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ABSTRACT

We contribute to the study of formal languages that can be recognized by trans-
former encoders. We focus on two self-attention mechanisms: (1) UHAT (Unique
Hard Attention Transformers) and (2) AHAT (Average Hard Attention Transform-
ers). UHAT encoders are known to recognize only languages inside the circuit
complexity class AC’ ie., accepted by a family of poly-sized and depth-bounded
boolean circuits with unbounded fan-ins. On the other hand, AHAT encoders can
recognize languages outside AC”), but their expressive power still lies within the
bigger circuit complexity class TC?, i.e., AC’-circuits extended by majority gates.
We first show a negative result that there is an ACO—language that cannot be recog-
nized by an UHAT encoder. On the positive side, we show that UHAT encoders
can recognize a rich fragment of AC’-languages, namely, all languages definable
in first-order logic with arbitrary unary numerical predicates. This logic, includes,
for example, all regular languages from AC®. We then show that AHAT encoders
can recognize all languages of our logic even when we enrich it with counting
terms. Using these results, we obtain a characterization of which counting prop-
erties are expressible by UHAT and AHAT, in relation to regular languages.

1 INTRODUCTION

Transformers have revolutionized natural language processing by facilitating the efficient and effec-
tive modeling of intricate contextual relationships within text (Vaswani et al.,|2017). This remarkable
capability has sparked numerous investigations into the potential boundaries of transformers’ power
(Hahn, 2020 [Yao et al.l 2021; [Pérez et al., 2021; Weiss et al., 2021; [Hao et al.| 2022; |Chiang &
Cholak} [2022; |Bhattamishra et al.,|2020; (Chiang et al., 2023; Merrill et al.}|2022; |Merrill & Sabhar-
wal, 2023} Strobl, [2023)). One natural method for addressing this question is to explore the classes of
formal languages that these architectures can recognize. This approach provides an insight into their
strengths and limitations. The response to this question naturally relies on the specific features al-
lowed within transformer encoders. These encompass the interplay between encoders and decoders,
the kind of functions used for positional encodings and attention mechanisms, and considerations of
fixed or unbounded precision, among other factors.

While the capacity of transformers that incorporate both encoders and decoders to recognize lan-
guages is well understood today (indeed, such architectures are Turing-complete and can thus rec-
ognize any computable language (Pérez et al.| [2021)), a precise characterization of the languages
accepted by transformer encoders is lacking. Unique Hard Attention Transformers (UHAT) are a
class of transformer encoders that has been a subject of many recent papers. As was shown by Hao
et al.| (2022), UHATS recognize only languages in AC", i.e., recognized by families of Boolean cir-
cuits of unbounded fan-in that have constant depth and polynomial size. Intuitively, this means that
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UHATS are weak at “counting” (more precisely, reasoning about the number of occurrences of vari-
ous letters in the input word). For example, consider the following languages: majority and parity.
The first one corresponds to the set of words over alphabet {a, b} for which the majority of positions
are labeled by a, while the second checks if the number of positions labeled a is even. That these
languages are not in AC® follows from a groundbreaking result in circuit complexity theory (Furst
et al.| (1981} |Ajtai, |1983)). Hence, they are neither accepted by UHATs. However, which fragment
of the AC" languages can actually be recognized by UHATSs remains an unresolved question.

We start by showing that not all ACY languages can be accepted by UHATSs. This is obtained by
combining results of |Ajtai| (1983) and Hahn| (2020). Based on the previous observation, we focus
on identifying a rich fragment of AC” that can in fact be embedded into the class of UHATSs. To
achieve this, we use the characterization of AC° as the class of languages expressible in FO(AIl), the
extension of first-order logic (FO) with all numerical predicates defined in relation to the linear order
of a word (Immerman| 1999). We show that UHATS recognize all languages definable in FO(Mon),
the restriction of FO(AIl) with unary numerical predicates only (Barrington et al., 2005). The logic
FO(Mon) is highly expressive. Unlike FO, it can express non-regular languages like {a0" | n >
0}. Remarkably, it contains all regular languages within AC°, which includes examples like (aa)*
— a language not definable in FO. Additionally, our result subsumes the result of [Yao et al.[(2021)),
where it is shown that Dyck languages of bounded nested depth can be recognized by UHATS. These
languages are regular and belong to AC’, hence they are expressible in FO(Mon).

