Appendix

A Posterior Reparameterization

In this section we motivate the design choices and inductive biases that we encode into our neural

encoder network e, which is the network that is used to model the relative accuracies of the weak

supervision sources A. Recall that we model the probability of a particular sample x € X having the
classlabely € Y = {1,...,C} as

Py(y| A) = softmax (s), P(y), @

s=0Ax)TXeRC. (5)

where 6(\, x) € R™ weighs the LF votes on a sample-by-sample basis and the softmax for class y

on s is defined as

exp (0(A,x)T1{x = y})
Yyeyexp (0AX)TI{A =y'})
Connection to prior PGM models We now motivate this choice by deriving a less expressive
variant of it from the standard Markov Random Field (MRF) used in the related work. If we view the
attention scores 6(, x) € R™, that assign sample-dependent accuracies to each labeling function, as

sample-independent parameters 6; and, by that, drop the features from the equation — as is done in
the related work [30, 32, 19, 11] — we can rewrite Eq. 4 as

exp (01 1{\ = y})
> ey €XD (0F1{x =y'})

Let ¢1 (A, y) = 1{\ = y}, and, for clarity of writing, we drop the class balance, then this becomes

exp (07 p1(X, y))
C Cyeyexp (01N y)
_ Zyexp (01 61\ y) + 05 62(N))
T Ty Zi texn (1010) + 01 (M)
_ By
B nyey Py (N y')
~ Pa(\y)

Py (X)
=Py (y|A),

where in the second step we multiplied the denominator and numerator with the same quantity

% exp (02T¢2(>\)), and 6 now parameterizes the joint distribution of the latent label and weak
0

sources as

softmax (s), =

P(y)

Z,

We can recognize P as a distribution from the exponential familiy, and more specifically as a pairwise
MRE, or factor graph, with canonical parameters § = (61, 62) and corresponding sufficient statistics,
or factors, (A, y) = (d1(A,y), P2(N)), as well as the log partition function Zy. The accuracy
factors and parameters ¢, 6, are the core component of this model and sometimes take the form
¢1(Ay) = Ay in binary models as in [30, 19, 11]. The label-independent factors ¢ () have, as can
be seen from the derivation above, no direct influence on the latent label posterior, but are often used
to model labeling propensities 1{\ # 0} and correlation dependencies 1{\; = A;}, which can be
important for PGM parameter learning, but are susceptible to misspecifications [39, 11, 8]. Our own
parameterization therefore is a more expressive variant of these latent-variable PGM models, where
we are able to assign LF accuracies on a sample-by-sample basis. Furthermore, our neural encoder
network outputs them as a function of the LF outputs and features, and is expected to learn the easy
to misspecify dependencies and label-independent statistics implicitly. Indeed, our empirical findings
and subsection 4.3 support this.

Po(Ay) = ie exp (0761 (A) + 0% o (N)) = Zia exp (76(, 1)) -

14

Table 4: The final test F1 performance of various multi-source weak supervision methods over seven
runs, using different random seeds, are averaged out =+ standard deviation. The top 2 performance
scores are highlighted as First, Second. Triplet-median [11] is not listed as it only converged for
IMDB with 12 LFs (F1 = 73.0 & 0.22), and Spouse (F1 = 48.7 & 1.0). Sup. (Val. set) is the
performance of the downstream model trained in a supervised manner on the labeled validation
set. The rest are state-of-the-art latent label models. For reference, we also report the Ground truth
performance of a fully supervised model trained on true training labels (which are unused by all other
models, and not available for Spouse). We also report the performance of WeaSEL-random, where
only the downstream model of WeaSEL is trained (and the encoder network is left at its randomly
initialized state). All models are run twice, where only the learning rate differs (either 10~ or
4 -107°), and the model with best ROC-AUC on the validation set is reported. The probabilistic
labels from Snorkel used for downstream model training are chosen over six different configurations
of the learning rate and number of epochs (again with respect to validation set ROC-AUC).

