
Published as a conference paper at ICLR 2022

A DISTANCE

A.1 DISTANCE BETWEEN DYNAMICS

We here give the definition of the distance d. Let u and v be two functions of L2(Rp,Rp). We
consider the distance:

d(u, v) = EX∼pX‖u(X)− v(X)‖2 (18)

Naturally, eq. (18) verifies the triangle inequality, the symmetry and the positiveness. Moreover, in
this case, for all functions f , d(., f) is convex. Indeed, for u, v two functions, and λ ∈ [0, 1]:

d(λu+ (1− λ)v, f) = EX∼pX‖λu(X) + (1− λ)v(X)− f(X)‖2
= EX∼pX‖λu(X)− λf(X)− (1− λ)f(X) + (1− λ)v(X)‖2
≤ λEX∼pX‖u(X)− f(X)‖2 + (1− λ)EX∼pX‖v(X)− f(X)‖2

Hence the convexity of d(., f). This consideration suffices to ensure the convexity of Sk and Su
defined in section 3.

A.2 DISTANCE BETWEEN FLOWS

Consider the ODE with X(t), X0 ∈ Rp:

dX(t)

dt
= f(X(t)), X(t = 0) = X0 (19)

Equation (19) admits a unique solution as soon as f is Lipschitz. We note X? this solution. Then,
we can defined the flow φf of such ODE as :

[0,T]×Rp → Rp

t, X0 → φf (t,X0) = X?(t)
(20)

With the definition of eq. (20), we can define the distance between two flows of ODE as:

dφ(φu, φf) = EX0∼pX0

∫ τ

t0

‖φu(t,X0)− φf (t,X0)‖ dt (21)

dφ is positive and symmetric. Let φu, φv be two flows, we have the triangle inequality:

dφ(φu, φf) = EX0∼pX0

∫ τ

t0

‖φu(t,X0)− φf (t,X0)‖ dt

= EX0∼pX0

∫ τ

t0

‖φu(t,X0)− φv(t,X0) + φv(t,X0) + φf (t,X0)‖ dt

≤ EX0∼pX0

∫ τ

t0

‖φu(t,X0)− φv(t,X0)‖+ ‖φv(t,X0) + φf (t,X0)‖ dt

≤ dφ(φv, φv) + dφ(φv, φf)

Let φf be fixed, we also have the convexity of dφ(., φf) with respect to the first argument. Indeed
for λ ∈ [0, 1]:

dφ(λφu + (1− λ)φv, f) = EX0∼pX0

∫ τ

t0

‖λφu(t,X0) + (1− λ)φv − φf (t,X0)‖ dt

= EX0∼pX0

∫ τ

t0

‖λφu(t,X0) + (1− λ)φv − λφf (t,X0)− (1− λ)φf (t,X0)‖ dt

≤ λ dφ(φu, φv) + (1− λ)dφ(φv, φf)

However, in this case the convexity is not ensured with respect to u and vThis is the reason why for
theoretical investigations, we consider the distance d instead of dφ.

Nonetheless, dφ(φu, φf) = 0 =⇒ φu = φf =⇒ u = f .

14

Published as a conference paper at ICLR 2022

B REMARK ON ADDITIVE DECOMPOSITION

First, note that in the case of a metric space the decomposition as defined in eq. (2) always exists.

We now detail an intuition for the well-posedness of such decomposition.

Let Hk be a closed convex subset of functions of an Hilbert space (E,<,>), and f the function
we want to approximate with partial knowledge (represented by the space of hypothesisHk). Then,
thanks to Hilbert projection lemma, we have the uniqueness of the minimizer of ming∈Hk

‖f − g‖,
i.e it exists one unique hk ∈ Hk such that: ∀g ∈ Hk, ‖f − hk‖ ≤ ‖f − g‖.
Finally, the additive decomposition hypothesis presents a remarkable advantage in the case of a
vector space. Indeed, if Hk is a (closed) vector space, let H⊥k be its supplementary in E, then we
have the uniqueness in the decomposition: f = fHk

+ fH⊥
k

, where fH⊥
k
∈ H⊥k and fHk

∈ Hk.

The existence and uniqueness flowing directly from the additive decomposition hypothesis, this can
explain why such assumption is common when bridging ML and MB hypothesis.

C UPPER BOUNDS

C.1 DERIVATION OF EQUATION (4)

The first upper bound is a simple use of the triangle inequality:

d(h, f) = d(h, f) + d(hk, f)− d(hk, f)

≤ d(hk, f) + |d(h, f)− d(hk, f)|
≤ d(hk, f) + d(h, hk)

C.2 DERIVATION OF EQUATION (5)

To derive the second upper bound, we assume that fprk comes from an overall dynamics fpr obeying
the additive decomposition hypothesis of eq. (2) so that fpr and fprk verifies: fpr = fprk +fpru . First,
with computations similar to eq. (4), we have:

d(h, f) ≤ d(h, fpr) + d(fpr, f) (22)

Then:

d(h, fpr) = d(h, fpr) + d(hk, f
pr
k)− d(hk, f

pr
k)

≤ d(hk, f
pr
k) + |d(h, fpr)− d(hk, f

pr
k)|

≤ d(hk, f
pr
k) + |d(h, fpr)− d(h, fprk)− d(h, fprk) + d(hk, f

pr
k)|

≤ d(hk, f
pr
k) + |d(h, fpr)− d(h, fprk)|+ |d(hk, f

pr
k)− d(h, hk)|

≤ d(hk, f
pr
k) + d(fpr, fprk) + d(h, hk) (23)

Combining Equations (22) and (23), we retrieve eq. (5):

d(h, f) ≤ d(hk, f
pr
k) + d(h, hk) + d(fpr, fprk) + d(fpr, f) (24)

and we have: Γ = d(fpr, fprk) + d(fpr, f). Γ is a constant of the problem that cannot be optimized.

