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Abstract

Despite the proliferation of generative models, achieving fast sampling during
inference without compromising sample diversity and quality remains challenging.
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver
high-quality, diverse samples but are slowed by an inherently high number of itera-
tive steps. The Denoising Diffusion Generative Adversarial Networks (DDGAN)
attempted to circumvent this limitation by integrating a GAN model for larger
jumps in the diffusion process. However, DDGAN encountered scalability limita-
tions when applied to large datasets. To address these limitations, we introduce a
novel approach that tackles the problem by matching implicit and explicit factors.
More specifically, our approach involves utilizing an implicit model to match the
marginal distributions of noisy data and the explicit conditional distribution of
the forward diffusion. This combination allows us to effectively match the joint
denoising distributions. Unlike DDPM but similar to DDGAN, we do not enforce
a parametric distribution for the reverse step, enabling us to take large steps during
inference. Similar to the DDPM but unlike DDGAN, we take advantage of the
exact form of the diffusion process. We demonstrate that our proposed method
obtains comparable generative performance to diffusion-based models and vastly
superior results to models with a small number of sampling steps. The code is
available at https://github.com/xuyanwu/SIDDMs, |

1 Introduction

Generative models have achieved significant success in various domains such as image generation,
video synthesis, audio generation, and point cloud generation [1} 2, 3} 4} |5/ 16, [7]]. Different types
of generative models have been developed to tackle specific challenges. Variational autoencoders
(VAEs) [8] provide a variational lower bound for training models with explicit objectives. Generative
adversarial networks (GANSs) [9] introduce a min-max game framework to implicitly model data
distribution and enable one-step generation. Denoising diffusion probabilistic models (DDPMs)
[LOL [1]], also known as score-based generative models, recover the original data distribution through
iterative denoising from an initial random Gaussian noise vector. However, these models face a
common challenge known as the “TRILEMMA” [[L1]], which involves ensuring high-quality sampling,
mode coverage, and fast sampling speed simultaneously. Existing approaches, such as GANs, VAEs,
and DDPMs struggle to address all three aspects simultaneously. This paper focuses on tackling this
TRILEMMA and developing models capable of effectively modelling large-scale data generation.
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While diffusion models excel in generating high-quality samples compared to VAEs and demonstrate
better training convergence than GAN:S, they typically require thousands of iterative steps to obtain
the highest-quality results. These long sampling steps are based on the assumption that the reversed
diffusion distribution can be approximated by Gaussian distributions when the noise addition in
the forward diffusion process is small. However, if the noise addition is significant, the reversed
diffusion distribution becomes a non-Gaussian multimodal distribution [11]. Consequently, reducing
the number of sampling steps for faster generation would violate this assumption and introduce bias
in the generated samples.

To address this issue, DDGANSs [[L1] use a reformulation of forward diffusion sampling and model
the undefined denoising distribution using a conditional GAN. This approach enables faster sampling
without compromising the quality of the generated samples. Additionally, DDGANs exhibit improved
convergence and stability during training compared to pure GANs. However, DDGAN:Ss still face
limitations in generating diverse large-scale datasets like ImageNet. We propose a hypothesis that the
effectiveness of implicit adversarial learning in capturing the joint distribution of variables at adjacent
steps is limited. This limitation arises from the fact that the discriminator needs to operate on the
high-dimensional concatenation of adjacent variables, which can be challenging.

In order to achieve fast sampling speed and the ability to generate large-scale datasets, we introduce a
novel approach called Semi-Implicit Denoising Diffusion Model (SIDDM). Our model reformulates
the denoising distribution of diffusion models and incorporate implicit and explicit training objectives.
Specifically, we decompose the denoising distribution into two components: a marginal distribution
of noisily sampled data and a conditional forward diffusion distribution. Together, these components
jointly formulate the denoising distribution at each diffusion step. Our proposed SIDDMs employ an
implicit GAN objective and an explicit L2 reconstruction loss as the final training objectives. The
implicit GAN objective is applied to the marginal distribution, while the explicit L2 reconstruction
loss is adopted for the conditional distribution, where we name the process of matching conditional
distributions as auxiliary forward diffusion AF'D in our obejctives. This combination ensures superior
training convergence without introducing additional computational overhead compared to DDGANS.
To further enhance the generative quality of our models, we incorporate an Unet-like structure for the
discriminator. Additionally, we introduce a new regularization technique that involves an auxiliary
denoising task. This regularization method effectively stabilizes the training of the discriminator
without incurring any additional computational burden.

