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A APPENDIX

A.1 EXTENDED EXPERIMENTS
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(a) Boxing. The player (white) presses fire, misses the opponent, gets no reward, and retreats.
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(b) Freeway. The player moves up, steps back because of an approaching car, and continues to move up.
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(c) Jamesbond. The player presses fire to fire a missile, and gets a reward when it hits.
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(d) Gopher. The player (farmer) closes a hole created by the opponent (gopher). The gopher keeps moving
independent from the selected actions, indicating that the world model has correctly learned the correlations
between the player and the actions. Note that the gopher briefly disappears and reappears on the other side.

Figure 9: Additional example trajectories generated by our world model.

Additional Analysis:

1. We provide more example trajectories in Figure 9.

2. We present more attention plots in Figures 10 and 11. All attention maps are generated
using the attention rollout method by Abnar & Zuidema (2020). Note that we had to modify
the method slightly, in order to take the causal masks into account.

3. Sample Efficiency: We provide the scores of our main experiments after different amounts
of interactions with the environment in Table 2. After 50K interactions, our method already
has a higher mean normalized score than previous sample-efficient methods. Our mean
normalized score is higher than DER, CURL, and SimPLe after 25K interactions. This
demonstrates the high sample efficiency of our approach.

4. Stochasticity: The stochastic prediction of the next state allows the world model to sample
a variety of trajectories, even from the same starting state, as can be seen in Figure 12.

5. Long Sequence Imagination: The world model is trained using sequences of length ℓ = 16,
however, it generalizes well to very long trajectories, as shown in Figure 13.

6. Frame Stacking: In Figure 14 we visualize the learned stacks of frames. This shows that
the world model encodes and predicts the motion of objects.

Additional Ablation Studies:

1. Thresholded Entropy Loss: In Figure 15 we compare (i) our thresholded entropy loss for
the policy (see Section 2.2) with (ii) the usual entropy penalty. For (i) we use the same
hyperparameters as in our main experiments, i.e., η = 0.01 and Γ = 0.1. For (ii) we set
η = 0.001 and Γ = 1.0, which effectively disables the threshold. Without a threshold, the
entropy is more likely to either collapse or diverge. When the threshold is used, the score is
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higher as well, probably because the entropy is in a more sensible range for the exploration-
exploitation trade-off. This cannot be solved by adjusting the penalty coefficient η alone,
since it would increase or decrease the entropy in all games.

2. History Length: We trained our world model with a shorter history and set ℓ = 4 instead of
ℓ = 16. This has a negative impact on the score, as can be seen in Figure 16, demonstrating
that more time steps into the past are important.

3. Choice of Policy Input: In Section 2.2 we explained why the input to the policy is only the
latent state, i.e., x = z. In Figure 17 we show that using x = [z, h] can result in lower
final scores. We hypothesize that the policy network has a hard time keeping up with the
changes of the space of h during training and cannot ignore this additional information.

4. Increasing the Sample Efficiency: To find out whether we can further increase the sample
efficiency shown in Table 2, we train a random subset of games again on 10K, 25K, and
50K interactions with the full training budget that we used for the 100K interactions. In
Figure 18 we see that this can lead to significant improvements in some cases, which could
mean that the policy benefits from more training on imagined trajectories, but can even lead
to worse performance in other cases, which could possibly be caused by overfitting of the
world model. When the performance stays the same even with longer training, this could
mean that better exploration in the real environment is required to get further improvements.

Table 2: Performance of our method at different stages of training compared with final scores of
previous methods. We show individual game scores and mean human normalized scores. The
normalized mean of our method is higher than SimPLe after only 25K interactions, and higher than
previous methods after 50K interactions.