To establish the result that UHATs recognize all languages definable in FO(Mon), we take a slightly
circuitous route: rather than directly formulating FO(Mon) sentences as UHATS, we show that each
formula in LTL(Mon), the extension of linear temporal logic (LTL) (Clarke et al., [2018) with
arbitrary unary numerical predicates, can be equivalently represented as an UHAT. The proof for
FO(Mon) then derives from Kamp’s seminal theorem (Kamp| |1968), which establishes the equiva-
lence between languages definable in FO and LTL. The advantage of dealing with LTL, in contrast
to FO, lies in the fact that all LTL formulas are unary in nature, i.e., they are interpreted as sets of
positions on a word, unlike FO formulas which possess arbitrary arity. This property aligns well
with the expressive capabilities of UHATS, facilitating a proof through structural induction.

While the fact that UHAT is in AC° implies limited counting abilities of such encoders, recent work
has shown that a slight extension of the hard attention mechanism can help in recognizing languages
outside AC° (Hao et al.,2022). Instead of using unique hard attention, this model uses average hard
attention (AHAT), which refers to the idea that the attention mechanism returns the uniform average
value among all positions that maximize the attention. 7o what extent does AHAT enrich the counting
ability of UHAT? In answering this question, we introduce a logic named LTL(C, +), which is an
extension of LTL(Mon) that naturally incorporates counting features. We show that any language
that can be defined within LTL(C, +) can also be identified by an AHAT. The logic LTL(C, +)

can express interesting languages lying outside AC® including majority and parity. More generally,
our result implies that AHAT's are equipped with a powerful counting ability: all permutation-closed
languages over a binary alphabet and all permutation closures of regular languages (which are in
general not context-free) can be recognized by AHATS.

As a corollary, we provide a characterization of the “counting properties” of regular languages which
can be captured by UHAT and AHAT. Two approaches for understanding counting properties of
regular languages can be found in formal language theory: (1) Parikh-equivalence, and (2) taking
letter-permutation closure. Both approaches “remove” the ordering from the input string, and as a
result only the letter-count (more popularly called Parikh images) of an input string matters. In the
setting of (1) (e.g. see (Parikhl[1966;|Kozen, 1997)), a machine is allowed to try all letter reorderings
of the input string w, and accepts iff the machine accepts some letter reordering of w. According
to the well-known Parikh’s Theorem (Parikhl [1966), each context-free language can in this way be
captured by a regular language, e.g., {0"1™ : n > 0} can be captured by (01)*. We show in this
paper that each regular language is Parikh-equivalent to an UHAT language, despite the fact that
PARITY is not in UHAT. In the setting of (2), a machine must accept all letter permutations of an
input string w. The letter-permutation closure of a regular language is not necessarily regular, e.g.,
such a closure language of (abc)* consists of all strings with the same number of a’s, b’s, and ¢’s,
which is not even context-free. In this setting, although UHAT cannot capture regular languages like
PARITY, AHAT can surprisingly capture all regular languages.
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Related work. There has been very little research on identifying logical languages that can be
accepted by transformers. The only example we are aware of is the recent work by |Chiang et al.
(2023), in which a variant of first-order logic with counting quantifiers is demonstrated to be embed-
dable into transformer encoders with a soft attention mechanism. The primary distinction between
their work and our results is the choice of the attention mechanism. Additionally, the logic examined
in their paper does not have access to the underlying word order being considered. This implies that
some simple languages, such as a*b*, which are definable in FO, are not definable in their logic.

Due to the space constraints, some of the proofs are omitted and can be found in the online version
of this paper (Barcel¢ et al.,[2023).

2 BACKGROUND NOTIONS AND RESULTS

2.1 TRANSFORMER ENCODERS

An encoder layer is a function that takes a sequence of vectors, vg,...,V,_1,in R as input, where
d > 0. It produces an output sequence of vectors of the same length, v{,...,v,,_, in R®, with

e > 0. The length of the sequence, n, can be arbitrary, but input and output dimensions, d and e,
are fixed for an encoder layer. For the first part of the paper we employ a unique hard attention
mechanism, meaning that a position only attends to the element with the highest attention score.