In summary, our method offers several key contributions. Firstly, we introduce a novel formulation
of the denoising distribution for diffusion models. This formulation incorporates an implicit and an
explicit training objectives, enabling fast sampling while maintaining high-generation quality. Lastly,
we propose a new regularization method specifically targeting the discriminator. This regularization
technique enhances the overall performance of the model, further improving its generative capabilities.
Overall, our approach presents a comprehensive solution that addresses the challenges of fast sampling,
high generation quality, scalability to large-scale datasets, and improved model performance through
proper regularization.

2 Background

Diffusion models contain two processes: a forward diffusion process and the reversion process. The
forward diffusion gradually generates corrupted data from xg ~ ¢(z) via interpolating between the
sampled data and the Gaussian noise as follows:
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where T' denotes the maximum time steps and 3, € (0, 1] is the variance schedule. The parameterized
reversed diffusion can be formulated correspondingly:
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where we can parameterize pg(z¢—1|z;) as Gaussian distribution when the noise addition between
each adjacent step is sufficiently small. The denoised function py produces the mean value of the
adjacent predictions, while the determination of the variance o; relies on ;. The optimization
objective can be written as follows:

L=— ZEq(IO)DKL(q(It—ﬂxtv x0)||po(zi—1|2t)), 3)
>0

which indirectly maximizes the ELBO of the likelihood py(z¢). When g is given, the posterior
q(zi—1]2¢, x0) is Gaussian. Thus, the above objective becomes L distance between the sampled
x,—1 from the posterior and the predicted denoised data. Howeyver, if we want to achieve fast sampling
with a small number of steps, The assumption that pg(z;—_1|x¢) follows Gaussian does not hold [11]],
and the Lo reconstruction cannot be applied to model the K L divergence.

To tackle this, DDGANs employ an adversarial learning scheme to match the conditional distribution
between q(x;—1|z¢) and pg(x+—1|x:) via a conditional GAN and enable random large noise addition
between adjacent diffusion steps for few-steps denoising. Their formulation can be summarized as
follows:
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where D4, tries to distinguish the difference between the predicted and sampled denoising distribu-
tion, while the predicted model tries to make them less distinguishable. The objective above can be
rewritten as the following expectation:
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While this formulation allows more flexible modeling of pg(2;—1|x¢), the pure implicit adversarial
learning on the concatenation of z;_; and x; is statistically inefficient, especially when z; is high-
dimensional. We hypothesize that this is a major reason why DDGANs cannot scale up well on the
large-scale dataset with more complex data distributions. In contrast, we will explore the inherent
structure in the forward difussion process to develop a more efficient semi-implicit method, which is
detailed in the following section.

3 Semi-Implicit Denoising Diffusion Models

This section will present our proposed semi-implicit denoising diffusion models (SIDDMs). We first
discuss how we reformulate the denoising distribution, which enables fast sampling as DDGANs
and high-quality generation as DDPMs. Then, we will introduce how we optimize our model in the
training time. At last, we introduce a free discriminator regularizer to boost the model performance
further. We show the simplified model structure in Figure|[T]

3.1 Revisiting Denoising Distribution and the Improved Decomposition
Let us reconsider the training objective presented in Equation[5] which can be reformulated as follows:
meinDadv(Q(xtflvxt)Hpe(xtflwt)Q(xt))v (6)

where DDGANs’ formulation indirectly matches the conditional distribution of ¢(x;—1|z;) and
po(x¢—1|x:) via matching the joint distribution between q(x¢—1, x¢) and pg(x¢—1|z¢)q(x:). To keep
it concise, we use pg(x¢—1,x¢) to represent pg(x:—1|x:)q(x+) afterwards.