Model | Spouse (9LFs) ProfTeacher (99 LFs) IMDB (136LFs) IMDB (12LFs) Amazon (175 LFs)
Ground truth - 90.65 + 0.29 86.72 £ 0.40 86.72 £ 0.40 92.93 + 0.68
Sup. (Val. set) 204£0.2 73.34 £ 0.00 6876 £0.00 68.76 £0.00 8418 £0.00
Snorkel 48.79 4+ 2.69 85.12 4 0.54 82224018 74.45+0.58 80.54 + 0.41
Triplet 45.88 + 3.64 74.43 £ 10.59 75.36 +1.92 73.15+0.95 75.44 +3.21
Triplet-Mean 49.94 + 147 82.58 £0.32 79.03 £0.26 73.18 £0.23 79.44 +0.68
WeaSEL-random | 46.43 F 3.29 8347 £ 0.64 7980+ 048 74.22+0.45 82.22 £ 0.57
Majority vote 40.67 £2.01 85.44 + 0.37 80.86 +0.28 74.13+0.31 84.20 + 0.52
WeaSEL 51.98 £ 1.60 86.98 £ 0.45 82.10 £ 0.45 77.22 £1.02 86.60 £ 0.71

B Extended Results

We provide more detailed results in Table 4. Here, we include WeaSEL-random, which corresponds
to WeaSEL with a randomly initialized encoder network that is not trained/updated. As expected, this
setting produces performance often similar compared to training an end model on the hard majority
vote labels. This is due to the strong inductive bias in our encoder model that constrains the encoder
labels to be a normalized linear combination of the LF votes, weighted by positive accuracy scores.
In fact, WeaSEL-random itself is often able to outperform the PGM-based baselines, in particular
the triplet methods. Our results show that WeaSEL consistently improves significantly upon these
baselines via training the encoder network to maximize its agreement with the downstream model.

C Extended Implementation Details

Weak supervision sources For the Spouses dataset, and the IMDB variant with 12 LFs, we use
the same LFs as in [19] and [11], respectively’. The set of 12 IMDB LFs was specifically chosen
to have a large coverage, see Table 3. These LFs and the larger set of LFs that we introduce for the
second IMDB experiment are all pattern- and regex-based heuristics, i.e. LFs that label whenever
a certain word or bi-gram appears in a text document. For instance, ’excellent’ would label for the
positive movie review sentiment (and would do so with 80% accuracy on the samples where it does
not abstain). This holds for the other text datasets as well, while the Spouse experiments also contain
LFs that are distant supervision sources based on DBPedia.

For the remaining datasets (IMDB with 136 LFs, Bias Bios, and Amazon), we created the respective
LF sets ourselves, prior to running experiments.

Encoder network architectures In all experiments, we use a simple multi-layer perceptron (MLP)
as the encoder e, with two hidden layers, batch normalization, and ReL.U activation functions. For the
Spouse dataset, we use a bottleneck-structured network of sizes 50, 5. This is motivated by the small
size of the set of samples labeled by at least one LF. For all other datasets we use hidden dimensions
of 70, 70. We show in the ablations (Table 5), that our end-to-end model also succeeds for different
encoder architecture choices.

5 All necessary label matrices are available in our research source code. The Spouse LFs and data are
also available at the following URL: https://github.com/snorkel-team/snorkel-tutorials/blob/
master/spouse/spouse_demo.ipynb

15

Downstream models For all datasets besides Spouse, we use a three-layer MLP with hidden
dimensions 50, 50, 25. For Spouse, we use a single-layer bidirectional LSTM with a hidden
dimension of 150, followed by two fully-connected readout layers with dimensions 64, 32. All fully-
connected, layers use ReLU activation functions. We choose simple downstream architectures as we
are interested in the relative improvements over other label models. More sophisticated architectures
are expected to further improve the performances, however.