TWM (ours)

Game Random Human SimPLe SPR 5K 10K 25K 50K 75K 100K

Alien 227.8 7127.7 616.9 841.9 202.8 383.2 463.6 532.0 776.6 674.6
Amidar 5.8 1719.5 74.3 179.7 3.8 35.4 54.9 101.3 103.0 121.8
Assault 222.4 742.0 527.2 565.6 241.5 315.4 418.7 466.8 627.8 682.6
Asterix 210.0 8503.3 1128.3 962.5 277.0 297.0 536.0 912.0 886.0 1116.6
BankHeist 14.2 753.1 34.2 345.4 17.6 4.4 17.4 125.2 288.4 466.7
BattleZone 2360.0 37187.5 4031.2 14834.1 2640.0 3120.0 2700.0 3740.0 5260.0 5068.0
Boxing 0.1 12.1 7.8 35.7 0.8 3.4 28.5 60.1 67.1 77.5
Breakout 1.7 30.5 16.4 19.6 1.0 5.9 6.9 12.5 15.0 20.0
ChopperCommand 811.0 7387.8 979.4 946.3 928.0 1044.0 1358.0 1306.0 1438.0 1697.4
CrazyClimber 10780.5 35829.4 62583.6 36700.5 7425.0 14773.2 39456.8 45916.0 67766.2 71820.4
DemonAttack 152.1 1971.0 208.1 517.6 174.7 184.4 216.8 335.2 391.4 350.2
Freeway 0.0 29.6 16.7 19.3 0.0 4.6 20.8 23.7 23.9 24.3
Frostbite 65.2 4334.7 236.9 1170.7 66.2 204.6 297.8 247.6 1165.4 1475.6
Gopher 257.6 2412.5 596.8 660.6 345.2 414.0 593.2 1213.2 1549.2 1674.8
Hero 1027.0 30826.4 2656.6 5858.6 448.9 1552.6 4790.9 6302.7 9403.8 7254.0
Jamesbond 29.0 302.8 100.5 366.5 35.0 117.0 172.0 215.0 322.0 362.4
Kangaroo 52.0 3035.0 51.2 3617.4 28.0 92.0 476.0 724.0 876.0 1240.0
Krull 1598.0 2665.5 2204.8 3681.6 1763.6 2552.8 4234.0 4699.2 5848.0 6349.2
KungFuMaster 258.5 22736.3 14862.5 14783.2 574.0 16828.0 16368.0 17946.0 22936.0 24554.6
MsPacman 307.3 6951.6 1480.0 1318.4 245.9 535.1 1077.5 1224.3 1287.6 1588.4
Pong -20.7 14.6 12.8 -5.4 -20.4 -19.8 -7.7 8.0 19.9 18.8
PrivateEye 24.9 69571.3 35.0 86.0 61.0 80.0 80.0 3.2 88.8 86.6
Qbert 163.9 13455.0 1288.8 866.3 151.0 298.5 703.5 1046.5 1788.5 3330.8
RoadRunner 11.5 7845.0 5640.6 12213.1 24.0 1120.0 5178.0 7436.0 8034.0 9109.0
Seaquest 68.4 42054.7 683.3 558.1 76.8 221.2 428.4 572.0 704.0 774.4
UpNDown 533.4 11693.2 3350.3 10859.2 385.8 1963.0 2905.6 4922.8 10478.6 15981.7

Normalized Mean 0.000 1.000 0.332 0.616 0.007 0.133 0.408 0.624 0.832 0.956

Wall-Clock Times: For each run, we give the agent a total training and evaluation budget of
roughly 10 hours on a single NVIDIA A100 GPU. The time can vary slightly, since the budget is
based on the number of updates. An NVIDIA GeForce RTX 3090 requires 12-13 hours for the
same amount of training and evaluation. When using a vanilla transformer, which does not use the
memory mechanism of the Transformer-XL architecture (Dai et al., 2019), the runtime is roughly
15.5 hours on an NVIDIA A100 GPU, i.e., 1.5 times higher.

We compare the runtime of our method with previous methods in Table 3. Our method is more than
20 times faster than SimPLe, but slower than model-free methods. However, our method should be
as fast as other model-free methods during inference. In Table 2 we have shown that our method
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Table 3: Approximate runtime (i.e., training and evaluation time for a single run) of our method
compared with previous methods that also evaluate on the Atari 100k benchmark. Runtimes of
previous methods are taken from Schwarzer et al. (2021). They used an improved version of DER
(van Hasselt et al., 2019), which is roughly equivalent to DrQ (Yarats et al., 2021), so the specified
runtime might differ from the original DER implementation. There are data augmented versions for
SPR and DER. All runtimes are measured on a single NVIDIA P100 GPU.