Starting from this, we can factorize the two joint distributions in the reverse direction and get
q(xi—1,2¢) = q(xe|ri—1)q(xs—1) and pg(rs—1,2+) = po(xt|xs—1)pe(z¢—1). The conditional distri-
butions are forward diffusion; we name them auxiliary forward diffusion (AFD) in our distribution
matching objectives. In this decomposition, we have a pair of marginal distributions of denoised
data q(x¢—1), pg(x¢—1) and a pair of conditional distribution q(z¢|z:—1), pe(z¢|zi—1). Because the
marginal distributions do not have explicit forms, we can match them implicitly by minimizing
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Figure 1: In this figure, we show three different diffusion models, which are DDPMs, DDGANs
and our SIDDMs. These models share some common structures and diffusion processes. Our
model shows an improved decomposition of the denoising distribution with the adversarial marginal
matching and the auxiliary forward diffusion (AFD) for conditional matching.

the Jensen—Shannon divergence (J.S D) via adversarial learning. For the conditional distribution
of forward diffusion, since g(x|z;—1) has an explicit form of Gaussian, we can match them via
K L. The following theorem states that matching these two pairs of distributions separately can
approximately match the joint distribution.

Theorem 1 Let q(x1—1,x:) and pg(x:—1,x+) denote the data distribution from forward diffusion
and the denoising distribution specified by the denoiser Gy, respectively, and we have the following
inequality:

ISD(q(w4—1, %), po(T—1,24)) < 2¢11/2JSD(q(x1-1), po(2i—1))
+ 2¢07/2D g1, (po (e|ze—1)|| (| w0 —1)),

where ¢; and c; are upper bounds of % [ |q(2¢|zi—1)|p(zi—1,2¢) and £ [ |p(zi—1)|p(zi—1) (nisa
o-finite measure), respectively. A proof of Theorem [I]is provided in Section II of the Supplementary.

3.2 Semi-Implicit Objective
Based on the above analysis, we formulate our SIDDMs distribution matching objectives as follows:
min Daav(q(zi—1)||pe(wi-1)) + AarpDrr(pe(e|ze—1)|lq(ze|26-1)), (7

where the A 4 p is the weight for the matching of AFD. In Equation |/} the adversarial part D, g4, is
the standard GAN objective. To match the distributions of AFD via KL, we can expand it as:

D1 (po(xe|ze—1)||q(e|2e-1)) = /pe(fvt,l’t—l)logpe(xt|xt—1) - /Pe(l’t,l’t—l)logQ($t|93t—1)
= —H(po(w¢|wi—1)) + H(po(w¢|xi—1), q(ze|ze-1)), ®)

which is the combination of the negative entropy of py(x+|x:—1) and the cross entropy between
po(x¢|zi—1) and g(a¢|z—1). In our scenario, optimizing the cross-entropy term is straightforward
because we can easily represent the cross-entropy between the empirical and Gaussian distributions us-
ing mean square error. This is possible because the forward diffusion, denoted as g(z|x—1 ), follows
a Gaussian distribution. However, the negative entropy term — H (pg(z¢|z:—1)) is intractable. How-
ever, pg(x¢|x:—1) can be estimated on samples from the denoiser G that models pg(z¢—1|z;). Thus
we need another parametric distribution py, (z¢|24—1) to approximately compute —H (pg(z¢|x¢—1)).



In the following formulation, we show the maximizing of the conditional entropy can be approximated
by the following adversarial training objective:

ngin mQ?X]Epe(%ztfl) log py (x¢]|zi—1). ©)

Given 6° at the i-th iteration, the max step estimates the conditional distribution pg: (z¢|x;_1) and we
have pyi (x¢|z;—1) = pgi (x¢|2,—1). Then, in the next iteration, the min step updates the parameter ¢
in the generator given v and obtain the updated §**1. Thus, this iterative min-max game between
the generator py and the conditional estimator p,, can minimize this negative conditional entropy
—H (pg(z¢|z+—1)) that we mentioned in the Dy, decomposition of Equation [8} This adversarial
process can perform as long as we can access the likelihood to p,, (z¢|x¢—1). In our case, it is forward
diffusion and follows the Gaussian distribution.

Similar to DDGANS, we also define pg(x:—1|x:) := q(xs—1|zt, 20 = Go(x4,t)) via the posterior
distribution. In the distribution matching objective above, we apply the GANs to minimize the J.SD
of marginal distributions and the L, reconstruction to optimize the cross entropy. We also define
x}_, as the data sampled from the newly defined distribution, and z} are sampled from z;_; via
forward diffusion. Our final training objective can be formulated as follows:

min max »  Boiag)g(a,i fzo)g(wle—1) {[IOg(D¢(mt717t))] + [log(1 — Dy(x4_1,1))]
6 Dy,Cy £
2 2
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where C, denotes the regression model that learns to minimize this negative conditional entropy. In
the implementation, we share the most layers between the discriminator and the regression model.
We put the detailed derivation of the following training objective in Section I of the supplementary.