Hyperparameters Unless explicitly mentioned, all reported experiments are averaged out over
seven random seeds. We use an L2 weight decay of 7e-7 and dropout of 0.3 for both encoder and
downstream model for all datasets but Spouse (where the LSTM does not use dropout). All models
are optimized with Adam, with early-stopping based on AUC performance on the small validation
set, and a maximum number of 150 epochs (75 for Spouse). The batch size is set to 64. The loss
function is set to the (binary) cross-entropy. For each dataset and each model/baseline, we run the
same experiment for learning rates of le-4 and 3e-5, and then report the model chosen according
to the best ROC-AUC performance on the small validation set. For Spouse we additionally run
experiments with a L2 weight decay of 1le-4 which due to the risk of overfitting to the small size of
LF-covered data points boosts performance for all models. For our own model, WeaSEL, we also run
additional experiments for Spouses with different configurations of the temperature hyperparameter,
71 € {1,1/3} and again report the test performance as measured by the best validation ROC-AUC.
The probabilistic labels from Snorkel used for downstream model training are chosen over six
different configurations of the learning rate and number of epochs for Snorkel’s label model (again
with respect to validation set ROC-AUC). For all binary classification datasets (i.e. all except for
LabelMe), we tune the downstream model’s decision threshold based on the resulting F1 validation
score for all models. We believe that this, alternatively to reporting test ROC-AUC scores, makes the
comparison fairer, since F1 is a threshold dependent metric. All label model baselines are provided
with the class balance, which WeaSEL does not use (but which is expected to be helpful for unbalanced
classes, where no validation set is available).

D Extended Ablations

The full ablations are reported in Table 5, where in each row we change or remove exactly one
component of our proposed model, WeaSEL. We find that the design choices of WeaSEL which were
inspired by sensible inductive biases for an encoder label model are hard to beat by various changes to
the architecture, loss function, or hyperparameters. Indeed, most changes consistently underperform
WeaSEL, and the occasional positive changes — 1e-4 weight decay, and the Squared Hellinger loss
instead of the symmetric cross-entropy — only beat the base WeaSEL performance in at most two
datasets, and never significantly. In practice, we advise to explore these strongest configurations if a
small validation set is available.

We find that letting the accuracy scores depend on the input features (first row), usually boosts
performance, but not by much (1.2 F1 points at most). On the other hand, it proves very important to
allow these accuracy scores to depend non-linearly on the LF votes and the features: A linear encoder
network, as in [9], significantly underperforms WeaSEL with at least one hidden layer by up to 4.9 F1
score points. Conversely, a deeper encoder network (of hidden dimensionalities 75, 50, 25, 50, 75,
see fourth row) does not improve results. This may be due to the sample-dependent accuracies not
being a too complex function to learn.

While the effect of the inverse temperature parameter 7;—which controls the softness of the encoder-
predicted accuracy scores—on downstream performance is not large, it can have significant effects
on the learning dynamics and robustness, see Fig 3 for such learning curves as a function of epoch
number. In particular, a lower 7, makes the dynamics more robust, since the accuracy score weights
are more evenly distributed across LFs, which appears to help avoid overfitting. When overfitting is
not easily detectable due to a lack of a validation set, it is therefore advisable to use a lower 7. It
also proves helpful to scale the softmax in Eq. 3 by y/m, rather than not scaling it (72 = 1 row) or
scaling by m.

Changing the loss function from the symmetric cross-entropy to the MIG function [9] or the L1
loss consistently leads to worse performance. The former is interesting, since using the MIG loss
for the crowdsourcing dataset LabelMe, see subsection 4.2, was important in order to achieve state-
of-the-art crowdsourcing performance (with a similar lift in performance observable for Snorkel
using MIG for downstream model training). The result provides some evidence that the MIG loss

16

Table 5: Ablative study on the subcomponents of our algorithm as in Alg. 1 (over 5 random seeds).
In each row below we change exactly one component of WeaSEL and report the resulting F1 score.
Note that the scores for WeaSEL are slightly different to the ones in the main results table, since
they were run separately, with fewer seeds, and for only one learning rate (1e-4). Configurations
that outperform base WeaSEL are highlighted in bold font, while the four worst performing
configurations are highlighted in red for each dataset. Note that bold font does not indicate significant
differences.