Formally, an encoder layer with unique hard attention is given by two affinte transformations
A, B: R? — R and one feed-forward neural network N': R?? — R¢ with ReLU activation func-
tion. For i € {0,...,n — 1}, we set

a; < Vi
where j; € {0,...,n — 1} is the minimum element that maximizes the attention score (Av;, Bv )
over j € {0,...,n — 1}. The a;s are often known as attention vectors. After that, we set
v+ N(v;,a;), 1=0,...,n—1.

It is well-known that feed-forward neural networks with ReLU activation can express the function
max{z,y}. Thus, we may assume that A can be an arbitrary composition of affine functions with
max.

Transformer encoder. A unique hard attention transformer encoder (UHATf] is defined simply
as the repeated application of encoder layers with unique hard attention.

2.2 LANGUAGES ACCEPTED BY TRANSFORMER ENCODERS

Next, we define how a transformer can be used to accept languages over a finite alphabet. This
requires extending transformer encoders with three features: a function for representing alphabet
symbols as vectors (which, for the purposes of this paper, we represent as one-hot encodings),
another function that provides information about the absolute positions of these symbols within the
input word, and a vector that is used for checking whether the word should be accepted or not. The
function that provides information about positions is often referred to as a positional encoding, and
it is essential for recognizing properties of ordered sequences of vectors. In fact, without positional
encoding, encoders treat input sequences as invariant to permutations (Pérez et al., [2021]).

Consider a finite alphabet 3 and let 7' be an UHAT that takes a sequence of vectors over R? as
input and converts it into a sequence of vectors over R¢. A language L C X7 is accepted by T, if
there is an embedding function f: ¥ — R?, a positional encoding function p: N x N — R?, and a
vector t € R, such that for every w € L we have T"(w) > 0, and for every w € 3 \ L we have
T'(w) < 0. Here, T" : ¥* — R is defined as follows. Let w = ag...a,_1 € X", and suppose
the output of 7" when given the input sequence f(ag) + p(0,n), ..., f(an—1) + p(n — 1,n) is the
sequence Vo, ..., v,_1. Then we set T'(w) = (t, vq).

'Some of the previous papers, for instance [Hao et al.[(2022), allow to use in UHAT only rational numbers.
We find this too restrictive because functions such as cos and sin are widely used in practice. Nevertheless, we
stress that our results hold with this restriction, by taking good-enough approximations by rational numbers.
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2.3  FIRST ORDER LOGIC ON WORDS

We assume familiarity with first-order logic (FO). Let > be a finite alphabet. A word w =

ag -+ an_1 in 7 is represented as a structure Sz whose domain is {0,...,n — 1}. This struc-
ture includes a binary relation < that is interpreted as the linear order on the domain, and for each
symbol a € 3, there is a unary relation P, containing positions ¢ = 0,...,n — 1 where a; = a.

Given an FO sentence over words, that is, an FO formula without free variables, we denote the
language of all words w € XV satisfying Sp | ¢ as L(¢). If an L C X7 satisfies L = L(¢), for
some FO sentence ¢, then we say that L is definable in FO.

Example 1. First-order logic (FO) enables us to define certain languages of interest. Here, we
present an illustrative example. Initially, we recognize that we can employ FO to define a relation
first(x) := =3Jy(y < z) that exclusively holds true at the first position of a word. Correspondingly,
we can define a relation last(x) := —3Jy(x < y) that holds solely at the last position of the word.
Moreover, it is possible to define a binary relation succ(z,y) ==z < y A =3z(z < z Az < y),
which defines the successor relation within the domain. With these expressions, we can show that
FO is capable of defining the language (ab)™:

Ju (first(z) A Py(z)) A 3z (last(z) A Py(z)) A VaVy (succ(z,y) = (Pa(z) <> Po(y))).

That is, the first symbol of the word is an a, the last one is a b, every a is followed by a b, and every
b is preceded by an a. O

2.4 UNARY NUMERICAL PREDICATES

It is known that FO sentences can only define regular languages. In turn, there are regular languages
that are not definable in FO. An example is the language (aa)*, which contains those words formed
solely by the symbol a that are of even length. However, there is a straightforward extension of FO
that can define this language: all we need to do is add unary predicate even(x), which holds true at
position ¢ in a word if and only if 7 is even. In fact, extending FO with the predicate even(x) allows
us to define the language (aa)* using the following formula, which indicates that the last symbol in
the word satisfies the unary predicate even: Vz P, (z) A Vy(last(y) — even(y)).