C.3 UPPER-BOUND USING AUXILIARY DYNAMICS fpr

Let fpr be the dynamics of model data, we can link up the error made by h on true data (following
dynamics f) and the error made by h on model data (with dynamics fpr) via:

d(h, f) ≤ d(h, fpr) + d(fpr, f) (25)

Thus a pre-training on auxiliary data of dynamics fpr amounts to control the term d(h, fpr) in the
upper-bound of eq. (25).

15

Published as a conference paper at ICLR 2022

C.4 SELF-SUPERVISION

Let h = hk + hu be the function to learn and Gψ the recognition network providing an estimate θ̂ik
of the parameters from an initial sequence (Xi

t0 , . . . , X
i
t0+k∆t). This learning setting corresponds to

how velocity fields are learned from consecutive measurements of the tracer fields T in section 4.2.

To compute d(hk, f
pr
k) in the case where fpr = h?, where h? = h?k+h?u is a learned model, we rely

on the computed θk associated to h?k (thanks for example to the algorithm of section 3.2 associated
to eq. (4)) to generate a synthetic dataset with achievable supervision in the space of the parameters
θk.

From a real initial sequence (Xi
t0 , . . . , X

i
t0+k∆t), we can estimate the unknown parame-

ter θik associated to sequence i with the recognition network G?ψ learned with h?, i.e
θik = G?ψ

(
Xi
t0 , . . . , X

i
t0+k∆t

)
. Then, integrating from the initial condition Xi

t0 , we generate a tra-
jectory of known parameters θik with dynamics h? denoted by: X̃i =

(
X̃i
t0 , . . . , X̃

i
tn

)
. Sampling

the space of initial conditions, we obtain a synthetic dataset:
(
(X̃1, θ1

k), . . . , (X̃m, θmk)
)

enabling us
to perform self-supervision for Gψ . Let θ̂ik be the parameters estimated by Gψ from the simulated(
X̃i
t , . . . , X̃

i
t+k∆t

)
, we make the following approximation:

d(hk, fk) ≈ 1

m

m∑
i=1

∥∥∥θ̂ik − θik∥∥∥
2

(26)

D PROOFS

D.1 NOTE ON THE CONVEXITY OF Sk AND Su

Convexity of Sk

Proof. Let u, v ∈ Sk:
d(tu+ (1− t)v, f) = ‖tu+ (1− t)v − f‖ = ‖tu− tf + (1− t)v − (1− t)f‖

≤ tµ1 + (1− t)µ1 = µ1

Hence the convexity of Sk.

Convexity of Su

Proof. Let t ∈ [0, 1] and u, v ∈ Su.
d(hk, hk + tu+ (1− t)v) = d(0, tu+ (1− t)v)

≤ td(u, 0) + (1− t)d(v, 0)

≤ µ2

Hence the convexity of Su.

D.2 ODE IDENTIFICATION

Consider the following set: SA = {X(t) ∈ C1([0, T],Rp) such that: ∃A ∈ Mp,p(R), X ′ = AX},
where T > 0.

SA is not a convex set. Consider u and v in SA, and consider Au and Av so that u′(t) = Auu(t)
and v′(t) = Avv(t). For λ ∈]0, 1[: we have:

[λu+ (1− λ)v]′ = λu′ + (1− λ)v′

= λAuu+ (1− λ)Avv

In general the last term is not equal to Aλu+(1−λ)v(λu + (1 − λ)v), for some matrix Aλu+(1−λ)v .
Thus SA is not a convex set. However, discretizing the trajectories and employing a simple integra-
tion scheme leads to considering the following cost function:

L(A) =
∑
t

‖
(
Xs(t+ 1)− (A∆t+ Id)XA(t)

)
‖22, (27)

16

Published as a conference paper at ICLR 2022

As a least square regression problem, L(A) is convex with respect to A. A least square regres-
sion setting can also be recovered using more complex integration schemes, or several time steps
integration.

D.3 PROOF FOR WELL-POSEDNESS OF EQUATION (7)

We set ourselves in the Hilbert space of squared integrable functions with the canonical scalar prod-
uct
(
L2(Rp,Rp), <,>

)
. For further consideration on such functional space we refer to (Droniou,

2001).

We assume thatHk hence Sk is convex and a relatively compact family of functions.

