∥∥∥+∥∥∥ω⋆
cj−ω

⋆
c

∥∥∥)
For the first inequality, we used the definition of ωc,T from MERGE(). For the second inequality,
we used the triangle inequality for the l elements. The third inequality is obtained by using triangle
inequality and adding and subtracting ω⋆

cj as defined in appendix E.1.
Now, consider the set of nodes {i1,i2,...,il} ⊆ [m], such that ij ∈ cj∀j ∈ [l] and C⋆(ij) = c∀j ∈ [l].
Therefore, we can split each term of

∥∥∥ω⋆
cj−ω

⋆
c

∥∥∥ as –

∥ωc,T−ω⋆
c∥≤

1

l

l∑
j=1

(
∥∥∥ωcj ,T−ω⋆

cj

∥∥∥+∥∥∥ω⋆
cj−wij

∥∥∥+∥∥wij−ω⋆
c

∥∥)
≤1

l

l∑
j=1

∥∥∥ωcj ,T−ω⋆
cj

∥∥∥+2B

From lemma E.6, since ij contributes to both clusters cj and c⋆, we can bound the difference from their
minima by B. Further, we can use lemma E.5 and the lemma E.7, which is adapted from Theorem 4
in Yin et al. (2018),to bound the convergence of

∥∥∥ωcj ,T−ω⋆
cj

∥∥∥. If we set δ= 1
nScj

L̂D
and

r= L̂max{ 8d

nScj

log(1+nScL̂D),

√
8d

nScj

log(1+nScL̂D)}

s= L̂max{4d
n
(dlog(1+nScj L̂D)+logm),

√
4d

n
(dlog(1+nScj L̂D)+logm)}

where Scj is the size of cluster cj , we obtain

∥ωc,T−ω⋆
c∥≤(1−κ−1)T/2D+Λ′+2B

where

Λ′=O
(

L̂d

1−2β

(
β√
n
+

1
√
ncmin

)√
log(nmax

j∈[l]
Scj L̂D)

)
We can further upper boundmaxj∈[l]Scj

bym. Now, the probability of error for each cluster c∈rg(CR)
for given values of r and s is 4d

(1+ncminL̂D)d
, therefore, we can use union bound and multiply this

probability of error by rg(CR)≤ m
t . Since t=Θ(cmin), we can upper bound this by mu′′

cmin
for some

positive constant cmin.

G ADDITIONAL DEFINITIONS AND LEMMAS

We start with reviewing the standard definitions of strongly convex and smooth functions f :Rd 7→R.
Definition G.1. f is µ-strongly convex if ∀w,w′, f(w′)≥f(w)+⟨∇f(w),w′−w⟩+ µ

2 ∥w
′−w∥2.

Definition G.2. f is L-smooth if ∀w,w′, ∥∇f(w)−∇f(w′)∥≤L∥w−w′∥.
Definition G.3. f is Lk Lipschitz for every coordinate k ∈ [d] if, |∂kf(w)| ≤ Lk, where ∂kf(w)
denotes the k-th coordinate of∇f(w).
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Lemma G.4. If f,g :Rd→R are two µ-strongly convex functions on a domainW . Then, f+g
2 is also

µ-strongly convex on the same domain.

Proof. If f and g are µ-strongly convex on a domainW , then for any w1,w0∈W

f(w1)≥f(w0)+⟨∇f(w0),w1−w0⟩+
µ

2
∥w1−w0∥2

g(w1)≥g(w0)+⟨∇g(w0),w1−w0⟩+
µ

2
∥w1−w0∥2

Adding the above equations, we get

f(w1)+g(w1)

2
≥ f(w0)+g(w0)

2
+

〈
∇f(w0)+∇g(w0)

2
,w1−w0

〉
+
µ

2
∥w1−w0∥2

Thus, f+g
2 is also µ-strongly convex.

Lemma G.5. If f,g :Rd→R are twoL-smooth functions on a domainW . Then, f+g
2 is alsoL-smooth

on the same domain.
Corollary G.6. If f,g :Rd→R are two L-Lipschitz functions on a domainW . Then, f+g

2 is also
L-Lipschitz on the same domain.

Proof. Consider the following term for any w1,w0∈W∥∥∥∥∇f(w1)+∇g(w1)

2
−∇f(w0)+∇g(w0)

2

∥∥∥∥
≤ 1

2
∥(∇f(w1)−∇f(w0))+(∇g(w1)−∇g(w0))∥

≤ 1

2
(∥∇f(w1)−∇f(w0)∥+∥∇g(w1)−∇g(w0)∥)

≤ 1

2
(L∥w1−w0∥+L∥w1−w0∥)

≤L∥w1−w0∥
In the second inequality, we use the triangle inequality of norms. For the third inequality, we use the
L-smoothness of f and g. Thus, f+g

2 is also L-smooth The proof of the corollary is same as above,
by replacing terms of∇f and∇g by f and g respectively.

Lemma G.7. If each coordinate of a function f :Rd→R is Lk-Lipschitz for k∈ [d] on the domain

W , then f is L̂=
√∑d

k=1L
2
k-Lipschitz on the same domainW .

Proof. Consider w1,w0∈W .Define a sequence of variables
{w[k]=((w1)1,(w1)2...,(w1)k,(w0)k+1,...(w0)d)

⊺}dk=0. Then, w1=w[d] and w0=w[0]

|f(w1)−f(w0)|=

∣∣∣∣∣
d∑

k=1

(f(w[k])−f(w[k−1]))

∣∣∣∣∣
=

d∑
k=1

Lk|(w1)k−(w0)k|

The second inequality follows by using triangle rule. Then, f(w[k]) and f(w[k−1]) differ only in
the kth coordinate, so we apply Lk coordinate-wise Lipschitzness. Now, consider a random variable
v∈Rd such that vk=Lk

|(w1)k−(w0)k|
(w1)k−(w0)k

if (w1)k−(w0)k ̸=0, else 0. Then,

d∑
k=1

Lk|(w1)k−(w0)k|=⟨v,w1−w0⟩

≤∥v∥∥w1−w0∥

≤

√√√√ d∑
k=1

L2
k∥w1−w0∥
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Here, we use the Cauchy-Schwartz inequality for the second step. Then, note that each coordinate
of v is bounded by Lk.
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