The extension of FO with unary numerical predicates can then be useful for defining languages. We
define a unary numerical predicate © as an infinite family of functions

0, :{0,...,n} — {0,1}, n > 0.

Given a word @ in ¥ of length n, for n > 0, we have that the predicate ©(x) holds in position 4
in w if and only if ,,(¢) = 1 (so far, we do not use the value of 6,, at n as positions are numbered
from 0 to n — 1. We will use this value in Section 4). Notice that under our definition, the truth of a
unary numerical predicate at position ¢ in the word w depends not only on ¢ but also on the length of
the word w. As we will explore further, this characteristic is advantageous for defining interesting
languages in FO extended with arbitrary unary numerical predicates. Following the literature, we
write FO(Mon) for such an extension (Barrington et al., [2005).

Example 2. Consider, for example, the non-regular language {a™b™ | n > 0}. We show that it can
be expressed in FO(Mon) with the help of a unary numerical predicate ©(x) such that ,,(i) = 1
iff n is even and i = n/2 — 1. In fact, it suffices to use the formula: 3z (©(z) A Pa(z) A Vy(y <
z — Py(y)) A Vy(z <y — Py(y))). This formula expresses that the middle point i of @ exists, is
labeled as a, and all positions smaller than ¢ are also labeled a, while all positions larger than ¢ are
labeled as b. This example illustrates the significance of unary numerical predicates depending on
both the position and the length of the word over which the formula is evaluated. O

The definition of the language L(¢) C T defined by an FO(Mon) sentence ¢ is analogous to the
one we provided for FO.

3 AC’ LANGUAGES ACCEPTED BY UHATS

3.1 NOT ALL LANGUAGES IN AC” ARE ACCEPTED BY UHATS.

Hao et al|(2022) proved that languages accepted by UHATS belong to the circuit complexity class
AC’ | ie., the class of languages accepted by families of Boolean circuits of unbounded fan-in,
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constant depth, and polynomial size. We combine results by |Ajtail (1983) and [Hahn|(2020) to show
that the opposite is not the case, i.e., there are AC® languages that are not accepted by UHATs.

As shown in |Ajtai| (1983)), there is an AC®-family of circuits {C,, : {0,1}" — {0, 1} }nen such that
for all n, the circuit C), accepts all strings with at at least 2n/3 ones and rejects all strings with at
most /3. Consider a language approximate majority, consisting of strings accepted by circuits from

{C,}. This language is in AC® by construction. However, as we state next, it cannot be recognized
by an UHAT. This result is proved by using a property of UHATS established in|Hahn| (2020)).

Proposition 1. There is no UHAT that accepts the language approximate majority.

Violal (2009) shows that {C),} can be made polynomial-time computable, which implies the exis-
tence of a polynomial-time computable language from ACP that cannot be accepted by an UHAT.

3.2 MAIN RESULT: FO(Mon) LANGUAGES ARE ACCEPTED BY UHATS

Propositiontells us that not all AC® languages are accepted by UHATS. In this section, we identify
a significant subset of AC® languages that can be accepted by UHATS. To accomplish this, we rely
on the characterization of the class AC” as those languages that can be defined in FO extended with
arbitrary numerical predicates. Our main result establishes that as long as we restrict ourselves to
unary numerical predicates, translation into UHATS is possible.

Theorem 1. Let 3 be a finite alphabet and ¢ an FO(Mon) sentence over words from the alphabet
Y. There is an UHAT that accepts L(¢).

Proving this result by induction on FO(Mon) formulas, which would be the most natural approach
to tackle the problem, turns out to be difficult. The challenge arises because the FO(Mon) formulas
obtained by induction can have arbitrary arity, and transformer encoders do not seem capable of
handling the requirements imposed by such formulas. To address this issue, we take a different
approach. We employ Kamp’s Theorem, which establishes that the languages definable in FO are
precisely those that are definable in linear temporal logic (LTL) (Kamp||1968).