Method Model-based Runtime in hours

SimPLe ✓ 500
TWM (ours) ✓ 23.3
SPR (with aug.) ✗ 4.6
SPR (w/o aug.) ✗ 3.0
DER/DrQ (with aug.) ✗ 2.1
DER/DrQ (w/o aug.) ✗ 1.4

achieves a higher human normalized score than previous sample-efficient methods after 50K inter-
actions. This suggests that our method could potentially outperform previous methods with shorter
training, which would take less than 23.3 hours.

To determine how time-consuming the individual parts of our method are, we investigate the
throughput of the models, with the batch sizes of our main experiments. The Transformer-XL ver-
sion is almost twice as fast, which again shows the importance of this design choice. The throughputs
were measured on an NVIDIA A100 GPU and are given in (approximate) samples per second:

• World model training: 16,800 samples/s
• World model imagination (Transformer-XL): 39,000 samples/s
• World model imagination (vanilla): 19,900 samples/s
• Policy training: 700,000 samples/s

We also examine how fast the policy can run in an Atari game. We measured the (approximate)
frames per second on a CPU (since the batch size is 1). Conditioning the policy on [z, h] is about 3
times slower than z, since the transformer is required:

• Policy conditioned on z: 653 frames/s
• Policy conditioned on [z, h]: 213 frames/s

A.2 DERIVATION OF BALANCED CROSS-ENTROPY LOSS

Hafner et al. (2021) propose to use a balanced KL divergence loss to jointly optimize the observation
encoder qθ and state predictor pθ with shared parameters θ, i.e.,

λDKL(sg(qθ) ∥ pθ) + (1− λ)DKL(qθ ∥ sg(pθ)), (7)
where sg(·) denotes the stop-gradient operation and λ ∈ [0, 1] controls how much the state predictor
adapts to the observation encoder and vice versa. We use the identity DKL(q ∥ p) = H(q, p)−H(q),
where H(q, p) is the cross-entropy of distribution p relative to distribution q, and show that our loss
functions lead to the same gradients as the balanced KL objective, but with finer control over the
individual components:

∇θ [λDKL(sg(qθ) ∥ pθ) + (1− λ)DKL(qθ ∥ sg(pθ))] (8)
= ∇θ [λ (H(sg(qθ), pθ)−H(sg(qθ))) + (1− λ) (H(qθ, sg(pθ))−H(qθ))] (9)
= ∇θ [λ1 H(sg(qθ), pθ) + λ2 H(qθ, sg(pθ))− λ3 H(qθ)], (10)

since ∇θH(sg(qθ)) = 0 and by defining λ1 = λ and λ2 = 1 − λ and λ3 = 1 − λ. In this form,
we have control over the cross-entropy of the state predictor relative to the observation encoder and
vice versa. Moreover, we explicitly penalize the entropy of the observation encoder, instead of being
entangled inside of the KL divergence.

As common in the literature, we define the loss function by omitting the gradient in Equation (10),
so that automatic differentiation computes this gradient. For our world model, we split the objective
into two loss functions, as the observation encoder and state predictor have separate parameters,
yielding Equations (3) and (4).
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(a) This world model focuses on previous states.
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(b) This world model focuses on previous actions, indicating that the effect of ac-
tions can last longer than a single time step.
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(c) This world model attends to all three modalities in the recent past.
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(d) This world model attends to states at all time steps, probably because of the
complexity of this 3D game.
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(e) This world model mainly focuses on four states at specific time steps.

Figure 10: Average attention maps of the transformer, computed over many time steps. They show
how different games require a different focus on modalities and time steps.
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Figure 11: Attention map for Freeway for a single time step. At this point the player hits a car and
gets pushed back (see also Figure 5b) and the world model puts more attention to past states and
rewards, compared with the average attention at other time steps, as shown in Figure 10e. The world
model has learned to handle this situation separately.

17



Accepted at the NeurIPS 2022 Deep Reinforcement Learning Workshop

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 12: Three trajectories for the game KungFuMaster generated by our world model, using
the same starting state. Because of its stochastic nature, the world model is able to generate three
different situations (one opponent, two opponents, one other type of opponent). Note that we only
show every third frame to cover more time steps.

0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 2.0

5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.0 2.0 1.0

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

Figure 13: A long trajectory imagined by our world model for the game Hero. The player traverses
five different rooms and the world model is able to correctly predict the state and reward dynamics.
Note that we only show every fifth frame to cover more time steps (the rewards lying in-between are
summed up). The total number of time steps is 230.

