
A Pseudo-Games and Generalized Nash Equilibria

Pseudo-games, or abstract economies [4], are optimization problems that are closely related to
min-max Stackelberg games, but which are technically not games, as noted by Facchinei and Kanzow
[26, 27], because each player’s strategy set is not fixed at the outset (i.e., before they have to make
a decision), but instead depends on the other players’ choices. [39]. In this appendix, we formally
define two-player, zero-sum pseudo-games,10 and discuss how they differ from min-max Stackelberg
games. We also define the equilibrium concept par excellence of pseudo-games, namely generalized
Nash equilibrium, and juxtapose its definition with vanilla Nash equilibrium.

A two-player, zero-sum pseudo-game comprises two players, with respective payoff functions
�f(x,y) and f(x,y), and respective strategy spaces given by the correspondences X : Y ◆ X and
Y : X ◆ Y , i.e., set valued mappings that depend on the choice the other player takes. More specifi-
cally, X (y) = {x 2 X | 8k 2 [K], gk(x,y) � 0} and Y(x) = {y 2 Y | 8k 2 [K], gk(x,y) � 0}.
We denote a pseudo-game by (X,Y, f, g).

Pseudo-games are closely related to min-max Stackelberg games, as they both comprise
agents with the same objectives and the same space of feasible strategy profiles, namely
{(x,y) 2 X ⇥ Y | 8k 2 [K], gk(x,y) � 0}. However, whereas play proceeds sequentially in Stack-
elberg games, so that inner player chooses a strategy y 2 Y s.t. g(bx,y) � 0 after the outer player
chooses bx 2 X , in pseudo-games players choose their strategies simultaneously. In other words,
the space of feasible strategy profiles is an emergent feature of a pseudo-game; it depends on the
players’ choices, which are made simultaneously, yet must somehow still be feasible, even though
one player’s choice could render another player’s choice infeasible.

A generalized Nash equilibrium (GNE) of pseudo-game (X,Y, f, g) is a strategy profile
(x⇤

,y⇤) 2 X ⇥ Y s.t. g(x⇤
,y⇤) � 0 such that

max
y2Y :g(x⇤,y)�0

f(x⇤
,y)  f(x⇤

,y⇤)  min
x2X:g(x,y⇤)�0

f(x,y⇤) . (4)

That is, at a GNE the players choose best responses to the other players’ strategies from within the
space of strategies defined by the other players’ choices. Under Assumption 3.1, a GNE is guaranteed
to exist for any pseudo-game (X,Y, f, g). A Nash equilibrium, however, is not guaranteed to exist.

A Nash equilibrium (NE) of a min-max Stackelberg game (X,Y, f, g) is a tuple (x⇤
,y⇤) 2 X ⇥Y

such that

max
y2Y

min
x2X:g(x,y)�0

f(x,y)  f(x⇤
,y⇤)  min

x2X
max

y2Y :g(x,y)�0
f(x,y) . (5)

That is, at a NE the players best respond to one another’s choices, under the assumption that the other
player is doing the same: i.e., best responding to their choice.

We summarize what is known about min-max Stackelberg games vs. pseudo-games, and Stackelberg
vs. generalized Nash (and vanilla Nash) equilibria, as follows. Min-max Stackelberg games are
proper games, while pseudo-games are not well-defined games. Stackelberg min-max games are
played sequentially, while pseudo-games are played simultaneously. When Nash equilibria exist in
min-max Stackelberg games, they coincide with Stackelberg equilibria. Additionally, Nash equilibria
coincide with generalized Nash equilibria in min-max games with independent strategy sets. There
exist no polynomial-time computation guaantees for generalized Nash equilibria in pseudo-games,
even in the two-player, zero-sum setting, while we provide polynomial-time computation guarantees
for Stackelberg equilibria in min-max Stackelberg games.

B Omitted Proofs Section 2

Proposition B.1. Consider a min-max Stackelberg game (X,Y, f, g). Then if Assumption 3.1 holds,
the outer player’s value function, V (x) = maxy2Y :g(x,y)�0 f(x,y), is continuous and convex.

Proof. By Berge’s maximum theorem [7], the outer player’s value function is continuous.
10We refer the reader to Facchinei and Kanzow’s [26, 27] survey on pseudo-games for a more detailed

exposition, beyond two-player, zero-sum pseudo-games.

14

Define L : Y ⇥RK
+ ⇥X ! R s.t. L(y,�;x) = f(x,y) +

PK
k=1 �kgk(x,y) and h : Y ⇥X ! R

s.t. h(y;x) = min�2RK
+
L(y,�;x). Since Slater’s condition is satisfied under Assumption 3.1, the

KKT theorem [44] applies, which means that for all x 2 X and y 2 Y , the optimal KKT multipliers
�⇤ exist and are well-defined: i.e, there exists c 2 R+ such that 8k 2 [K], 0  �

⇤
k  c < 1. We

can thus re-express the outer player’s value function V (x) as the following Lagrangian saddle-point
problems:

V (x) = max
y2Y :g(x,y)�0

f(x,y) = max
y2Y

min
�2RK

+

L(y,�;x) = max
y2Y

min
�2[0,c]K

L(y,�;x) = max
y2Y

h(y;x) .

(6)

Notice that L is concave in y, convex in �, and convex in x. Since h is the min-projection of L w.r.t.
� onto the compact set [0, c]K , h must be convex in x ([65], Proposition 2.22). Further, since V is
the maximum of convex functions over a compact set, i.e., maxy2Y h(y;x), V must be convex ([65],
Theorem 5.5).

Proposition B.2. Given any min-max Stackelberg game (X,Y, f, g), a Stackelberg equilibrium
always exists and its value is unique.