3.3 USING LTL(Mon) TO PROVE OUR MAIN RESULT

We first explain how LTL is defined, as this is crucial to understanding the remainder of the paper.
Let X be a finite alphabet. LTL formulas over X are defined as follows: if a € X, then a is an LTL
formula. Additionally, LTL formulas are closed under Boolean combinations. Finally, if ¢ and 1
are LTL formulas, then X¢ and ¢U% are also LTL formulas. Here, X is referred to as the next
operator, and U as the until operator.

LTL formulas are unary, i.e., they are evaluated over positions within a word. Let w = ag - - - ap—1
be awordin T, and leti = 0,...,n — 1. We define the satisfaction of an LTL formula ¢ over @
at position ¢, written as (w0, i) = ¢, inductively as follows (omitting Boolean combinations):

* (w,4) = aif and only if @ = a;, for a € 3.

* (w,1) = X¢ifandonly if i < n — 1 and (w,i+ 1) = ¢. In other words, ¢ holds in the
next position after ¢ (if such a position exists).

* (w,i) | ¢ U if and only if there exists a position j = 4,...,n — 1 for which (w, j) E ¢
and such that (w, k) = ¢ for every k with ¢ < k < j. That is, ¢ holds starting from
position ¢ until the first position where 1) holds (and a position where v holds must exist).

We can extend LTL with unary numerical predicates in the same way we did it for FO. Formally,
we define LTL(Mon) as the extension of LTL with every formula of the form ©, for © a unary
numerical predicate. We write (w, i) = O to denote that 6,,() = 1, where n is the length of w. If ¢
is an LTL(Mon) formula over 3, we write L(¢) for the set of words w € X with (w0, 0) = ¢.

Kamp’s Theorem establishes that for every FO sentence ¢ there exists an LTL formula ) such that
L(¢) = L(v), and vice-versa. It is straightforward to see that this property extends to the logics
FO(Mon) and LTL(Mon).

Proposition 2. (Kamp,|1968) For every FO(Mon) sentence ¢ there exists an LTL(Mon) formula 1)
such that L(¢) = L(v), and vice-versa.
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Our proof of Theorem[I]is then derived directly from Proposition [2]and the following result.

Proposition 3. Let X be a finite alphabet and ¢ an LTL(Mon) formula defined over words from the
alphabet 3. There is an UHAT T that accepts L(¢).

Before proving this result, we make the following important remark regarding the positional encod-
ing p used by T to accept L(¢). On a pair (i,n) € N x N with ¢ < n, we have that p(i,n) is
composed of elements 4, 1/(i+1), (—1)%, cos (7(1=27/10), sin (7(1=27"/10), and 6,, (i), for every
unary numerical predicate © mentioned in ¢.

Proof of Proposition3] Let ¢ be a formula of LTL(Mon). We say that a UHAT realizes ¢ position-
wise if, given a word w = ag . . . ap,—1 € LT, the UHAT outputs a sequence:

H{(@,O) ': (b}v ]I{(ﬁ), 1) ': (b}v cee H{(ﬂ},n - 1) ): ¢}7

that is, a binary word indicating for which positions ¢ is true on w and for which is false. We show
by structural induction that every LTL(Mon) formula is realizable position-wise by some UHAT.

Let us consider first the base cases. If ¢ = a, for some a € X, our goal is to obtain a sequence:
Kao =a}, {as =a}, ..., an—1 = a}.

This can easily be achieved by using a one-hot encoding as the embedding function. In turn, if ¢ =
O, for © a unary numerical predicate, then ¢ can be realized position-wise using the corresponding
positional encoding p(i, n) = 0,,(i).

We continue with Boolean combinations. They can be implemented position-wise by compositions
of affine transformation and max as follows: —z =1 —z‘and z Vy = maX{2m72’2y71}+1.

For the cases when our formula is of the form X¢ or U1, we need the following lemma.
Lemma 1. There is an UHAT that transforms each xq, . . ., x,—1 € {0, 1} as follows:

L0y 3 Tp—2,Tp—1+2> Ty, Tn-2, 0.