Convexity of Sk + Su Let S = Sk + Su = {f |∃fk ∈ Sk, fu ∈ Su, f = fk + fu}.
Let f, g ∈ S and λ ∈]0, 1[:

λf + (1− λ)g = λfk + (1− λ)gk + λfu + (1− λ)gu ∈ Sk + Su

Hence the convexity of S.

CLOSENESS OF Su We show that Su is a closed set. Indeed, Su = g−1([0, µu]), where
g(u) = ‖u‖, Because g is 1-Lipschitz (using the triangle inequality), g is continuous. Therefore
Su is closed set as the inverse image of a closed set by continuous function.

Sequential Limit We now show that S is a closed set thanks to the sequential characterisation: let
fn a converging sequence of elements of S and denote f its limit. We prove that fn converges in S.

Because ∀n, fn ∈ S, we have: fn = fnk + fnu , where fnu ∈ Su and fnk ∈ Sk.

Thanks to the relative compactness of Sk, we can extract a converging sub-sequence, of indexes nj ,
from fnk so that fnj

k → fk ∈ Sk.

Because fn → f , the sub-sequence fnj converges: fnj → f .

By definition, fnj
u is a sequence of Su and we also have that: fnj

u = fnj − fnj

k . Because the
right member of the equation converges (as a sum of converging functions), the left member of the
equation converges i.e. fnj

u converges.

Since Su is a closed set fnj
u converges in Su. We write fu its limit. Therefore, fnj

u =
fnj − fnj

k → f − fk = fu ∈ Su. Hence, f = fu + fk with fu ∈ Su and fk ∈ Sk.

Therefore S is a closed set.

Finally, we can apply Hilbert projection lemma on the closed convex set S and retrieve the unique-
ness of the minimizer of eq. (7).

Remark The relative compactness of a family of functions is a common assumption in functional
analysis. For example, in the study of differential equation Cauchy-Peano theorem provides the
existence to the solution of an ODE under the assumption of relative compactness.

Also, Ascoli theorem provides the relative compactness of a family of function F under
the hypothesis of the equi-continuity of F and the relative compactness of the image space
A(x) = {f(x)|f ∈ F}.

D.4 PROOF OF PROPOSITION 2

We now set ourselves in the Hilbert space
(
L2([0, T],Rp), <,>

)
of squared integrable functions,

where <,> is the canonical scalar product of L2([0, T],Rp).

Proof. Let A be a given invertible matrix. We consider the following space SD = {X ∈
C1([0, T],Rp) such that: ∃D ∈ Rp, X ′ = AX + D and X(t = 0) = X0}, where T > 0. We
show that SD is a closed convex set.

17

Published as a conference paper at ICLR 2022

Convexity Indeed, let λ ∈]0, 1[and u, v ∈ SD. λu+ (1− λ)v is differentiable and:

[λu+ (1− λ)v)]′ = λu′ + (1− λ)v′ = A(λu+ (1− λ)v) +D,

Where D = λDu + (1− λ)Dv . Hence λu+ (1− λ)v ∈ SD.

Closeness via Affine-Space To prove the closeness of SD, we prove that it is an affine space of
finite dimension.

Let g the application that to any vector D ∈ Rd associate the solution XD.

Let D0 ∈ RD, we show that gD0
: D → g(D0 +D)− g(D0) is a linear application.

Naturally, for gD0
(0Rp) = 0L2 . Then for D 6= 0Rp we have:

gD0(D) = eAt(X0 +A−1(D0 +D))−A−1(D0 +D)− eAt(X0 +A−1(D0) +A−1D0

= eAtA−1D

Therefore gD0
is a linear function and g is an affine function.

Moreover, g is an injection. Indeed, if two functions are equals, then they have at most one inverse
image by g thanks to Cauchy-Lipschitz theorem. Therefore it defines a bijection of Rd in g(Rd).
Since, SD = g(Rd), SD is an affine space of dimension p and g is continuous in particular for the
canonical norm induced on L2([0, T],Rp). Therefore SD is an affine space of finite dimension and
is a closed set.

Finding a Unique Minimizer We conclude by applying Hilbert projection lemma: our problem
of minimizing

∫ T
0

∥∥Xs(τ)−XD(τ)
∥∥, amounts to an orthogonal projection problem. Because SD

is a closed convex set, we have existence and uniqueness of such projection. Therefore, it exists a
unique function XD ∈ SD and a unique vector D minimizing its distance to the function Xs.

D.5 ALGORITHM IN LINEAR SETTING

We detail in Algorithm 2 the alternate projection algorithm in a linear setting. We denote
Y = (Xi

t0+∆t, X
i
t0+n∆t) and X = (Xi

t0 , X
i
t0+(n−1).∆t). For readability purposes we set ∆t = 1.

Algorithm 2 Alternate estimation: Linear Setting
Result: A ∈Mp,p(R), D ∈ Rp

k = 0, D0 = 0, A−1
0 = 0 A0

0 = minA‖Y −XA‖
while ‖Dk −Dk−1‖ > ε and ‖Ak −Ak−1‖ > ε do
Dk+1 = minD ‖Y −XAk −D‖22 + λ‖D‖22
Ak+1 = minA ‖Y −XA−Dk+1‖22 + γ‖Y −XA‖22
k ← k + 1

end

D.6 PROOF TO PROPOSITION 3

Naturally, one could estimate jointly D and A using least square regression. However, the idea is to
verify the convergence of such alternate algorithm in a simple case. We conduct the proof for the
first dimension of Y to lighten notations, meaning that we are regressing the first dimension of Y
against the X .