Proof of Proposition B.2. By Berge’s maximum theorem [7], the outer player’s value function
V (x) = maxy2Y :g(x,y)�0 f(x,y) is continuous, and the inner player’s solution correspondence
Y

⇤(x) = argmaxy2Y :g(x,y)�0 f(x,y) is non-empty, for all x 2 X . Since V is continuous and X

is compact and non-empty, by the extreme value theorem [62], there exists a minimizer x⇤
2 X of V .

Hence (x⇤
,y⇤(x⇤)), with y⇤(x⇤) 2 Y

⇤(x⇤), is a Stackelberg equilibrium of (X,Y, f, g).

Let (x1,y1) and (x2,y2) be two different Stackelberg equilibria. WLOG, suppose f(x1,y1) >

f(x2,y2), so that V (x1) = f(x1,y1) > f(x2,y2) = V (x2), where the first and last equality
follow from the definition of Stackelberg equilibrium. But then (x1,y1) cannot be a Stackelberg
equilibrium, since x1 is not a minimizer of the outer player’s value function.

Proposition B.3. The set of Stackelberg equilibria of any min-max Stackelberg game (X,Y, f, g) is
non-empty, compact, and convex.

Proof. By Proposition B.2, the set of Stackelberg equilibria of any min-max Stackelberg game is
non-empty. Additionally, under Assumption 3.1, we have that for all x 2 X , f(x, ·) is concave,
and {y 2 Y | g(x,y) � 0} is convex. Hence, by Theorem 2.6 of Rockafeller [65], the set of
solutions Y

⇤(x) = argmaxy2Y :g(x,y)�0 f(x,y) is compact- and convex- valued. Similarly, by
Proposition B.1, under Assumption 3.1, maxy2Y :g(x,y)�0 f(x,y) is continuous and convex. Hence,
the set of solutions X⇤ = argminx2X maxy2Y :g(x,y)�0 f(x,y) is compact- and convex-valued.
Since the composition of two compact-convex-valued correspondences is again compact-convex-
valued (Proposition 5.52 of Rockafeller [65]), we conclude that the set of Stackelberg equilibria,
namely X

⇤(Y ⇤), is compact and convex.

C Envelope Theorem

Danskin’s theorem [17] offers insights into optimization problems of the form: maxy2Y f(x,y),
where Y ⇢ Rm is compact and non-empty. Among other things, Danskin’s theorem allows us to
compute the gradient of the objective function of this optimization problem with respect to x.
Theorem C.1 (Danskin’s Theorem). Consider an optimization problem of the form:
maxy2Y f(x,y), where Y ⇢ Rm is compact and non-empty. Suppose that Y is convex and
that f is concave in y. Let V (x) = maxy2Y f(x,y) and Y

⇤(x) = argmaxy2Y f(x,y). Then V

is differentiable at bx, if the solution correspondence Y
⇤(bx) is a singleton: i.e., Y ⇤(bx) = {y⇤(bx)}.

Additionally, the gradient at bx is given by V
0(bx) = rxf(bx,y⇤(bx)).

Unfortunately, Danskin’s theorem does not hold when the set Y is replaced by a corre-
spondence, which occurs in min-max Stackelberg games: i.e., when the inner problem is
maxy2Y :g(x,y)�0 f(x,y).

15

Example C.2 (Danskin’s theorem does not apply to min-max Stackelberg games). Consider the
optimization problem:

max
y2R:y+x�0

�y
2 + y + 2x + 2 . (7)

The solution to this problem is unique, given any x 2 X , meaning the solution correspondence Y ⇤(x)
is singleton-valued. We denote this unique solution by y

⇤(x). After solving, we find that

y
⇤(x) =

⇢
1/2 if x � �1/2

�x if x < �1/2
(8)

The value function V (x) = maxy2R:y+x�0 �y
2 + y + 2x + 2 is then given by:

V (x) = f(x, y⇤(x)) (9)

= �y
⇤(x)2 + y

⇤(x) + 2x + 2 (10)

=

⇢
�1/4 + 1/2 + 2x + 2 if x � �1/2

�x
2
� x + 2x + 2 if x < �1/2

(11)

=

⇢
9/4 + 2x if x � �1/2

�x
2 + x + 2 if x < �1/2

(12)

The derivative of this value function is:
@V

@x
=

⇢
2 if x � �1/2

1� 2x if x < �1/2
(13)

However, the derivative predicted by Danskin’s theorem is 2. Hence, Danskin’s theorem does not hold
when the constraints are parameterized, i.e., when the problem is of the form miny2Y :g(x,y) f(x,y)
rather than miny2Y f(x,y), where X ⇢ Rn, Y ⇢ Rm, and for all k 2 [K], gk : X ⇥ Y ! R are
continuous.

N.B. For simplicity, we do not assume the constraint set is compact in this example. Compactness of
the constraint set can be used to guarantee existence of a solution, but as a solution to this particular
problem always exists, we can do away with this assumption.

The following theorem, due to Milgrom and Segal [50], generalizes Danskin’s theorem to handle
parameterized constraints:
Theorem C.3 (Envelope Theorem [50]). Consider the maximization problem

V (x) = max
y2Y

f(x,y), subject to gk(x,y) � 0, for all k = 1, . . . ,K , (14)

where Y ✓ Rm.

Define the solution correspondence Y
⇤(x) = argmaxy2X:g(x,y)�0 f(x,y). If Assumption 3.1

holds, then the value function V is absolutely continuous, and at any point bx 2 X where V is
differentiable:

rxV (bx) = rxL(y
⇤(bx),�⇤(bx,y⇤(bx))), bx) = rxf (bx,y⇤(bx)) +

KX

k=1

�
⇤
k(bx,y⇤(bx))rxgk (bx,y⇤(bx)) ,

(15)

where �⇤(bx,y⇤(bx)) = (�1(bx,y⇤(bx)), . . . ,�⇤
K(bx,y⇤(bx)))T 2 ⇤⇤(bx,y⇤(bx)) are the KKT multipli-

ers associated associated with y⇤(bx) 2 Y
⇤(bx).