Let us assume now that our formula is of the form X¢. It is enough to design a unique hard
attention layer in which attention is always maximized at the next position. More precisely, we
construct an UHAT that outputs a sequence of vectors v, . .., Vv, € R3, and a linear transformation
A: R? — R3, such that arg max;en(Av;,v;) = {i + 1}, fori = 0,...,n — 2. This will allow us
to “send” I{(w,i + 1) = ¢} = I{(w, i) = X¢} to the ith position, fori = 0,...,n — 2. It only
remains then to apply Lemmall|to obtain 0 = I{(w,n — 1) = X¢} at the last position.

Using our positional encoding and an affine position-wise transformation, we can obtain:

v, = (Cos <7r<1;()2)> sin (77(1;02)) (f1)i.10).

Let A be a linear transformation that inverts the sign of the third coordinate. Observe that:
(278 —277)

(Avy,v;) = cos ( n > + (=1 F 0.

We claim that, for a fixed 4, this quantity is maximized at j = ¢ 4+ 1. First, those js that have the
same parity as ¢ (in particular, 7 = ¢) cannot achieve the maximum because the second term is —10.
For js with a different parity, we have (Av;,v;) = cos (Tr(Ti—T")/w) -+ 10. Since all angles are
in [—7/10, 7/10], this quantity is maximized when |[27¢ — 277| is minimized. For j < i, the last
quantity is at least 27%, and for j > i, the minimum of this quantity is 27*~!, achieved at j = i + 1.

Let us finally assume that our formula is of the form ¢U. Observe that the value of ¢Uv at
position 7 can be computed as follows: we go to the right, starting from the ith position, until we see
a position j; where either ¢ is false, or 1) is true, or this is the last position. Then ¢pU?1) holds at i if
and only if ¢ holds at j;. That s, (w,4) = if and only if (w, j;) = ¢, where j; € {i,...,n — 1} is
the minimal position with 7(j) = 1, where, in turn, the sequence 7 is defined by 7(i) = I{(w, ) &
¢V} VI{i =n—1},fori =0,...,n— 1. To compute the sequence 7, we first compute ¢ A =)
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position-wise (we can do that because we already have ¢ and ¢ at our disposal), then we add the
conjunction with I{i # n—1} by Lemma and then we take the negation of the resulting sequence.

To show the lemma, it is enough to create a unique hard attention layer, where for every position
1 the attention is maximized at j;. Using our positional encoding and the induction hypothesis, we
can obtain a sequence of vectors v1, ..., Vv, € R* such that:

v, = (cos (W(l 102—i)>’ sin (77(1 Ioz_i)>, 1, T(i)).

Consider a linear transformation B: R* — R* such that

Bv, = (cos (W(l IOQ_i)> , sin (7(1 102_i)) . 107(4),0).

m(2 =277
Observe that (v;, Bv;) = cos (%

at j = j;. First, because of the last term in it, it cannot be maximized at j with 7(j) = 0. It remains
to show that among the js with (@,j) & ¢, this quantity is minimized on the minimal j which

is at least ¢. In fact, in this case we have (v;, Bv;) = cos (M> + 10. All the angles in

) + 107(j). We claim that this expression is maximized

10

question are in [~ /10, 7/10], so the cosine is maximized when |2~* — 27| is minimized. Now,
this absolute value is at least 27* when j < 4. In turn, this absolute value is smaller than 27" for
j > 1, and it is the smaller the smaller is j, as required. O

3.4 APPLICATIONS OF OUR MAIN RESULT

We show two applications of our main result. First, UHATSs accept all regular languages in AC°.
Second, UHATS are strictly more expressive than regular and context-free languages in terms of the
acceptance of languages up to letter-permutation.

Regular languages in AC’. There is an important fragment of FO(Mon) which is interesting in
its own right. This is the logic FO(Mod), i.e., the extension of FO with unary numerical predicates
of the form Mod;, forp > 1and 0 < r < p — 1. We have that Mod;(i) = 1 if and only if
1 = r (mod p). In fact, by using a characterization given in |Barrington et al.| (1992), one can show
that the languages definable in FO(Mod) are precisely the regular languages within AC". Then:

Corollary 1. Let L C X7 be a regular language in AC°. There is an UHAT that accepts L.

Recognizing regular languages up to letter-permutation. Although not all regular languages
are accepted by UHATS (e.g. parity), we can use Theorem [I]to show that, up to letter-permutation,
UHAT is in fact strictly more powerful than regular and context-free languages.