A similar reasoning for the other dimension completes the proof.

Proof. We first give the analytical solution for D. Let An be fixed.

Estimation of D Consider:

LD = ‖Y −XAn −D‖22 + λ‖D‖22 (28)

where D = (d, . . . , d) ∈ RQ. For Q samples, we find d so that ∂L∂d = 0:

18

Published as a conference paper at ICLR 2022

∂L

∂d
= 0⇔ −2 ∗

Q∑
i=1

(yi −XiA
n − d) + 2λd = 0

⇔ Qd+ λd =

Q∑
i=1

(yi −XiA
n)

⇔ d(Q+ λ) =

Q∑
i=1

(yi −XiA
n)

⇔ d =
Y −XA
1 + λ/Q

where Y −XA = 1
Q

∑Q
i=1(yi −XiA

n).

Estimation of A Let D be fixed and consider:

LA = ‖Y −XA−D‖22 + γ‖Y −XA‖22 (29)

Similarly, we aim to cancel the first derivative of LA with respect to all parameters of A =
(a1, .., ap):

∂LA
∂aj

= 0⇔− 2 ∗
Q∑
i=1

xi,j(yi − a0xi,0 + · · ·+ apxi,p − d)

− 2γ ∗
Q∑
i=1

xi,j(yi − a0xi,0 + · · ·+ apxi,p) = 0

⇔− 2Xt(Y −XA−D)− 2γXt(Y −XA) = 0

⇔(1 + γ)XtXA−Xt(Y −D)− γXtY = 0

⇔(1 + γ)XtXA = Xt
(
γY + (Y −D)

)
⇔A =

B−1Xt

1 + γ

(
(1 + γ)Y −D

)
(30)

whereB = XtX . Equation (30) indicates that as soon aD converges, An converges. Thus, we now
prove the convergence of (Dn). Then, for n > 1 consider:∥∥Dn+1 −Dn

∥∥ =
1

1 + λ/Q

∥∥∥Y −XAn − Y −XAn−1
∥∥∥

=
1

1 + λ/Q

∥∥∥X(An −An−1)
∥∥∥

=
1

(1 + λ/Q)(1 + γ)

∥∥∥XB−1Xt
(
[(1 + γ)Y −Dn]− [(1 + γ)Y −Dn−1

)
]
∥∥∥

=
1

(1 + λ/Q)(1 + γ)

∥∥∥XB−1Xt[Dn−1 −Dn]
∥∥∥

≤ K

(1 + λ/Q)(1 + γ)

∥∥Dn−1 −Dn
∥∥

where K = ‖XB−1Xt‖.

Therefore, for λ, γ, sufficiently large, K
(1+λ/Q)(1+γ) < 1. ‖Dn −Dn−1‖ converges as a positive

decreasing sequence. Finally, the sequence of (Dn) converge and so the sequence of (An).

In conclusion, the proposed algorithm converges.

19

Published as a conference paper at ICLR 2022

E DATASETS

In this section, we provide exhaustive simulation details for the damped pendulum, Lotka-Volterra,
and both geophysical datasets.

E.1 DAMPED-PENDULUM

For the damped pendulum data, eq. (15) is integrated with ∆t = 0.2s using a Runge-Kutta 4-
5 scheme from t = 0 up to t = 10s. Both the pulsation ω0 and the damping coefficient k are
fixed across the dataset. We generate 100/50/50 sequences respectively for train, validation and test
sampling over the initial conditions so that (θ, θ̇) ∼ U

(
[−π/2, π/2]× [−0.1, 0.1]

)
.

Small Oscillations To linearize the pendulum, we consider the small oscillations regime and take
the initial conditions so that : (θ, θ̇) ∼ U

(
[−π/6, π/6] × [−0.1, 0.1]

)
. In that case eq. (15) writes

as:
d

dt

(
θ̇
θ

)
=

(
−λ g

L
1 0

)(
θ̇
θ

)
(31)

and following notations of section 3.3, we have: DA = 0 and A =

(
−λ g

L
1 0

)
E.2 LOTKA-VOLTERRA

For Lotka-Volterra data, eq. (16) is integrated with ∆t = 0.05 using a Runge-Kutta 4-5 scheme
from t = 0 up to t = 20. All parameters α, β, γ, δ are set to 1 across the dataset. We generate
100/50/50 sequences respectively for train, validation and test sampling over the initial prey and
predators populations so that (x, y) ∼ U

(
[0, 2]2

)
.

Practical Issues and Adaptation Assuming that α and γ have positive values makes the following
problem arises: the trajectories defined by hk for the prey are unbounded, whereas the trajectories
defined by eq. (16) are. Minimizing d(hk, f) over long term horizon will lead in an underestimation
of α to match the bounded behaviour of true data. Therefore, we enforce d(hk, f) on the prey
component as soon as the number of predator is small. In practice, we set this threshold to 0.15.