D Omitted Subdifferential Envelope Theorem Proof (Section 3)

Proof of Theorem 3.2. As usual, let V (x) = maxy2Y :g(x,y)�0 f(x,y). First, note that Proposi-
tion B.1 V is subdifferentiable as it is convex [9]. Reformulating the problem as a Lagrangian saddle
point problem, for all bx 2 X , it holds that:

V (bx) = max
y2Y :g(bx,y)�0

f(bx,y) (16)

= max
y2Y

min
�2RK

++

(
f(bx,y) +

KX

k=1

�kgk(bx,y)
)

(17)

16

Since f is continuous, Y is compact, and g1, . . . , gK are continuous, for all bx 2 X , there exists
y⇤(bx) 2 argmaxy2Y :g(bx,y)�0 f(bx,y). Furthermore, as Assumption 3.1 ensures that an interior
solution exists, the Karush-Kuhn-Tucker Theorem [44] applies, so for all bx 2 X and any associated
y⇤(bx), there exists �(bx,y⇤(bx)) 2 RK that solves Equation (17).

Define the solution correspondence Y
⇤(x) = argmaxy2Y :g(x,y)�0 f(x,y), and let ⇤⇤(x,y) =

argmin�2RK
+

n
f(x,y) +

PK
k=1 �kgk(x,y)

o
. We can then re-express the value function at bx as:

V (bx) = f(bx,y⇤(bx)) +
KX

k=1

�
⇤
k(bx,y⇤(bx))gk(bx,y⇤(bx)), 8y⇤(bx) 2 Y

⇤(bx),�⇤
k(bx,y⇤(bx)) 2 ⇤⇤(bx,y⇤(bx)) .

Equivalently, we can take the maximum over y⇤’s and �⇤’s to obtain:

V (bx) = max
y⇤(bx)2Y ⇤(bx)

max
�⇤
k(bx,y⇤(bx))2⇤⇤(bx,y⇤(bx))

(
f(bx,y) +

KX

k=1

�
⇤
k(bx,y⇤(bx))gk(bx,y)

)
.

Note that for fixed y⇤(bx) 2 Y
⇤(bx) and corresponding fixed �

⇤
k(bx,y⇤(bx)) 2 ⇤⇤(bx,y⇤(bx)),

f(bx,y) +
PK

k=1 �
⇤
k(bx,y⇤(bx))gk(bx,y⇤(bx)) is differentiable, since f, g1, . . . , gK are differentiable.

Additionally, recall the pointwise maximum subdifferential property,11 i.e., if f(x) = max↵2A f↵(x)
for a family of functions {f↵}↵2A, then @xf(a) = conv

�S
↵2A {@xf↵2A(a) | f↵(a) = f(x)}

�
,

which then gives:

@xV (bx) = @x

max

y⇤(bx)2Y ⇤(bx)
max

�⇤
k(bx,y⇤(bx))2⇤⇤(bx,y⇤(bx))

(
f(bx,y⇤(bx)) +

KX

k=1

�
⇤
k(bx,y⇤(bx))gk(bx,y⇤(bx))

)!

(18)

= conv

0

@
[

y⇤(bx)2Y ⇤(bx)

[

�⇤
k(bx,y⇤(bx))2⇤⇤(bx,y⇤(bx))

@x

(
f(bx,y⇤(bx)) +

KX

k=1

�
⇤
k(bx,y⇤(bx))gk(bx,y⇤(bx))

)1

A

(19)

= conv

0

@
[

y⇤(bx)2Y ⇤(bx)

[

�⇤
k(bx,y⇤(bx))2⇤⇤(bx,y⇤(bx))

(
rxf (bx,y⇤(bx)) +

KX

k=1

�
⇤
k(bx,y⇤(bx))rxgk (bx,y⇤(bx))

)1

A .

(20)

E Pseudo-Codes and Convergence Results for Section 3

Lemma E.1 (Lipschitz Objective Function implies Lipschitz Value Function). Let f : X ⇥ Y

be a continuous function, where X ⇢ Rn and Y ⇢ Rm. If rxf is continuous in (x,y),
X,Y are compact and non-empty, and for all k 2 [K], gk is continuous , then V (x) =
maxy2Y :g(x,y)�0 f(x,y) is `f -Lipschitz continuous: i.e., kV (x1)� V (x2)k  `f kx1 � x2k, with
`f = max(bx,by)2X⇥Y krxf(bx, by)k.

Proof of Lemma E.1. Let `f = max(bx,by)2X⇥Y krxf(bx, by)k. Because rxf is continuous, f is
`f -Lipschitz continuous in x: i.e., 8x1,x2 2 X,y 2 Y, kf(x1,y)� f(x2,y)k  `f kx1 � x2k.

Fix x1,x2 2 X . Then, for all y 2 Y , we have:

f(x1,y)  f(x1,y)� f(x2,y) + f(x2,y) (21)
 `f kx1 � x2k+ f(x2,y) . (22)

11See, for example, [9].