To formalize our result, we recall the notion of semilinear sets and the Parikh image of a language.
A linear set S is a subset of N (for some positive integer d, called dimension) of the form vy +
Z§=1 v;N = {vo+ Z;:l kivi : k1, ..., k. € N} for some vectors v, . . ., v, € N%. A semilinear
set S over N is a finite union of linear sets over N¢. Semilinear sets have a very tight connection
to formal languages through the notion of the Parikh image a language L (Parikh, |1966)), which
intuitively corresponds to the set of “letter-counts” of L. More precisely, consider the alphabet

¥ = {a1,...,a4} and a language L over ¥. For a word w € 3, let |w|,, denotes the number
of occurrences of a; in w. The Parikh image P(L) of L is defined to be the set of tuples v =
(|JWlays- - wla,) € N? for some word w € L. For example, if L = {a"b" : n > 0} and

L' = (ab)*, then P(L) = P(L'). In this case, we say that L and L’ are Parikh-equivalent. Note
that L’ is regular, while L is context-free but not regular. This is not a coincidence based on the
celebrated Parikh’s Theorem (cf. |Parikh| (1966)), also see |Kozen| (1997)).

Proposition 4 (Parikh! (1966)). The Parikh images of both regular and context-free languages coin-
cide with semilinear sets.

In other words, although context-free languages are strict superset of regular languages, they are in
fact equally powerful up to letter-permutation. What about UHATs? We have that they are strictly
more powerful than regular and context-free languages up to letter-permutation.

Proposition 5. Each regular language has a Parikh-equivalent language accepted by an UHAT. In
turn, there is an UHAT language with no Parikh-equivalent regular language.
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4 LANGUAGES BEYOND AC’

Transformer encoders with unique hard attention can only recognize languages in AC°, but a slight
extension of the attention mechanism allows to recognize languages lying outside such a class (Hao
et al.,|2022). In this section, we show that in fact such an extended model can recognize all languages
definable in a powerful logic that extends LTL with counting features. This logic can express inter-
esting languages outside AC®, such as majority and parity.

4.1 AVERAGE HARD ATTENTION

For the results in this section, we consider an extended version of transformer encoders that utilize
an average hard attention mechanism (Pérez et al.l[2021;|Hao et al., [2022)). Following the literature,
we call these AHAT.

Encoder layer with average hard attention. As before, these layers are defined by two affine
transformations, A, B: R¢ — R< and one feed-forward neural network N : R2¢ — R€ with ReLU
activation function. Forevery i € {0,...,n—1}, we define S; as the set of positions j € {0,...,n—
1} that maximize (Av;, Bv;). We then set

JES:
After that, we set v < N (v;,a;), foreachi = 0,...,n— 1. That is, attention scores under average
hard attention return the uniform average value among all positions that maximize attention.

We also use future positional masking that allows us to take into account only positions up to ¢. If the
future positional masking is used, the sets .S; are defined as sets of positions j € {0,1,...,4} that
maximize (Av;, Bv;). Positional masks have been employed on several occasions in theoretical
papers (Yao et al.l 2021} Bhattamishra et al., |2020; [Hao et al.l [2022)) as well as in practice, for
example, for training GPT-2 (Radford et al., 2019).

4.2 LTL EXTENDED WITH COUNTING TERMS

We present here LTL(C, +), an extension of LTL(Mon) that allows us to define counting properties
over words in a simple manner. This requires the introduction of counting terms as defined next.

— —
Counting terms. Suppose ¢ is a unary formula. Then #¢ and #¢ are counting terms. The
interpretation of these terms in position ¢ of a word w of length n is defined as follows:

Fo(w,i) = |{j € {0,....i} | (@,5) E 9}, Fd(@,) = |{j € {ir-...n— 1} | (@) | 6}

— —
That is, #¢(w, ) is the number of positions to the left of ¢ (including 7) that satisfy ¢, while #¢(w, 1)
is the number of positions to the right of ¢ (including ¢) that satisfy ¢. Notice that, for words of length
n, counting terms take values in {0, 1,...,n}.