Change ProfTeacher IMDB-136 LFs IMDB-12LFs Amazon

WeaSEL 86.8+0.4 82.1£0.7 77.3+£0.5 86.6 £0.5
O(A,x) =0(N\) 85.6 1.6 82.1+0.5 75.9£0.8 86.6 £ 0.4
Linear e 81.9£0.7 80.0£0.6 73.2+£0.6 82.6 £0.5
1 hidden layer e 87.1+£0.7 81.8£0.6 76.8£0.9 85.3£0.8
75x50x25x50x75 e 84.3 2.1 81.9£0.6 7.8+1.1 86.1 £0.6
T =2 86.7£1.0 81.9=£0.3 77.3+£0.5 85.5£1.0
T =1/2 86.5+0.8 81.8+0.5 76.0+£14 86.4£0.3
nn=1/4 845+12 81.8+0.2 73.9+£0.9 85.6 £1.0
=1 85.2+16 822+04 76.6 £ 1.0 84.3+1.2
To=m 86.1£0.7 81.2£0.6 76.4+£04 85.7+£0.2
No BatchNorm 826+14 81.9+0.5 T4.7£0.7 85.3£0.8
le-4 weight decay 874+04 809+£1.3 77.9 + 0.6 85.2+£0.5
MIG loss 86.7+04 78.7£04 74.1+£04 84.7£1.38
L1 loss 86.2+0.6 81.1+0.5 75.6 £0.9 84.1£0.9
Squared Hellinger loss 874+ 0.3 82.2 + 0.6 75.7+ 1.1 86.3+ 0.4
CE(Py, P.) asymm. loss 773+37 777 +1.1 71.7+0.3 78.7 + 1.2
CE(P., Py) asymm. loss 731+68 71.9+1.9 69.7 £ 0.7 70.1 +1.1
No stop-grad 80.4 + 2.1 76.2 + 0.5 71.0 + 0.6 79.3+£0.6
(A, x) = /m - sigmoid(e(A,x)) 85.5+0.6 81.8+0.5 78.0 + 0.7 86.9 + 0.3
O(A,x) = ReLU(e(A,x))+ le-5 83.0+2.3 783+£1.1 69.1 2.1 74.2 £ 2.7
O(A, x) = Tanh(e(A, x)) 719 £4.0 67.0£0.8 67.0 = 1.1 67.3 £ 1.1

may be inappropiate for weak supervision settings other than crowdsourcing, while its use may be
recommended for that specific setting.

We find that it is important to constrain the accuracy score space to a positive interval, either by
viewing them as an aggregation of the LFs via the scaled softmax in Eq. 3, or by replacing the
softmax with a sigmoid function. Indeed, using a less constrained activation function for the
estimated accuracies (last two rows, where the le-5 in the ReLU row avoids accuracy scores equal
to zero) significantly underperforms: Allowing the accuracies to be negative (last row) leads to
collapse and bad downstream performance. This is likely due to the removal of the inductive bias
that LFs are better-than-random, which makes the joint optimization more likely to find trivial
solutions. Additionally, we find that our choice of using the symmetric cross-entropy loss with
stop-grad applied to the targets is crucial for the strong performance of WeaSEL. Removing the
stop-grad operation, or using the standard cross-entropy (without stop-grad on the target) leads
to significantly worse scores and a very brittle model. This is somewhat expected, since conceptually
our goal is to have an objective that maximizes the agreement between a pair of models that predict
based on two different views of the latent label, the features and the LF votes. The cross-entropy
with stop-grad on the target® naturally encodes this understanding, since each model uses the other
model’s predictions as a reference distribution. Losses that already are symmetric (e.g. L1 or Squared
Hellinger loss) neither need to be symmetrized nor use stop-grad. While the L1 loss consistently
underperforms, we find that the Squared Hellinger loss can lead to better performance on two out of
four datasets.