+AaFD

Compared with DDGANSs, our model abandons the purely adversarial training objective and de-
composes it into a marginal and one conditional distribution, where the conditional distribution
can be optimised with a less complex training objective and leads to stable training for updating
the denoising model. Secondly, our model can share the same model structure as DDPMs and be
improved based on the advanced DDPMs network structure. Thirdly, our decomposition does not
bring any overhead compared to DDGANS and can achieve steady performance improvement.

3.3 Regularizer of Discriminator

The UnetGANS [12] proposes adopting an Unet structure for the discriminator, demonstrating more
details in the generated samples. Unlike the common design of discriminators, which only output a
global binary logit of "True/Fake", an Unet-like discriminator can distinguish details from different
levels. The denoising process in the diffusion models can also benefit from pixel-level distribution
matching. Thus, our paper shares the same network structure between the denoiser Gy and the
discriminator Dy. Inspired by our decomposition formulation, the reconstruction term provides
better gradient estimation and boosts the model performance. We also apply the same strategy
to the discriminator as a stand-alone contribution. That is, getting the denoising output from the
discriminator and reconstructing it with the ground truth xy. We formulate the regularizer as follows:

r%inEq(m)q(wFI‘IO)LQ(D¢(xt_1,t),xo), (11)
[

where this regularization only applies to the sampled data ¢(z;). Different from the commonly used
spectral norm [13]], Wasserstein GANs [[14] and R1 regularization [15]], our regularization does not
bring any side effect, such as restriction to model capacity, requiring additional overhead or grid
search of the hyper-parameters on each dataset. Our regularizer can be easily plugged into our model
and DDGANSs and does not require extra network design, which is specifically designed for boosting
diffusion models with GANS.

4 Related Works

The pioneer works [L10, [1]] of the diffusion models introduce the discrete time-step diffusion models
and the parameterized reversal process for generating novel data. Later, the score-based perspec-
tive [16] proposes the continuous-time diffusion models and unifies the denoising diffusion model



and the denoising score matching models [[17,[18]]. The adversarial score matching [19]] utilizes the
extra adversarial loss to improve the unimodal Gaussian distribution matching, which differs from the
goal of DDGANSs and ours. Another branch of works introduces some inductive biases for improving
the diffusion models further, the ADM, UDM and EDM [2, 20, 21]] propose the classifier guidance,
unbounded score matching and better sampling strategy for diffusion-based models respectively.

Although diffusion-based models achieve better quality and diversity, it still suffers from the sampling
speed, which usually takes thousands of steps to achieve the best quality. Several methods also boost
the sampling speed via knowledge distillation [22, 23], learning the nosing schedule of forward
diffusion [24)]. The DDIM [25] and FastDPM [26] propose non-Markovian diffusion processes
for the sampling boosting. For the score-based continuous-time diffusion models, [27] provides
faster SDE solvers. The DDGANS [[11]] is most related to our proposed methods, which proposed
an adversarial formulation for the denoising diffusion distribution and enable a few sampling steps
without compromising the generated quality too much.

Unlike DDGANSs, we propose a new decomposition for the denoising distribution and achieve better
results. From the perspective of better distribution decomposition, we share a similar insight with
the related works of conditional GANs (cGANSs) [28, [29]. AC-GAN [28]] proposes to model the
conditional distribution of conditional generative models via decomposing the joint between the label
and the data to a marginal and the conditional distribution via an auxiliary classifier. TAC-GAN lately
fix the missing term of the AC-GAN decomposition. These two works can only be applied to the
conditional generation while our proposed decomposition can be applied to both unconditional and
conditional generation. Thus, their works are fundamentally different from ours. The other related
GANSs propose to enhance GANs with data argumentation [30, 31]] or diffusion noise [32], which
would also explain why GAN-ehanced denoising diffusion process can function well in practical.

S Experiments

In our experiments, we evaluate our proposed method in the simulated Mixture of Gaussians and
several popular public datasets, Cifar10-32 [33]], CelebA-HQ-256 [34] and the ImageNet1000-64[35]].
To study the effects of our model components, we also conduct the ablations to identify their sensitivity
and effectiveness.