E.3 GEOPHYSICAL DATASETS

We present in this section introductory tools for the understanding of the fluid dynamics data pre-
sented in section 4.2. We first introduce the physical modeling of ocean dynamics. Then, we outline
the Adv+S dataset simulation which draws from ocean modeling. Finally, we introduce the Natl
dataset and the proxy data used in the experiments.

Introduction To Ocean Modeling The increase in ocean observations thanks to satellites and
floats enabled a great development in Earth modeling over the last decades. The ocean circula-
tion, that is the current velocity fields dynamics, are now realistically modeled in tri-dimensional
structured models such as NEMO (Madec, 2008).

Such models rely on in-depth physical knowledge of the studied system and its representation
through partial differential equations. Integrated over depth, the equations associated to the transport
of the Sea Surface Temperature T by a time-varying horizontal velocity field U can be written as:

∂T

∂t
= −∇.(TU) +DT + FT (32)

∂U

∂t
= −(U.∇)U + f ∧ U − g′∇h+DU + FU (33)

where f is the Coriolis parameter, h the depth of the surface layer obtained from sea surface height
(SSH) observations, g′ the reduced gravity which takes the stratification in density of the ocean into
account such that g′ ≈ g.10−3. In a two-dimensional setting, ∇(TU) refers to the advection of a

20

Published as a conference paper at ICLR 2022

scalar quantity T by a velocity field U = (u, v) and writes as : ∇(TU) = ∂T
∂x u+ ∂T

∂y v. The mixing
terms, referred to as DT/U and the forcings FT/U , are not known.

In the context of the presented work, the physical state Zt = (Tt, Ut), fX and fY from eq. (1) can
be interpreted as follows: fX represents the dynamics of the observed T , i.e. fX(T) = −∇.(TU)+
DT + FT in eq. (32). fY represents the dynamics of U in eq. (33), i.e. fY (U, h) = −(U.∇)U +
f ∧ U − g′∇h+DU + FU .

Whereas T is observed by satellites, U is not known. However, the Sea Surface Height (SSH) could
be used to compute coarse estimates of U . Indeed, under hypothesis such as stationarity (∂U∂t = 0),
incompressibility ((U.∇)U = 0)), forcings can be omited. In this case, eq. (33) can be rewritten
into

f ∧ U = −g′∇h (34)
When projected onto x and y axis, eq. (34) becomes

−fv = −g′ ∂h
∂x
, fu = −g′ ∂h

∂y
, (35)

Note that eq. (34) and eq. (35) do not hold at fine scales as the stationarity and incompressibility
assumptions only hold at large scale. In this case, the SSH h can be regarded as a stream function.

Both datasets considered in the paper follow the same equations approximating the tracer equation
(eq. (17)) inspired by eq. (32):

∂T

∂t
= −∇.(TU) + S (36)

We study the equations 32 and 33 in an incremental approach. In the following parts, we describe
how T , U and S are computed in both datasets Adv+S and Natl.

E.3.1 ADV+S

We first investigate a dataset generated following simplifying assumptions (Adv+S). We don’t rely
on true U and S, we instead build them so that they correspond to our hypothesis.

Building a Velocity Field U Under stationarity and incompressibility hypothesis, U can be ap-
proximated from a stream function H. Note that, in this dataset, H is not equal to the SSH h, it is
simulated following (Boffetta et al., 2001):

H(x, y, t) = − tanh[
y −B(t)× cos kx√

1 + k2B(t)2 × sin2kx
] + cy, (37)

As introduced precedently (see eq. (34)), eq. (33) can be simplified and we compute U = (u, v) so
that it follows:

u = −∂H
∂y

, v =
∂H
∂x

(38)

Note that B varies periodically with time according to B = B0 + ε cos(ωt + φ). We compute 10
different velocity fields sampling random parameters B0, k, c, ω, ε, φ.

Building a Source Term S In eq. (32), the diffusion term DT is omitted. We generate the source
term S so that it represents the forcing term FT in eq. (36). To illustrate heat exchanges, we draw
from Frankignoul (1985). This source term is a non linear transformation of U = (u, v) multiplied
by the difference between the ocean temperature and a reference temperature:

S(U, T) = we × (T − Te) where we =

{
0 if ∂H∂t < 10−4

1 otherwise.
where Te is the sequence mean image (computed without source).

Dataset Generation Using computed U and S, we integrate eq. (36) with ∆t = 8640s over
30 days, using a Semi-Lagrangian scheme (see explanations below). We generate 800/100/200
sequences respectively for train, validation and test sampling over the initial conditions, which are
images of size 64 × 64 sampled from Natl dataset. Finally, for integration, we impose East-West
periodic conditions, implying that what comes out the left part re-enters at the right, and reciprocally.
We also impose velocity to be null on both top and bottom parts of the image.