However, only the symmetric cross-entropy loss with stop-grad on the targets is shown to be robust
and able to recover the true labels in our synthetic experiments in appendix F, see Fig. 5 in particular.
The synthetic ablation in appendix F gives interesting insights, and strongly supports the proposed
design of WeaSEL. Indeed, many choices for WeaSEL that perform well enough on the real datasets,

®or, due to the stop-grad operation, equivalently the KL divergence

17

such as no features for the encoder, 7o = 1, sigmoid parameterized accuracies, and all other objectives
that we evaluated, lead to significantly worse performance and less robust learning on the synthetic
adversarial setups.

E Crowdsourcing dataset

As the crowdsourcing dataset, we choose the multi-class LabelMe image classification dataset that
was previously used in the most related crowdsourcing literature [35, 9]. Note that this dataset consists
of 10k samples, of which only 1% are unique, in the sense that the rest are augmented versions of the
1k. They were annotated by 59 crowdworkers, with a mean overlap of 2.55 annotations per image.
The downstream model is identical to the previously reported one [35, 9]. That is, a VGG-16 neural
network is used as feature extractor, and a single fully-connected layer (with 128 units and ReLU
activation) and one output layer is put on top, using 50 % dropout.

Experiments were conducted over seven random seeds with a learning rate of 1e-4 and 50 epochs.
The reported scores are the ones with best validation set accuracy for a L2 weight decay € { 7e-7,
le-4 }. The validation set is of size 200, and was split at random from the training set prior to running
the experiments.

As is usual in the related work for multi-class settings [31], we employ class-conditional accuracies
O\, x) € R™*¢ instead of only m class-independent accuracies. Recall the LF outputs indicator
matrix, X € R™*“. To compute the resulting output softmax logits s € RY, we set A = 0N\, x)©®
X € R™ ¢ and s; = ».; Ai; € R, where © is the element-wise matrix product and we sum up the
resulting matrix A across the LF votes dimension.

Snorkel+MIG indicates that the downstream model f was trained on the MIG loss with respect to
soft labels generated by the first Snorkel step, label modeling. Snorkel+CE refers analogously to the
same training setup, but using the cross-entropy (CE) loss. All crowdsourcing baseline models are
based on the open-source code from [9].

F Robustness experiments

In this section we give more details on the experiments that validate the robustness of our approach
against (strongly) correlated LFs that are not better than a random coin flip. In addition, we present
one further experiment where the random LFs are independent of each other — a more difficult setup
for learning (but which does not violate any assumptions of the PGM-based methods) — and our
model, WeaSEL, again is shown to be robust to a large extent.

In contrast to WeaSEL, prior PGM-based work [31, 19, 11] attain significantly worse performance
under these settings, due to assuming a Naive Bayes generative model where the weak label sources
are conditionally independent given the latent label.

F.1 Adversarial LF duplication

For this experiment we use our set of 12 LFs for the IMDB dataset and generate a fake adversarial
source by flipping the abstain votes, of the 80%-accurate LF that labels for the positive sentiment on
“excellent’, to negative ones.

F.2 Recovery of true labels under massive LF noise

In this set of synthetic experiments we again validate the robustness of our approach. We focus on the
Bias in Bios dataset, and use the features and true labels, y*, therein. We let our initial LF set consist
of 1) a 100% accurate LF, that is we set Ay = y*, and 2) a LF that votes according to the class balance
(i.e. a coin flip with probabilities for tail/head set according to the class balance), i.e. A2 ~ P(y).
In the first experiment we then add the same random LF A5 multiple times into the LF set (i.e. we
duplicate it), see F.2.1, while in the second one, we incrementally add random LFs independently of
A2 (and independently of any other LF already in the LF set), see F.2.2. For both setups, our model,
WeaSEL, is able to recover the performance of the same downstream model, f, that is directly trained
on the true labels, y* (F1 = 90.65, ROC-AUC = 0.967, see Table 4). In contrast, the PGM-based
baselines quickly collapse.