17

Algorithm 2 Nested Gradient Descent
Inputs: X,Y, f, g,⌘x

,⌘y
, Tx, Ty,x(0)

,y(0)

Output: x⇤
,y⇤

1: for t = 1, . . . , Tx do
2: y(t�1) = y(0)

3: for s = 1, . . . , Ty do
4: y(t�1) = ⇧{y2Y :g(x(t�1),y)�0}

�
y(t�1) + ⌘

y
s

⇥
ryf(x(t�1)

,y(t�1))
⇤�

5: end for
6: Set �(t�1) = �⇤(x(t�1)

,y(t�1))

7: Set x(t) = ⇧X

⇣
x(t�1)

� ⌘
x
t

h
rxf(x(t�1)

,y(t�1)) +
PK

k=1 �
(t�1)
k rxgk(x(t�1)

,y(t�1))
i⌘

8: end for
9: y(T) = y(0)

10: for s = 1, . . . , Ty do
11: y(T) = ⇧{y2Y :g(x(T),y)�0}

�
y(T) + ⌘

y
sryf(x(T)

,y(T))]
�

12: end for
13: return (x(T)

,y(T))

Taking the max over the y’s on both sides (which is guaranteed to exist by the continuity of f , and of
the gk’s, and the fact that Y is non-empty and compact) yields:

max
y2Y :g(x1,y)�0

f(x1,y)  `f kx1 � x2k+ max
y2Y :g(x2,y)�0

f(x2,y) (23)

V (x1)  `f kx1 � x2k+ V (x2) (24)
V (x1)� V (x2)  `f kx1 � x2k . (25)

Since this inequality holds for arbitrary x1,x2 2 X , we also have:

V (x2)� V (x1)  `f kx1 � x2k . (26)

Combining these two inequalities, it holds that: kV (x1)� V (x2)k  `f kx1 � x2k.

Proof of Theorem 3.3. By our subdifferential envelope theorem (Theorem 3.2), we have:

rxf(x
(t�1)

,y(t�1)) +
KX

k=1

�
(t�1)
k rxgk(x

(t�1)
,y(t�1)) 2 @xV (x(t�1)) (27)

= @x max
y2Y :g(x(t�1),y)�0

f(x(t�1)
,y) .

(28)

For notational clarity, let h(t � 1) = rxf(x(t�1)
,y(t�1)) +

PK
k=1 �

(t�1)
k rxgk(x(t�1)

,y(t�1)).
Suppose that x⇤

2 argminx2X maxy2Y :g(x,y)�0 f(x,y). Then:
���x(T)

� x⇤
���
2

(29)

=
���⇧X

⇣
x(T�1)

� ⌘Th(T � 1)
⌘
�⇧X (x⇤)

���
2

(30)



���x(T�1)
� ⌘Th(T � 1)� x⇤

���
2

(31)

=
���x(T�1)

� x⇤
���
2
� 2⌘T

D
h(T � 1),

⇣
x(T�1)

� x⇤
⌘E

+ ⌘
2
T kh(T � 1)k2 (32)



���x(T�1)
� x⇤

���
2
� 2⌘T

⇣
f(x(T�1)

,y(T�1))� f(x⇤
,y(T�1))

⌘
+ ⌘

2
T kh(T � 1)k2 , (33)

where the first line follows from the subgradient descent rule and the fact that x⇤
2 X; the second,

because the project operator is a non-expansion; the third, by the definition of the norm; and the

18

fourth, by the definition of the subgradient, i.e.,
⌦
h(t� 1),

�
x(t�1)

� x⇤�↵
� f(x(t�1)

,y(t�1))�

f(x⇤
,y(t�1)). Applying this inequality recursively, we obtain:

���x(T)
� x⇤

���
2


���x(0)
� x⇤

���
2
�

TX

t=1

2⌘t

⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘
+

TX

t=1

⌘
2
t kh(k � 1)k2 .

(34)

Since
��x(t)

� x⇤
�� � 0, we have:

2
TX

t=1

⌘t

⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘


���x(0)
� x⇤

���
2
+

TX

t=1

⌘
2
t kh(t� 1)k2 . (35)

Let (x(t)
best,y

(t)
best) 2 argmin(x(k),y(k)):k2[t] f(x

(k)
,y(k)). Then:

TX

t=1

⌘t

⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘
(36)

�

TX

t=1

⌘t

✓
f(x(t�1)

,y(t�1))� max
y2Y :g(x⇤,y)�0

f(x⇤
,y)

◆
(37)

�

TX

t=1

⌘t

!
min
t2[T]

✓
f(x(t�1)

,y(t�1))� max
y2Y :g(x⇤,y)�0

f(x⇤
,y)

◆
(38)

=

TX

t=1

⌘t

!✓
f(x(T)

best,x
(T)
best)� max

y2Y :g(x⇤,y)�0
f(x⇤

,y)

◆
(39)

Hence, we get the following bound:

f(x(T)
best,y

(T)
best)� max

y2Y :g(x⇤,y)�0
f(x⇤

,y) 

��x(0)
� x⇤

��2 +
PT

t=1 ⌘
2
t ||h(t� 1)||2

2
⇣PT

t=1 ⌘t

⌘ (40)

Now since f is `f -Lipschitz with `f = max(bx,by)2X⇥Y krxf(bx, by)k, all the subgradients are
bounded: i.e., for all k 2 N, kh(k � 1)k  `f . So:

f(x(T)
best,x

(T)
best)� max

y2Y :g(x⇤,y)�0
f(x⇤

,y) 

��x(0)
� x⇤

��2 + `
2
f

PT
t=1 ⌘

2
t

2
⇣PT

t=1 ⌘t

⌘ (41)

Equivalently,

f(x(T)
best,x

(T)
best)� min

x2X
max

y2Y :g(x,y)�0
f(x,y) 

��x(0)
� x⇤

��2 + `
2
f

PT
t=1 ⌘

2
t

2
⇣PT

t=1 ⌘t

⌘ (42)

Recall the assumptions that the step sizes are square-summable but not summable, namely
PT

k=1 ⌘
2
k 

1 and
PT

k=1 ⌘k = 1. Now as T ! 1, Equation (42) becomes:

lim
k!1

f(x(k)
best,y

(k))  min
x2X

max
y2Y :g(x,y)�0

f(x,y) . (43)

We have thus proven the first inequality of the two that define an (0, �)-Stackelberg equilibrium.