21

Published as a conference paper at ICLR 2022

Semi-Lagrangian Integration Unlike Eulerian scheme, relying on time discretization of the
derivative, the semi Lagrangian scheme relies on the constancy of the solution of a PDE along a
characteristic curve. Consider a solution to the advection equation, i.e. eq. (36) with S = 0. The
method of characteristics consists in exhibiting curves (x(s), t(s)) along which the derivative of the
solution T is simple, i.e ∂T

∂s (x(s), t(s)) = 0. For a 1D constant advection scheme, computations
lead to:

dt

ds
= 1 =⇒ s = t

dx

ds
= U =⇒ x = x0 + Ut

giving therefore, T (x, t) = T0(x − Ut), linking the value of the solution at all time to its initial
condition. Therefore from a single observation at t0, it suffices to estimate the original departure
points x0 − Ut to infer the prediction at t.

However, when U is not constant in time, the method remains doable, not along characteristic lines
defined by : (x0 + Ut), but along characteristic curves which are given by:

dt

ds
= 1 =⇒ s = t

dx

ds
= U(x, t) (39)

A great deal in the semi-Lagrangian literature involves solving correctly eq. (39). We use the con-
ventional mid-point integration rule and the semi-Lagrangian is implemented using Pytorch function
gridsample, following in (Jaderberg et al., 2015). Further developments can be found for exam-
ple in (Diamantakis, 2014).

E.3.2 NATL

This second dataset depicts the actual ocean circulation, i.e. we consider both eq. (32) and eq. (33).
In this case, no assumptions are made on U and S represents both diffusion terms DT and forcing
terms FT . We access daily data over a year of ocean surface temperature of the North Atlantic
observations model resulting from (Ajayi et al., 2019) 1. The dataset covers a 2300km× 2560km
zone at 1.5km resolution, in the North Atlantic Ocean.

In this real-life dataset, sea surface height (SSH) partial derivative with respect to x and y serves as
proxies to the (unobserved) velocity fields U . Indeed, recall that simplifying hypotheses led us to
eq. (35).

We divide the Natl zone into 270 patches of size 64 × 64. For each region, we extract sea surface
temperatures, velocity fields, source terms and height variables. We sample 200/20/50 sequences of
1 year, for respectively train, validation and test. In this case, ∆t = 86400s (1 day).

F TRAINING DETAILS

All experiments were conducted on NVIDIA TITAN X GPU using Pytorch (Paszke et al., 2019).

Hyper-Parameters Interpretation From eq. (4), two independent terms appear justifying an al-
ternate projections approach.

First, we highlight that strictly minimizing d(hk, f) biases our estimation of hk. However, it may
yield a good estimation of hk provided that fk contributes significantly to the prediction of f . Hence,
we interpret this loss as an initialization loss. Thus, in most applications, we progressively decrease
its magnitude along training as detailed in appendices F.1 to F.3.

On the other hand, d(hu, 0) aims at constraining the free form function hu to make its action as
small as possible. We interpret this loss as a stability penalty.

1Details available at : https://meom-group.github.io/swot-natl60/access-data.html

22

https://meom-group.github.io/swot-natl60/access-data.html

Published as a conference paper at ICLR 2022

Finally, aiming to recover exact trajectories of observations, we proceed as suggested in (Yin et al.,
2021) progressively increasing the hyper-parameters associated to d(h, f).

The practical implementation is summarized in the following algorithm:

Algorithm 3 Alternate estimation: Practical Setting
Initialization: θ0

u = 0, θ0
k = minhk∈Hk

d(hk, f), λh, λhk
, λhu

for epoch = 1 : Nepochs do
for batch = 1 : Bk do

θn+1
k = θnk − τ1∇θk [λhd(h, f) + λhk

`(hk)]

end
for batch = Bk : Bu do

θn+1
u = θnu − τ1∇θu [λhd(h, f) + λhud(hu, 0)]

end
λh = τ2λh; λhk

= 1
τ2
λhk

; λhu = 1
τ2
λhu

end

F.1 DAMPED PENDULUM

Architecture Details The physical parameters to be learned is a scalar of dimension 1, and hu is
a 1-hidden layer MLP with 200-hidden neurons with leaky-relu activation.

Optimization For this dataset we use RMSProp optimizer with learning rate 0.0004 for 100
epochs with batch size 128. We supervise the trajectories up to t = ∆t × 50, i.e we enforce dφ
over (t0 + ∆t, .., t0 + 50∆t). Overall the number of optimization subsequences for training is
17000. We alternate projection on Sk and Su by descending the gradient 10-batches on hk then
10-batches on hu.

Hyperparameters We initialize λhk
= 0.1 and decrease it geometrically down to λhk

= 0.001.
We initialize λh = 0.1 and increase it geometrically up to λh = 100. λhu

is fixed through training
at 0.1.

The hyper-parameters were chosen by randomly exploring the hyper-parameters space by sampling
them so that λ ∼ U(1, 0.1, . . . , 10−4). We select the ones with the lowest prediction errors, i.e with
lowest dφ(h, f).

For the ablation study of Table 1, we set to 0 the hyper-parameters associated to the non-considered
loss.

The training time for this dataset is 1 hour.