18

Test ROC-AUC

. — \tau_1=2 — \tau_1=1(E2E)
0.8
0.6
0.4
02 Epoch
20 40 60 80 100

Figure 3: Test AUC performance at each training epoch for different choices of 71 € {1/5,1/3,1,2}
on our synthetic experiment, see appendix F.2.1, averaged out over the number of duplicates and five
random seeds. A lower 77 leads to slower or worse convergence in this specific case. A lower 71
corresponds to smoother accuracies, which makes their induced label depend on more LFs. Since in
this specific case only one LF is 100% accurate and the rest are not better than a coin flip, the shown
behavior is expected.

F.2.1 Random LF duplication

This experiment is inspired by the theoretical comparison in Appendix E of [9] between the authors’
end-to-end system and maximum likelihood estimation (MLE) approaches that assume mutually
independent LFs. The authors show that such MLE methods are not robust against the following
simple example with correlated LFs. Based on the setup described above in F.2, we duplicate the
random LF A, multiple times, i.e. A3 = --- = \,;, = A\2. We run experiments for varying number
of duplicates € {2,25,100,500,2000}. With this synthetic set of m LFs, where one LF is 100%
accurate while the other m — 1 LFs are just as good as a random guess, we train WeaSEL in the usual
way on the features from the Bias in Bios dataset as well as the corresponding, just created, LF votes.
WeaSEL is able to consistently and almost completely recover this fully supervised performance, even
when the number of duplicates is very high (m = 2001). Snorkel and triplets methods, on the other
hand, fare far worse (AUC =~ 0.5) for all numbers of duplicates. This behavior is similar to the one
observed in F.1 (see Fig. 2 for the performance of the baselines and WeaSEL averaged out over the
varying number of duplicates, and Fig. 5a-c for the separate performance of WeaSEL for each number
of duplicates).

We also run an additional ablation study on this synthetic experiment that shows that the observed
robustness does not hold for all configurations of WeaSEL. In Fig. 5 we plot the test performance
curves over the training epochs for each number of LF duplications.

Our proposed model, WeaSEL enjoys a stable and robust test curve (Fig. 5c) and quickly recovers the
fully supervised performance, even with 2000 LF duplicates (although convergence becomes slower
as the LF set contains more duplicates). On the other hand, we find that many other configurations and
designs of WeaSEL lead to less robust and worse converging curves, collapses or bad performances.
Indeed, for this experiment it is key to use as the loss function the proposed symmetric cross-entropy
with stop-grad applied to the targets (see Fig. Se, 5f), accuracies parameterized by a scaled (Fig.
5h) softmax (Fig. 5g), and, to a lesser extent, using the features an input to the encoder (Fig. 5d).
While the impact of not using stop-grad, or using an asymmetric cross-entropy loss is similarly
bad in the main ablations on our real datasets, other configurations, and in particular sigmoid-
parameterized accuracies (the choice in [25]), an unscaled softmax, and no features for the encoder,
often perform well there. This additional ablation, however, provides support for why the good
performances on the real datasets notwithstanding, our proposed design choices are most appropriate
in order to attain strong test performances as well as stable and robust learning.