The second inequality follows by construction, as for all k 2 N, the max oracle returns y(k)
best that

satisfies f(x(k)
best,y

(k)
best) � maxy2Y :g(x,y)�0 f(x

(k)
best,y) � �. Thus, as k ! 1, the best iterate

converges to a (0, �)-Stackelberg equilibrium.

19

Additionally, setting ⌘t =
kx

(0)�x⇤
k

`f
p
T

, we find that for all t 2 [T],

f(x(T)
best,x

(T)
best)� min

x2X
max

y2Y :g(x,y)�0
f(x,y) 

`f

��x(0)
� x⇤

��2
p
T

(44)

Likewise, setting " 
`fkx

(0)�x⇤
k

2

p
T

, we obtain T 
`2fkx

(0)�x⇤
k
4

"2 , and thus NT (") 2 O("�2).

Finally, applying the same logic as above to infer the second inequality in the Stackelberg equilibrium
definition, the best iterate converges to a (", �)-Stackelberg equilibrium in O("�2) iterations.

Theorem E.2. Suppose Algorithm 1 is run on a convex-concave min-max Stackelberg game given by
(X,Y, f, g) where X is convex. Suppose further that Assumption 3.1 holds, and that f is µ-strongly
convex in x, i.e., 8x1,x2 2 X,y 2 Y ,

f(x1,y) � f(x2,y) + hh, (x1 � x2)i+
µ

2
kx1 � x2k

2
, (45)

where h 2 @xf(x2,y). Then, if (x(t)
best,y

(t)
best) 2 argmin(x(k),y(k)):k2[t] f(x

(k)
,y(k)), for " 2

(0, 1), and ⌘t =
2

µ(t+1) , if we choose T � NT (") 2 O("�1), then there exists an iteration T
⇤
 T

s.t. (x(T⇤)
best ,y

(T⇤)
best) is an (", �)-Stackelberg equilibrium.

Proof of Theorem E.2. By our subdifferential envelope theorem (Theorem 3.2), we have:

rxf(x
(t�1)

,y(t�1)) +
KX

k=1

�
(t�1)
k rxgk(x

(t�1)
,y(t�1)) 2 @xV (x(t�1)) (46)

= @x max
y2Y :g(x(t�1),y)�0

f(x(t�1)
,y) .

(47)

For notational clarity, let h(t � 1) = rxf(x(t�1)
,y(t�1)) +

PK
k=1 �

(t�1)
k rxgk(x(t�1)

,y(t�1)).
Suppose that x⇤

2 argminx2X maxy2Y :g(x,y) f(x,y). Then, for all t 2 N s.t. t � 1, we have:
���x(t)

� x⇤
���
2

(48)

=
���⇧X

⇣
x(t�1)

� ⌘th(t� 1)
⌘
�⇧X (x⇤)

���
2

(49)



���x(t�1)
� ⌘th(t� 1)� x⇤

���
2

(50)

=
���x(t�1)

� x⇤
���
2
� 2⌘t

D
h(t� 1),

⇣
x(t�1)

� x⇤
⌘E

+ ⌘
2
t kh(t� 1)k2 (51)



���x(t�1)
� x⇤

���
2
� 2⌘t


µ

2

���x(t�1)
� x⇤

���
2
+ f(x(t�1)

,y(t))� f(x⇤
,y(t))

�
+ ⌘

2
t kh(t� 1)k2

(52)

=
���x(t�1)

� x⇤
���
2
� ⌘tµ

���x(t�1)
� x⇤

���
2
� 2⌘t

⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘
+ ⌘

2
t kh(t� 1)k2

(53)

= (1� ⌘tµ)
���x(t�1)

� x⇤
���
2
� 2⌘t

⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘
+ ⌘

2
t kh(t� 1)k2

(54)

where the first line follows from the subgradient descent rule and the fact that x⇤
2 X; the second,

because the project operator is a non-expansion; the third, by the definition of the norm; the fourth,
by the definition of strong convexity; and the last two via straightforward algebra.

Re-organizing Equation (54), yields:

f(x(t�1)
,y(t�1))� f(x⇤

,y(t�1)) (55)


1� ⌘tµ

2⌘t

���x(t�1)
� x⇤

���
2
�

1

2⌘t

���x(t)
� x⇤

���
2
+

⌘t

2
kh(t� 1)k2 . (56)

20

Next, setting ⌘t =
2

µ(t+1) , we get:

f(x(t�1)
,y(t�1))� f(x⇤

,y(t�1)) (57)


µ(t� 1)

4

���x(t�1)
� x⇤

���
2
�

µ(t+ 1)

4

���x(t)
� x⇤

���
2
+

1

µ(t+ 1)
kh(t� 1)k2 . (58)

Multiplying both sides by t, we now have:

t

⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘
(59)


µt(t� 1)

4

���x(t�1)
� x⇤

���
2
�

µt(t+ 1)

4

���x(t)
� x⇤

���
2
+

1

µ
kh(t� 1)k2 . (60)

Summing up across all iterations on both sides:
TX

t=0

t

⇣
f(x(t)

,y(t))� f(x⇤
,y(t))

⌘
(61)



TX

t=0

µt(t� 1)

4

���x(t�1)
� x⇤

���
2
�

TX

t=0

µt(t+ 1)

4

���x(t)
� x⇤

���
2
+

TX

t=0

1

µ
kh(t� 1)k2 (62)

=
TX

t=0

µt(t� 1)

4

���x(t�1)
� x⇤

���
2
�

T+1X

t=1

µ(t� 1)t

4

���x(t�1)
� x⇤

���
2
+

TX

t=0

1

µ
kh(t� 1)k2 (63)

= �
µT (T + 1)

4

���x(t)
� x⇤

���
2
+

TX

t=0

1

µ
kh(t� 1)k2 (64)



TX

t=0

1

µ
kh(t� 1)k2 (65)


T

µ
`f , (66)

where the last line holds because f is `f -Lipschitz with `f = max(bx,by)2X⇥Y krxf(bx, by)k, which
implies that all the subgradients are bounded: i.e., for all k 2 N, kh(k � 1)k  `f .