(a) Assault (b) Hero (c) KungFuMaster (d) Pong (e) Pong

Figure 14: Visualization of frame stacks reconstructed from predicted states ẑt. Each frame in the
stack is visualized by a different color. The world model is able to encode and predict movements.
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Figure 15: Effect of disabling the proposed thresholded entropy loss (by setting Γ = 1) on the
performance and the entropy in a random subset of games. The thresholded version stabilizes the
entropy and leads to a better score in Breakout and Pong, while the entropy behaves unfavorably
without a threshold.
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Figure 16: Comparison of the history length ℓ = 16 used in our main experiments with ℓ = 4 on a
random subset of games. We observe a lower human normalized score for ℓ = 4.
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Figure 17: Conditioning the policy on [z, h] compared with the usual z. In some cases the perfor-
mance can be better during training, but the final score is lower or equal.
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Figure 18: Scores on a random subset of games when we train with a lower number of interactions
but the same training budget. This only leads to a significant improvement for UpNDown, where
the final score is higher with only 50K interactions.
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Figure 19: Comparison of the proposed balanced sampling procedure with uniform sampling. It
shows the development of the dynamics loss from Equation (4), which is lower at the end of training
in all cases.

A.3 ADDITIONAL TRAINING DETAILS

In Algorithm 1 we present pseudocode for training the world model and the actor-critic agent. We
use the SiLU activation function (Elfwing et al., 2018) for all models. In Table 4 we summarize all
hyperparameters that we used in our experiments. In Table 5 we provide the number of parameters
of our models.

Pretraining for Better Initialization: During training we need to correctly balance the amount
of world model training and policy training, since the policy has to keep up with the distributional
shift of the latent space. However, we can spend some extra training time on the world model with
pre-collected data (included in the 100K interactions) at the beginning of training in order to obtain
a reasonable initialization for the latent states.

Algorithm 1 Training the world model and the actor-critic agent.

function train world model( )
// sample sequences of observations,
// rewards, actions and discounts
o,a,r,d = sample from dataset()
z = encode(o)
o hat = decode(z)
h = transformer(z,a,r)
r hat,d hat,z hat = predict(h)

// optimize world model via
// self-supervised learning
optim observation(o,z,o hat,z hat)
optim dynamics(r,d,z,r hat,d hat,z hat)

// z will be used for imagination
return z

function train actor critic(z)
// imagine trajectories of states,
// rewards, actions and discounts;
// use z as starting point
imag = [z]
for t = 0 until H do

a = actor(z)
imag.append(a)
h = transformer(imag)
r,d,z = predict(h)
imag.extend([r,d,z])

// optimize actor-critic via
// reinforcement learning
optim actor critic(imag)

20



Accepted at the NeurIPS 2022 Deep Reinforcement Learning Workshop

Table 4: Hyperparameters used in our experiments.

Description Symbol Value

Dataset sampling temperature τ 20
Discount factor γ 0.99
GAE parameter λ 0.95
World model batch size N 100
History length ℓ 16
Imagination batch size M 400
Imagination horizon H 15
Encoder entropy coefficient α1 5.0
Consistency loss coefficient α2 0.01
Reward coefficient β1 10.0
Discount coefficient β2 50.0
Actor entropy coefficient η 0.01
Actor entropy threshold Γ 0.1

Environment steps — 100K
Frame skip — 4
Frame down-sampling — 64× 64
Frame gray-scaling — Yes
Frame stack — 4
Terminate on live loss — Yes
Max frames per episode — 108K
Max no-ops — 30

Observation learning rate — 0.0001
Dynamics learning rate — 0.0001
Actor learning rate — 0.0001
Critic learning rate — 0.00001

Transformer embedding size — 256
Transformer layers — 10
Transformer heads — 4× 64
Transformer feedforward size — 1024
Latent state predictor units — 4× 512
Reward predictor units — 4× 256
Discount predictor units — 4× 256
Actor units — 4× 512
Critic units — 4× 512
Activation function — SiLU

Table 5: Number of parameters of our models.

Model Symbol # Parameters

Observation model ϕ 8.2M
Dynamics model ψ 10.8M
Actor θ 1.3M
Critic ξ 1.3M

World model — 19M
Actor-critic — 2.6M

Total — 21.6M

Encoder + actor
(at inference time) — 4.4M
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