A Algorithm for OTKGE

Compared with the existing models. For the case of multi-modal KGEs, previous models such as
IKRL learn the unified representation by concat or taking the mean of multi-modal representations. In
this way, IKRL neglects the discrepancy of different multi-modal representations and it will harm the
use of modal information. In contrast to this, OTKGE can measure distances between different multi-
modal spaces by Wasserstein distance and consider the various distributional differences in these
spaces. Intuitively, OTKGE can move different modal embeddings to a unified aligned space by an
optimal transport plan while overcoming spatial heterogeneity by minimizing the Wasserstein distance
between different distributions. It makes the process of multi-modal fusion more interpretational. In
this sense, one can see that OTKGE shows strong advantages in multi-modal fusion.

B Proofs of Theorem 1

Definition 1 f € F is called K-Lipschitz continuous, Va, b € D (where D € R") if | f(a) — f(b)] <
Kd(a,b).
Here are the proof for Theorem 1:

Proof First of all, we prove that | f — '] is 2K -Lipschitz continuous given K -Lipschitz continuous
hypotheses f, |’ € F. we can derive the following formula with using the triangle inequality:

[f (@) = @) < [f(2) = F@l + [ f(y) = £ ()]

< 17(@) = 1)+ 1) — P +1F ) — F'(@)] @

Suppose d(x,y) represents a function to measure the distance between x and y, for every x,y € X,
then we have:

[f(@) = @)= 1fly) = Wl _ [f@) = @I+ 1/ (=) - [l

d(x,y) - d(z,y) (8)
<K

In this step, we can find that for every hypothesis f, [, given two distributions ps and p (here jig is
the multi-modal distribution while y, is the structural distribution), here we have

e (f, f') = s (£ f)) = Baropy, [If (@) = f'(@)]] = Bawp, [1f(z) = ()]

sup  E,, [f(2)] — E,, [ f(z
= ”fHSLE2K S ()] [f ()] 9)

é 2-Kvyvl (,usvl‘l‘t)

where W [is, j1¢) is the 1-Wasserstein distance. Then we can derive the following formula:

er(f) < es(f) + 2KWr (ps, p1e) (10)
By changing s,t, we have:

er(f) <er(f)+2KW (pr, pir)

ev(f) < er(f)+2EW1 (uv, 1r)

es(f) < er(f) +2KW (us, pr)

er(f) <er(f) +2KWi (ur, pr)

er(f) <ev(f) +2KWi (pv, pr)

er(f) <es(f) +2KWi (us, pr)

Then the proof is completed.
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