19

== Fully Supervised f - Snorkel Triplet-Mean —— WeaSEL

o o o
N 0 ©
) | |

Downstream AUC score
o
[e)]

o
5
|

|
2 3 4 5 6 7 8 9 10 15 20 25 50 75 100
Number of random LFs

Figure 4: We start with a 100% accurate LF (i.e. ground truth labels) and incrementally add new,
independent LFs that are no better than a random guess. WeaSEL recovers the performance of training
directly on the ground truth labels (Fully Supervised f), for up to 10 such randomly voting LFs that
are independent of each other. The PGM-based prior work, rapidly degrades in performance (AUC
~ 0.5) and is not able to recover any of the 100% accurate signal of the true-labels-LF, as soon as the
LF set is corrupted by three or more random LFs. Performances are averaged out over five random
seeds, and the standard deviation is shaded. For more details, see F.2.2

F.2.2 Random, independent LFs

We start with the same setup as above in F.2, but instead of duplicating the same LF multiple times
as in F.2.1, we now draw a new, independent random LF at each iteration. That is, we start with
A1 =y, A2 ~ P(y) as our initial LFs, and the incrementally add new LFs A; ~ P(y) that have no
better skill than a coin flip. Note that this is arguably a harder setup than the one in the previous
experiments, since there the LF set was corrupted by a single LF voting pattern. In this experiment,
multiple equally bad, but independent, LFs corrupt the 100% accurate signal of \;. Notably, since
these Aa, ..., Ay, are independent, we are not violating the independence assumptions of PGM-based
methods. Nonetheless, we find that these PGM-based baselines break with only three (m = 4) of
such random, but independent LFs, while WeaSEL is shown to be fully robust and able to recover the
ground truth LF A\; for up to 10 random LFs (m = 11). For more LFs, WeaSEL starts deteriorating
in performance, but is still able to consistently outperform the trivial solution of voting randomly
according to the class balance (i.e. based on Ao, ..., \;;) and the baselines, see Fig. 4.

G Broader Impact

Large labeled datasets are important to many machine learning applications. Reducing the expensive
human effort required to annotate such datasets is an important step towards making machine learning
more accessible, more manageable, more beneficial, and therefore used more broadly. Our proposed
end-to-end learning for weak supervision approach provides another step towards the practical utility
of learning from multiple sources of weak labels on large datasets. Methods such as the one presented
in our paper must be applied with care. One of the risks to consider and mitigate in a particular
application is the possibility of incorporating biases from subjective humans who chose weak labeling
sources. This is particularly the case when heuristics might apply differently to different subgroups in
data, such as may be the case in scenarios highlighted in recent research towards fairness in machine
learning.

20

Test F1 Test ROC-AUC
— 2001LFs — 5 — 26LFs — 2001LFs — 501LF — 26LFs

06

epoch 0 Epoch
1 2 3 4 5 6 7 8910 20 30 40 50 60 708090100 1 2 3 4 5 6 7 8910 20 30 40 50 60 70 8090100
(a) WeaSEL log-scale F1 (b) WeaSEL log-scale AUC
Test ROC-AUC Test ROC-AUC
= 2001LFs - — 26LFs = 2001LFs - F — 26LFs

08 0.8
06 06
04 0.4
0s Epoch 0o Epoch
40 60 80 100 60 80 100
(c) WeaSEL (d) No features for encoder
Test ROC-AUC Test ROC-AUC
— 2001LFs — — 26LFs — — 2001LFs — F — 26LFs —
1 1
06 06
04 04
02 Epoch 0o Epoch
20 40 60 80 100 20 40 60 80 100
(e) No stop-grad (f) Asymmetric CE
Test ROC-AUC Test ROC-AUC
- 2001LFs - - 26LFs - - 2001LFs - F - 26LFs -
1)
\ WV”T M\\/'\/\/\\,
08 08
06 06
o g N / i Epoch
2 w© 6 % 100 20 w0 w % 100
(g) Sigmoid accuracies (hym=1

Figure 5: We start with a 100% accurate LF (i.e. ground truth labels) and plot test performances
at each training epoch for a varying number of duplicates € {2, 25,100, 500, 2000} of a LF that is
no better than a coin flip. Performances are averaged out over five random seeds, and the standard
deviation is shaded. More details are given in F.2.1.

21