Let (x(t)
best,y

(t)
best) 2 argmin(x(k),y(k)):k2[t] f(x

(k)
,y(k)). Then:

TX

t=0

t

⇣
f(x(t)

,y(t))� f(x⇤
,y(t))

⌘


T

µ
`f (67)

TX

t=0

t

✓
f(x(t)

,y(t))� max
y2Y :g(x⇤,y)�0

f(x⇤
,y)

◆


T

µ
`f (68)

TX

t=0

t

!
min
t2[T]

✓
f(x(t)

,y(t))� max
y2Y :g(x⇤,y)�0

f(x⇤
,y)

◆


T

µ
`f (69)

TX

t=0

t

!✓
f(x(T)

best,y
(T)
best)� max

y2Y :g(x⇤,y)�0
f(x⇤

,y)

◆


T

µ
`f (70)

(71)
✓
(T + 1)T

2

◆✓
f(x(T)

best,y
(T)
best)� max

y2Y :g(x⇤,y)�0
f(x⇤

,y)

◆


T

µ
`f (72)

f(x(T)
best,y

(T)
best)� max

y2Y :g(x⇤,y)�0
f(x⇤

,y) 
2`f

µ(T + 1)
. (73)

That is, as the number of iterations increases, the best iterate converges to a (0, �)-Stackelberg
equilibrium. Likewise, by the same logic we applied at the end of the proof as Theorem 3.3, the best
iterate converges to a (", �)-Stackelberg equilibrium in O("�1) iterations.

21

We now present a theorem which covers one of the cases given in Theorem 3.4. The proofs of the
theorems that cover the other cases are similar to the proof below. We note that gradient ascent
converges in O("�1) iterations to a "-maximum for a Lipschitz-smooth objective, and in O(log("))
iterations to a "-maximum for a Lipschitz-smooth and strongly-concave objective function [8].

Theorem E.3. Suppose Algorithm 2 is run on a convex-concave min-max Stackelberg game given by
(X,Y, f, g), where X and Y are convex. Suppose further that Assumption 3.1 holds and that f is
`rf -smooth, i.e., 8(x1,y1), (x2,y2) 2 X ⇥ Y ,

krf(x1,y1)�rf(x2,y2)k  `rf k(x1,y1)� (x2,y2)k . (74)

Let (x(t)
best,y

(t)
best) 2 argmin(x(k),y(k)):k2[t] f(x

(k)
,y(k)). For " 2 (0, 1), if we choose Tx and

Ty s.t. Tx � NTx(") 2 O("�2) and Tx � NTy (") 2 O("�1), then there exists an iteration
T

⇤
 TxTy = O("�3) s.t. (x(T⇤)

best ,y
(T⇤)
best) is an (", ")-Stackelberg equilibrium.

Proof of Theorem 3.3. Since f is `f -smooth, it is well known that, for each outer iterate x(t), the inner
gradient descent procedure returns an "-maximum y⇤

✏ of f(x(t)
,y) s.t. y⇤

✏ 2 Y and g(x(t)
,y⇤

✏) � 0,
in O("�2) iterations [8]. Combining the iteration complexity of the outer and inner loops using this
result and Theorem 3.3, we obtain an iteration complexity of O("�2)O("�1) = O("�3).

F An Economic Application: Details

Our experimental goals were two-fold. First, we sought to understand the empirical convergence
rate of our algorithms in different Fisher markets, in which the objective function in Equation (3)
satisfies different smoothness properties. Second, we wanted to understand how the behavior of
our two algorithms, max-oracle and nested gradient descent, differ in terms of the accuracy of the
Stackelberg equilibria they find.

To answer these questions, we ran multiple experiments, each time recording the prices and allocations
computed by Algorithm 1, with an exact max-oracle, and by Algorithm 2, with nested gradient ascent,
during each iteration t of the main (outer) loop. For each run of each algorithm on each market with
each set of initial conditions, we then computed the objective function’s value for the iterates, i.e.,
f(x(t)

,y(t)), which we plot in Figure 1.

Hyperparameters We randomly initialized 500 different linear, Cobb-Douglas, Leontief Fisher
markets, each with 5 buyers and 8 goods. Buyer i’s budget bi was drawn randomly from a uniform
distribution ranging from 100 to 1000 (i.e., U [100, 1000]), while each buyer i’s valuation for good j,
vij , was drawn randomly from U [5, 15]. We ran both algorithms for 500, 300, and 700 iterations12

for linear, Cobb-Douglas, and Leontief Fisher markets, respectively. We started both algorithms from
two sets of initial conditions, one with high prices (drawn randomly U [50, 55]), and a second, with
low prices (drawn randomly from U [5, 15]). We opted for a learning rate of 5 for both algorithms,
after manual hyper-parameter tuning, and picked a decay rate of t�1/2, based on our theory, so that
⌘1 = 5, ⌘2 = 3.54, ⌘3 = 2.89, ⌘4 = 2.5, ⌘5 = 2.24,

Programming Languages, Packages, and Licensing We ran our experiments in Python 3.7 [77],
using NumPy [34], Pandas [73], and CVXPY [21]. Figure 1 was graphed using Matplotlib [37]. To
run the first order James test, we imported the data generated by our Python code into R [63]. Our R
script manipulated the data using the Tidyverse package [81], and obtained the desired p-values using
the STests package [36].