For the model architectures, we apply the Unet [36]] as the ADM [2]], and we follow the same efficient
strategy as Imagen [4] to change the order of downsampling and upsampling layer in the Unet blocks.
In our method, we also design our discriminator as an Unet. Thus, we apply the identical structure for
the generator G and the discriminator D. The only difference between them is the input and output
channels for fitting in different inputs and outputs in our formulations.

5.1 MOG Synthetic Data

Identifying the effectiveness of generative mod-

els in high-dimensional data is tricky, and We  “yiqersieps 1 2 7 s 16
cannot directly visualize the mode coverage of — -~ 700 - n -
the generated data. Also, popular metrics like ~ DDGAN [IT] - 727 099 049 0.53
FID and Inception Score can only be referred R - gl 11 0n 6
as quality evaluation. Thus, we test our mod-

els and the baseline DDGANSs on generating Table 1: MOG 5x5 results, FID|

a Mixture of Gaussians. To generate the data,

we sample 25 groups of data from the Gaus-

sians independently and each distribution has a different mean but with the same variance. In
Figure [3] we show the synthesized results of different models and the denoising steps and the
quantitative results are shown in Table [I We can observe that for the extremely few denoising
steps of 2 and many as 16 steps, DDGAN:Ss fail to converge to real data distribution, and our pro-
posed method can recover well on the different steps. Also, to identify if the adversarial term
takes the main job in the generation, we remove the auxiliary forward term and find that our model
cannot recover the original distribution, proving the proposed decomposition’s effectiveness.
To evaluate our model’s effectiveness on real-world generation tasks, we test our models on the
tiny image dataset CIFARI10, the fine-grained generation task on the Celeb-HQ, and the large-scale
challenging dataset Imagennet. We pick a small amount of generated images from our model and




(c) Generated samples on ImageNet.

Figure 2: We pick a subset of images generated from our model, which produces the paper results.
From the top left to the bottom, they are the generated results on CIFAR10, Celeb-HQ and ImageNet.

show them in the Figure[2] We also quantitatively evaluate the quality of the generated samples and
collect all of the results in Table 23]and @] Visually, our model generates samples with high fidelity
and rich diversity. For the evaluation metric, we choose the Fréchet inception distance (FID) [47] and
Inception Score [48] for sample fidelity and the improved recall score to measure the sample
diversity. Compared with the GANs-based method, our method achieves better sample quality and
diversity, identifying the benefit of enhancing GANs with the diffusion formulation. Compared with
the baseline DDGANSs, our model shows superior quantitative results than the baseline DDGAN:S.
Although our method does not reach the same quality as the diffusion-based (or score-based) models
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Figure 3: We show the generative results for the 5 x 5 Mixture of Gaussians, which can straight-
forwardly show the effectiveness of our proposed method. We include our full model, our model
without the auxiliary forward diffusion term and the baseline DDGANs. Our model can recover the
original distribution even in the small diffusion steps of 2, but the DDGANSs fail. Also, without the
completed formulation, our model creates biased results.

Model ISt FID] Recallf NFE] Time(s) |
SIDDMs (ours), T=4 9.85 224 0.61 4 0.20 Model FID|
DDGANS ([TT]), T=4 963 375 057 4 0.20 SIDDMs (ours) 737
Diffusion models DDGANS ([11)) 7:64
DDPM [1] 946 3.21 0.57 1000 80.5 Score SDE [[16] 7.23
EDM [21] 9.84 204 - 36 - LSGM [39 70
Score SDE (VE) [16 9.89 220 059 2000 4232
Score SDE (VP) [16 9.68 241 059 2000 215 UDM (20 716
Improved DDPM (37 - 2.90 - 4000 - NVAE [40] 29.7
UDM [20 10.1 233 - 2000 - VAEBM [41] 20.4
Distillation of Diffusion Models NCP-VAE [42] 24.8
DDPM Distillation [38] 300 - - 4 PGGAN [43] 8.03
CD [22] 293 975 - 2 Adv. LAE [44] 192
GANs-based models \Dlg:g]? I[\Lgli %gé
StyleGAN2 w/o ADA [B1]  9.18 832  0.41 1 0.04 . —
StyleGAN2 w/ ADA [B1 983 292 049 1 0.04 Table 3: Generative results on
StyleGAN2 w/ Diffaug [30] 9.40 579 042 1 0.04 CelebA-HQ-256

Table 2: Generative results on CIFAR10

with a small gap, our model still has the large advantage of fast sampling. To be notified, we apply
four denoising steps for the CIFAR10 and two steps for the CelebA-HQ generation, identical to the
DDGANSs’ main results.

