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A APPENDIX

A.1 LOSS FUNCTION

The goal is to alter the input features of an instance to create a counterfactual that changes the
prediction of a machine learning model. The process is guided by balancing prediction change,
sparsity of the perturbations, and interpretability. The loss function for generating counterfactual
adversarial examples follows an optimization-based approach.

The counterfactual instance, xcf = x0 + δ, is obtained by applying a perturbation δ to the original
instance x0. The loss function L to be minimized is constructed as follows:

L = Lpred + LAE + Lsparse + Lproto

Lpred is designed to ensure the perturbed instance x′ is misclassified by the predictive model. It
encourages the model to predict a different class for the perturbed instance than for the original.
Lpred can be defined as:

Lpred = max([fpred(x0 + δ)]t0 −max
i ̸=t0

[fpred(x0 + δ)]i)

where [fpred(x0 + δ)]i is the predicted probability of class i, and t0 is the original class.

LAE, known as the autoencoder loss, penalizes out-of-distribution instances by measuring the re-
construction error of the perturbed instance using an autoencoder. Moreover, the LAE term aids in
ensuring that the generated adversarial example remains realistic by maintaining proximity to the
original data manifold. LAE can be defined as:

LAE = ∥x0 + δ − AE(x0 + δ)∥22

This loss helps guide the adversarial instance to stay within the data distribution.

Lsparse = L1 + L2

is an elastic net regularization term that ensures the perturbations are sparse and minimizes the
distance between x0 and xcf . L1 and L2 are regularization components aimed at ensuring the
sparsity and small magnitude of the perturbation δ. Specifically:

L1 = ∥δ∥1, L2 = ∥δ∥22

The inclusion of both L1 and L2 regularizers, known as the elastic net, balances sparsity with
smoothness. The combination of these terms ensures that the perturbation is both small and sparse,
preserving the interpretability of the adversarial example while effectively fooling the model.

The prototype loss, Lproto, is introduced to speed up convergence and maintain the interpretability of
counterfactual instances. It ensures that the perturbation δ aligns with a prototype from the desired
class, improving interpretability. Prototypes are derived from an autoencoder representing the mean
encoding of the K nearest neighbors in the latent space of the desired class. The prototype term
ensures that the generated counterfactual remains within the distribution of the target class.
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