R as a package is licensed under GPL-2 | GPL-3. Python software and documentation are licensed
under the PSF License Agreement. Numpy is distributed under a liberal BSD license. Pandas is
distributed under a new BSD license. Matplotlib only uses BSD compatible code, and its license is
based on the PSF license. CVXPY is licensed under an APACHE license. Tidyverse is distributed
under an MIT license.

12In Algorithm 3, T 2 {500, 300, 700}, while in Algorithm 4, Tp 2 {500, 300, 700}.

22

Implementation Details In our execution of Algorithm 1 for linear, Cobb-Douglas, and Leontief
Fisher markets, we used an exact Max-Oracle, since there is a closed-form solution for the demand
correspondence in these markets [49].

In our execution of Algorithm 2, in order to project each computed allocation onto the consumers’
budget set, i.e., {X 2 Rn⇥m

+ | Xp  b}, we used the alternating projection algorithm [8] for convex
sets, and alternatively projected onto the sets Rn⇥m

+ and {X 2 Rn⇥m
| Xp  b}.

Computational Resources Our experiments were run on MacOS machine with 8GB RAM and an
Apple M1 chip, and took about 2 hours to run. Only CPU resources were used.

Code Repository The data our experiments generated, as well as the code used to produce our
visualizations and run the statistical tests, can be found in our code repository.

F.1 Fisher Market Algorithms

Algorithm 3 �-Approximate Tâtonnement for Fisher Markets
Inputs: U, b,⌘ , T,p(0)

, �

Output: (X⇤
,p⇤)

1: for t = 1, . . . , T do
2: For all i 2 [n], find x(t)

i s.t. ui(x
(t)
i) � maxxi:xi·p(t�1)bi ui(xi)� � & x(t)

i · p(t�1)
 bi

3: Set p(t) = max
n
p(t�1)

� ⌘t(1�
P

i2[n] x
(t)
i), 0

o

4: end for
5: return (X(T)

,p(T))

Algorithm 4 �-Approximate Nested Tâtonnement for Fisher Markets
Inputs: U, b,⌘p

,⌘X
Tp, TX ,p(0)

Output: (X⇤
,p⇤)

1: for t = 1, . . . , Tp do
2: for s = 1, . . . , TX do

3: For all i 2 [n], x(t)
i = ⇧

{x:x·p(t�1)bi}

✓
x(t)
i + ⌘

X
s

bi
ui(x

(t)
i)

rxiui(x
(t)
i)

◆

4: end for
5: Set p(t) = max

n
p(t�1)

� ⌘
p
t (1�

P
i2[n] x

(t)
i), 0

o

6: end for
7: return (X(T)

,p(T))

G Additional Related Work

Much progress has been made recently in solving min-max games (with independent strategy sets),
both in the convex-concave case and in non-convex-concave case. For the former case, when f is µx-
strongly-convex in x and µy-strongly-concave in y, Tseng [76], Yurii Nesterov [83], and Gidel et al.
[30] proposed variational inequality methods, and Mokhtari, Ozdaglar, and Pattathil [51], gradient-
descent-ascent (GDA)-based methods, all of which compute a solution in Õ(µy + µx) iterations.
These upper bounds were recently complemented by the lower bound of ⌦̃(pµyµx), shown by
Ibrahim et al. [38] and Zhang, Hong, and Zhang [84]. Subsequently, Lin, Jin, and Jordan [46] and
Alkousa et al. [3] analyzed algorithms that converge in Õ(

p
µyµx) and Õ(min

�
µx

p
µy, µy

p
µx

)

iterations, respectively.

For the special case where f is µx-strongly convex in x and linear in y, Juditsky, Nemirovski, et al.
[42], Hamedani and Aybat [33], and Zhao [86] all present methods that converge to an "-approximate
solution in O(

p
µx/") iterations. When the strong concavity or linearity assumptions of f on y are

dropped, and f is assumed to be µx-strongly-convex in x but only concave in y, Thekumparampil

23

https://github.com/denizalp/min-max-fisher.git

et al. [74] provide an algorithm that converges to an "-approximate solution in Õ(µx/") iterations, and
Ouyang and Xu [60] provide a lower bound of ⌦̃

⇣p
µx/"

⌘
iterations on this same computation. Lin,

Jin, and Jordan then went on to develop a faster algorithm, with iteration complexity of Õ
⇣p

µx/"

⌘
,

under the same conditions.

When f is simply assumed to be convex-concave, Nemirovski [53], Nesterov [54], and Tseng [75]
describe algorithms that solve for an "-approximate solution with Õ

�
"
�1
�

iteration complexity, and
Ouyang and Xu [60] prove a corresponding lower bound of ⌦("�1).

When f is assumed to be non-convex-µy-strongly-concave, and the goal is to compute a first-order
Nash, Sanjabi et al. [67] provide an algorithm that converges to "-an approximate solution in O("�2)
iterations. Jin, Netrapalli, and Jordan [41], Rafique et al. [64], Lin, Jin, and Jordan [45], and Lu,
Tsaknakis, and Hong [47] provide algorithms that converge in Õ

�
µ
2
y"

�2
�

iterations, while Lin, Jin,
and Jordan [46] provide an even faster algorithm, with an iteration complexity of Õ

�p
µy"

�2
�
.

When f is non-convex-non-concave and the goal to compute is an approximate first-order Nash
equilibrium, Lu, Tsaknakis, and Hong [47] provide an algorithm with iteration complexity Õ("�4),
while Nouiehed et al. [58] provide an algorithm with iteration complexity Õ("�3.5). More recently,
Ostrovskii, Lowy, and Razaviyayn [59] and Lin, Jin, and Jordan [46] proposed an algorithm with
iteration complexity Õ

�
"
�2.5

�
.