5.2 Generation on Real Data

For the ImageNet, we choose four denoising steps to get the best sam-

ple quality on the ImageNet. ImageNet has 1000 categories, each Model FID]
containing thousands of images and distinguishing itself as a large- S

K . . . . . . IDDMs (ours) 3.13
scale dataset with diversity. To train a generative model with high DDGANS ([111) 20.63
fidelity on the dataset, we usually require other inductive biases such CT [22) 11.10
as regularizers or model scaling-up methods [13}/50]. The DDGANs ADM [2] 2.07
fail to retain the high-fidelity samples on this dataset without additional =~ EDM [21] 244

Improved DDPM [37] 2.90
CD ([22)) 4.07

inductive bias. However, with the same model capacity, our proposed
method can achieve comparable results w.r.t. the diffusion-based mod-
els. This result shows that our model can handle large-scale generation
and potentially be applied to boost the sampling speed of large-scale
text2image models.

Table 4: Generative results
on ImageNet1000



6 Ablations

Table 5: Study the effect of Auxiliary Forward Diffusion (AFD), FID]. The weight of 0.0 means that
we remove the AFD term and only train the model with adversarial loss. The weight of co means we
only keep the AFD term without adversarial loss. This table also evaluates our model performance
with different denoising steps and without our regularizer for the discriminator. All of the scores are
evaluated on the CIFARI10.

Weight of AFD 0.0 01 05 10 50 oo
SIDDMs(ours) 7715 332 263 224 255 4127 Diffusion Steps 1 2 4 8 16 32
SIDDMs(ours) w/o SIDDMs(ours)  27.39  3.17 224 231 215 246

51.67 4.64 479 320 295 5155

Regularizer of Discriminator

(a) AFD weight 0.0. (b) AFD weight 1.0. (c) AFD weight co.

Figure 4: Generated samples on CIFAR10, we show two severe cases where only adversarial term
(weight 0.0) and only AFD term (weight co). We also show our full model results in the middle for
comparison.

To identify the function of the components in our formulation, we conduct controlledexperi-
ments on the effects of the adversarial and the AFD term. We set the weights of AFD to be
[0.0,0.1,0.5,1.0, 5.0, oc], where 0.0 represents only the adversarial term and co denotes only the
AFD term in our training. We apply the same sampling strategy as our full models and adopt four
denoising steps. The FID scores are reported in Table [5] and the generated samples are shown in
Figure[d We can see that if missing any of these two terms in our formulation, we cannot recover
the original image distribution. In addition, we found that our model is not sensitive to the weights
between these two components w.r.t. the FID scores when both terms participate in the training, which
further identifies the effectiveness of our formulation. Also, we train the model without the regularizer
for the discriminator, and we also identify that the proposed auxiliary tasks for the discriminator
further enhance the model performance for our full formulation.

7 Conclusion

In conclusion, the quest for fast sampling with diverse and high-quality samples in generative models
continues to pose a significant challenge. Existing models, such as Denoising Diffusion Probabilistic
Models (DDPM), encounter limitations due to the inherent slowness associated with their iterative
steps. On the other hand, Denoising Diffusion Generative Adversarial Networks (DDGAN) faces
scalability issues when dealing with large-scale datasets. To address these challenges, we propose
a novel approach that effectively addresses the limitations of previous models by leveraging a
combination of implicit and explicit factors. Specifically, we introduce an implicit model that
enables us to match the marginal distribution of random variables in the reverse diffusion process.
Additionally, we model explicit distributions between pairs of variables in reverse steps, which allows
us to effectively utilize the Kullback-Leibler (KL) divergence for the reverse distribution. To estimate
the negative entropy component, we incorporate a min-max game into our framework. Moreover, we
adopt the L2 reconstruction loss to accurately represent the cross-entropy term in the KL divergence.
Unlike DDPM but similar to DDGAN, we do not impose a parametric distribution for the reverse
step in our approach. This design choice empowers us to take larger steps during the inference
process, contributing to enhanced speed and efficiency. Additionally, similar to DDPM, we effectively
leverage the exact form of the diffusion process to further improve our model’s performance. Our
proposed approach exhibits comparable generative performance to DDPM while surpassing models
with fewer sampling steps.
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