F.2 LOTKA-VOLTERRA

Architecture Details The physical parameters to be learned is a vector of dimension 2 accounting
for (α, β) in eq. (16), and hu is a 1-hidden layer MLP with 200-hidden neurons with leaky-relu
activation.

Optimization We use Adam optimizer with learning rate 0.0005 for 200 epochs with batch size
128. Overall the number of sequences for training is 15000. We supervise the trajectories up to
t = ∆t× 25, i.e we enforce dφ over (t0 + ∆t, .., t0 + 25∆t). We alternate projection on Sk and Su
by descending the gradient 10-batches on hk then 10-batches on hu.

Hyperparameters We initialize λhk
= 0.1 and decrease it geometrically down to λhk

= 0.001.
We initialize λh = 0.001 and increase it geometrically up to λh = 1. λhu

is fixed through training
at 0.001.

23

Published as a conference paper at ICLR 2022

The hyper-parameters were chosen by randomly exploring the hyper-parameters space by sampling
them so that λ ∼ U(1, 0.1, . . . , 10−4). We select the ones with the lowest prediction errors (i.e
lowest d(h, f)).

For the ablation study of Table 1, we set to 0 the hyper-parameters associated to the non-considered
loss.

The training time for this dataset is 2 hours.

F.3 ADV+S

Architectures Details The physical parameters to be estimated are the velocity fieldsU , of dimen-
sion (2, 64, 64). As U varies over time, we follow data assimilation principles to map a sequence
of 4 consecutive measurements of the tracer field T to the associated velocity field (Gaultier et al.,
2013). To do so, we parameterize a recognition network Gψ by U-net with at most 512 latent chan-
nels also following the implementation of (Isola et al., 2017), taking as input a sequence of 4 time
steps of T : (Tt0 , .., Tt0+3∆t). The residual dynamics hu is learned by a convolutional ResNet, with
1 residual block taking as entry the same sequence of T . We implement hk via a semi-lagrangian
scheme, taking as input Tt and the estimated Ut to predict Tt+1.

Optimization We use Adam optimizer with learning rate 0.0001 for 30 epochs with batch size 32.
We supervise the trajectories up to t = ∆t× 6, i.e we enforce dφ on (Tt0+∆t, ..., Tt0+6∆t). Overall
the number of sequences for training is 36800. We alternate projection on Sk and Su by descending
the gradient 4-batches on hk then 6-batches on hu.

Figure 3: Best viewed in color. Schematic view of our model in the context of section 5.2, applied on the
Adv+S dataset.

Hyperparameters, setting of eq. (4) We initialize λhk
= 0.1 and decrease it geometrically down

to λhk
= 0.00001. We initialize λh = 0.01 and increase it geometrically every epoch up to λh,f =

1000. λhu
is fixed through training at 0.1. We select the hyperparameters with the lowest prediction

errors (i.e lowest d(h, f)). For the ablation study of Table 1, we set to 0 the hyper-parameters
associated to the non-considered loss.

The training time for this dataset is 8 hours.

F.4 NATL

Architecture Details The architectures in this setting are identical to the ones described in ap-
pendix F.3.

Optimization We use Adam optimizer with learning rate 0.00001 for 50 epochs with batch size
32. Overall the number of sequences for training is 67000. We enforce dφ over 6 time-steps, i.e we
supervise the predictions on timesteps: (t0 + ∆t, .., t0 + 6∆t). We use dropout in both Gψ and hu.

24

Published as a conference paper at ICLR 2022

Hyperparameters, setting of eq. (4) For this setting, λh geometrically increases from 0.01 up to
100. We initialize λhk

= 0.1 and decrease it geometrically down to λhk
= 0.00001. λhu

is fixed
through training at 0.1. We alternate projection on Sk and Su by descending the gradient 10-batches
on both hk and hu.

The selected model is the one with lowest prediction errors on validation set (i.e lowest d(h, f)),
sampling uniformly the hyperparameters: λ ∼ U(1, 0.1, . . . , 10−4).

Hyperparameters, setting of eq. (5) Because the dynamics of Natl is highly non linear and
chaotic, we follow (Jia et al., 2019) and first warm-up the parameters recognition network Gψ on
the velocity fields proxies for 10 epochs. For this setting, λh geometrically increase from 0.01 up to
1. λhk

is set equal to λh. λhu is fixed through training at 0.01.

After warm-up, we alternate projection on Sk and Su by descending the gradient 100-batches on
hk and 300 on hu. In this setting of eq. (5), the selected model is the one with lowest d(h, f) +
d(hk, f

pr
k) error, sampling uniformly the hyperparameters: λ ∼ U(1, 0.1, . . . , 10−4).

The training time for this dataset is 12 hours.

Baselines We train NODE (Chen et al., 2018) and Aphynity (Yin et al., 2021) on both the Adv+S
and Natl dataset. For the training of Aphinity, we set the learning rate at 0.0001 and train on 30
epochs. We initialize λh = 0.01 and increase it geometrically every epoch up to λh = 100. λhu

is fixed through training at 0.1. For the training of NODE, we set the learning rate at 0.00004 and
train on 50 epochs. To perform prediction, we first encode the 4-consecutive measurements of T (as
a 3 × 64 × 64 state) then learn to integrate this state in time thanks to a network h. h is a 3-layer
convolutional networks, with 64 hidden channels. It is integrated using RK4 scheme available from
https://github.com/rtqichen/torchdiffeq.