When f is non-convex-non-concave and the desired solution concept is a “local” Stackelberg equi-
librium, Jin, Netrapalli, and Jordan [41], Rafique et al. [64], and Lin, Jin, and Jordan [45] provide
algorithms with a Õ

�
"
�6
�

complexity. More recently, Thekumparampil et al. [74], Zhao [85], and
Lin, Jin, and Jordan [46] have proposed algorithms that converge to an "-approximate solution in
Õ
�
"
�3
�

iterations.

We summarize the literature pertaining to the convex-concave and the non-convex-concave settings
in Tables 3 and 4, respectively.

24

Table 3: Iteration complexities for min-max games (with independent strategy sets) in convex-concave
settings. Note that these results assume that the objective function is Lipschitz-smooth.

Setting Reference Iteration Complexity

µx-Strongly-Convex-µy-Strongly-Concave

[76]

Õ (µx + µy)
[83]

[30]

[51]

[3] Õ
�
min

�
µx

p
µy, µy

p
µx

 �

[46] Õ(
p
µxµy)

[38] ⌦̃(
p
µxµy)

[84]

µx-Strongly-Convex-Linear
[42]

O

⇣p
µx/"

⌘
[33]

[86]

µx-Strongly-Convex-Concave
[74] Õ (µx/

p
")

[46] Õ(
p

µx/")

[60] ⌦̃
⇣p

µx/"

⌘

Convex-Concave

[53]
O
�
"
�1
�

[54]

[75]

[46] Õ
�
"
�1
�

[60] ⌦("�1)

25

Table 4: Iteration complexities for min-max games (with independent strategy sets) in non-convex-
concave settings. Note that although all these results assume that the objective function is Lipschitz-
smooth, some authors make additional assumptions: e.g., [58] obtain their result for objective
functions that satisfy the Lojasiwicz condition.

Setting Reference Iteration Complexity

Nonconvex-µy-Strongly-Concave,
First Order Nash Equilibrium

or Local Stackelberg Equilibrium

[41]

Õ(µ2
y"

�2)
[64]

[45]

[47]

[46] Õ
�p

µy"
�2
�

Nonconvex-Concave,
First Order Nash Equilibrium

[47] Õ
�
"
�4
�

[58] Õ
�
"
�3.5

�

[59]
Õ
�
"
�2.5

�
[46]

Nonconvex-Concave,
Local Stackelberg Equilibrium

[41]

Õ("�6)[58]

[46]

[74]

Õ("�3)[85]

[46]

H Future Directions

Our experiments suggest that the smoothness properties of the value function determine the con-
vergence speed to a Stackelberg equilibrium. Additionally, our experiments with Leontief Fisher
markets suggest that our convergence results could perhaps be generalized to convex-concave objec-
tive functions which are not necessarily continuously differentiable; such a result would require a
generalization of the subdifferential envelope theorem we have introduced.

Another worthwhile direction would be to try to derive stronger conditions under which the value
function V is Lipschitz-smooth; under stronger assumptions we might be able to achieve faster
convergence results. In order for V to be differentiable, the subdifferential given by Theorem 3.2
would have to be a singleton, for all x 2 X . This would require not only that the solution function
Y

⇤(x) be a singleton for all x 2 X , but that the optimal KKT multipliers ⇤(bx,y⇤(bx))) were also
unique. The former can be guaranteed when f is strictly concave in y, while the latter condition
is satisfied when the Linear Independence Constraint Qualification condition [35] holds. However,
even when both these conditions hold, and when both the objective function and the (parameterized)
constraints (i.e., g(x,y)) are Lipschitz-smooth, the value function is not guaranteed to be Lipschitz-
smooth.

Gao and Kroer [29] have proposed first-order methods for the efficient computation of competitive
equilibria in large Fisher markets. It would be worth exploring whether our view of competitive
equilibria in Fisher markets as min-max Stackelberg games can facilitate the extension of their fast
convergence results to a larger class of Fisher markets.

A question of interest both for Fisher market dynamics and convex-concave min-max Stackelberg
games is whether gradient-descent-ascent (GDA) converges in the dependent strategy set setting as
it does in the independent strategy setting [45]. GDA dynamics for Fisher markets correspond to
myopic best-response dynamics, which are of general economic interest (see, for example, [52]).

26

Finally, our results at present concern only convex-concave min-max Stackelberg games. It would be
of interest to extend these results to the non-convex-concave setting. Doing so could improve our
understanding of competitive equilibria in Fisher markets with non-homogeneous utility functions,
and our understanding of optimal auctions. Recently, Dai and Zhang [16] defined the concept of a
local minimax point, whose analog in Stackelberg games would be a local Stackelberg equilibria. We
believe that any algorithm designed for a non-convex-concave setting would have to aim for a local
solution concept, as it is unlikely that (global) Stackelberg equilibria are computable in polynomial
time in non-convex-concave settings, as non-convex optimization is hard.

Broader Impact

Our work can be used to expand the scope of many machine learning techniques as discussed in
our introduction. For example, min-max optimization has been key to the development of fairer
classifiers in recent years. On the other hand, our methods could also be used to train GANs, which
have been used to create deepfakes with malicious goals. Our work can also be used to improve
economic outcomes for companies running online marketplaces, as Fisher markets have been applied
to resource allocation problems—specifically, fair division problems—in recent years. Moreover,
with sufficient oversight, progress can be easily monitored, by following the trend of the the objective
function across iterations, so that inappropriate use can be detected.

27

	Introduction
	Preliminaries
	First-Order Methods via an Envelope Theorem
	An Economic Application: Fisher Markets
	Conclusion
	Pseudo-Games and Generalized Nash Equilibria
	Omitted Proofs sec:prelim
	Envelope Theorem
	Omitted Subdifferential Envelope Theorem Proof (sec:envelope)
	Pseudo-Codes and Convergence Results for sec:envelope
	An Economic Application: Details
	Fisher Market Algorithms

	Additional Related Work
	Future Directions