G ADDITIONAL RESULTS AND SAMPLES

G.1 RESULTS FOR PENDULUM AND LOTKA-VOLTERRA DATASETS

We provide respectively in figs. 4 and 5 phase diagrams for the damped pendulum and Lotka-Volterra
experiments. Both graphs in the phase space indicate that the trajectories and their nature are well
handled by the learned decomposition, providing a periodic phase space for Lotka-Volterra (fig. 5),
and a converging spiral for the damped pendulum (fig. 4).

G.2 RESULTS FOR ADV+S AND NATL

In this section, we provide additionial results on both Adv+S and Natl datasets. A thorough abla-
tion study (table 4) gives results with constant hyperparameters λh and λhk

(row Vanilla Optim),
which validates our hyper-parameters interpretation. Indeed, the results are better when respectively
increasing and decreasing λh and λhk

. Besides, the row Ours eq. (5) refers to a training performed
as introduced in appendix C.4 with fpr = h? trained on eq. (4). Figure 7 shows predictions up to 4
days on the Adv+S data. Finally, figs. 9 and 11 provide results on Natl dataset associated to training
relying on both eq. (4) and eq. (5) and with NODE (Chen et al., 2018).

25

Published as a conference paper at ICLR 2022

0.6 0.4 0.2 0.0 0.2
0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05
true
prediction

Figure 4: Damped Pendulum Phase Diagram. The true phase diagram (blue) and learned (orange dashed) are
close, indicating consistency in the prediction

0.5 1.0 1.5 2.0 2.5

x (prey pop)
0.5

1.0

1.5

2.0

2.5

y
(p

re
d

po
p)

true
prediction

Figure 5: Lotka-Volterra Phase Diagram. The true phase diagram (blue) and learned (orange dashed) are close,
indicating consistency in the prediction

26

Published as a conference paper at ICLR 2022

Table 4: Ablation Study on Adv+S. We report the MSE (× 100) on the predicted observations T , the estimated
velocity fields U and the residual source term S over 6 and 20 time steps from an initial datum t0. Unlike
alternate training, i.e. Algorithm 1, “Joint” rows refer to the simultaneous optimization of hk and hu.

Training Models
t0 + 6 t0 + 20

T U S T U S

Ours (U known) 0.52 n/a 0.19 2.0 n/a 0.32

Alternate

Ours eq. (4) 0.74 1.99 0.17 8.49 2.26 0.31
only d(h, f) 1.02 4.08 0.19 10.59 4.19 0.32
d(h, f) + d(hk, f) 1.02 3.66 0.19 11.42 3.84 0.34
d(h, f) + d(h, hk) 0.77 2.38 0.19 9.5 2.45 0.34
Ours eq. (5) 0.75 2.77 0.17 8.36 2.84 0.29
Vanilla optim. 1.51 3.77 0.3 13.33 4.1 5.15

Joint Ours eq. (4) 1.44 3.3 0.3 12.82 3.5 0.5
only d(h, f) 1.38 6.96 0.39 11.9 7.09 0.54

Figure 6: Best viewed in color. Estimations, targets and differences between estimations and targets on T ,
U = (u, v) and S for Adv+S. Each column refers to a time step, ranging from 1 to 6 half-days. On the left,
true and estimated U = (u, v) over 6 time steps, and differences between targets and estimations. On the right,
prediction of T and S over 6 time steps, and differences between targets and estimations.

27

Published as a conference paper at ICLR 2022

Figure 7: Best viewed in color. Estimations and targets on T , U = (u, v) and S for Adv+S. Each column
refers to a time step, ranging from 1 to 8 half-days. On the left, sequence of T inputs (4 time steps). In the
middle, prediction of T , U = (u, v) and S over 8 time steps. On the right, true T , U and S over 8 time steps.

Figure 8: Best viewed in color. Estimations, targets and differences between estimations and targets on T ,
U = (u, v) and S for Adv+S. Each column refers to a time step, ranging from 1 to 5 half-days. On the left,
true T , U and S over 5 time steps.. In the middle, prediction of T , U = (u, v) and S over 8 time steps. On the
right, differences between targets and estimations.

Figure 9: Best viewed in color. Sequence of estimations on U = (u, v) for the Natl data. The second and third
row respectively refer to training according to eq. (4) and eq. (5). The loss term d(hk, f

pr
k) in eq. (5) enables

our model to learn more accurate velocity fields than when only trained following eq. (4).

28

Published as a conference paper at ICLR 2022

t+1 t+3t+2 t+4 t+5 t+6

True SST

Ours eq.5

Neural-ODE

Figure 10: Best viewed in color. Sequence of prediction on T for the Natl data. Contrary to our model (row
eq. (5)), NODE (row Neural-ODE) struggles to predict any motion in T .

Figure 11: Best viewed in color. Sequence of prediction on T, u, v, S for the Natl data across 3 days trained
using proxy data according to eq. (5)

29