Counting formulas. With counting terms and unary numerical predicates we can create new for-
mulas in the following way. Let ¢ be a unary formula and © a unary numerical predicate. We define
new formulas ©(#¢) and ©(#¢). The interpretation of such formulas on position 7 of a word w of
length n is as follows:

- —— — . — — .
(w,1) = O(#0) & Op(#o(w,7)) =1 (w,1) = O(#0) & Op(#o(w,i)) =
That is, the number of positions to the left (resp., right) of ¢ (including ) that satisfy ¢ satisfies the
predicate ©. As counting terms can take value n, the value of 6,, on n becomes useful.

We also incorporate into our logic the possibility of checking linear inequalities with inte-
ger coefficients over counting terms. More specifically, for any finite set of unary formulas
D1y vy Ppy W1, .. ,wk, and for any coefficients ¢y, ..., ¢, ds, ..., dr € Z we can create a formula:

—
Zf R #(bj + ZJ 1d #1; > 0, which is mterpreted as follows

Y
o

k
(w,i |=ch #¢J+Zd F0 >0 = ch %6, (w i)+ Y d;- 0 (@

Jj=1 Jj=1 Jj=1
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The logic LTL(C, +). We denote by LTL(C, +) the logic that is recursively defined as follows:

* Every formula LTL(Mon) is also an LTL(C, 4) formula.
* Boolean combinations of LTL(C, +) formulas are LTL(C, +) formulas.
¢ If ¢ and ¢ are LTL(C, +) formulas, then so are X¢ and ¢U1.
(_

o If (b_1>s an LTL(C, +) formula and © is a unary numerical predicate, then ©(#¢) and
O(#¢) are LTL(C, +) formulas.

%
If ¢1,..., Pk, 1, .., are formulas of LTL(C, +), then Z?Zl cj - #o; + 2?21 dj -
#1p; > 0, is a formula of LTL(C, +).

4.3 LTL(C) DEFINABLE LANGUAGES ARE ACCEPTED BY ENCODERS

Next, we state the main result of this section: languages definable by LTL(C, 4) formulas are
accepted by transformer encoders with average hard attention.

Theorem 2. Let 3 be a finite alphabet and ¢ an LTL(C, +) formula defined over words from the
alphabet X.. There is an AHAT T that accepts L(¢).

As a corollary to Theorem |2} we show that AHATS are rather powerful in counting. To make this
claim more formal, we study permutation-closed languages, i.e., languages L such that v € L iff any
letter-permutation of @ is in L. For a language L, we write perm(L) to be the permutation-closure of
L,ie., perm(L) = {w : P(w) = P(v), for some v € L}. Observe that perm((abc)*) consists of
all strings with the same number of occurrences of a, b, and c; this is not even context-free. Owing
to Parikh’s Theorem, to recognize perm(L), where L is a regular language, an ability to perform
letter-counting and linear arithmetic reasoning (i.e. semilinear set reasoning) is necessary. AHAT's
possess such an ability, as shown by the following corollary.

Corollary 2. The permutation closure perm(L) of any regular language L is accepted by an AHAT.
Moreover, any permutation-closed language over a binary alphabet is accepted by an AHAT.

Both majority and parity are permutation-closed and are over a binary alphabet. Hence, by the
previous result, they are both accepted by AHATs. While for majority this was known (Hao et al.,
2022)), the result for parity is new.

5 CONCLUSIONS AND FUTURE WORK

We have conducted an investigation of the problem of which languages can be accepted by trans-
former encoders with hard attention. For UHATSs, we have demonstrated that while they cannot
accept all languages in AC?, they can still accept all languages in a “monadic’ version of it defined
by the logic FO(Mon). Crucial to the proof of this result is the equivalence between FO and LTL,
as provided by Kamp’s Theorem. In turn, we have shown that AHAT's are capable of expressing any
language definable in a powerful counting logic, LTL(C, +), that can express properties beyond
ACP. This implies, among other things, that the parity language can be accepted by an AHAT.

In a work of |Angluin et al.| (2023), contemporaneous to ours, it was shown that the logic FO(Mon)
exactly captures languages, accepted by UHATs with positional masking and finite-valued positional
encoding. At the same time, with our technique, it can be shown that there are languages beyond
FO(Mon) that can be accepted by UHATs with infinite-valued positional encoding, for instance,
the language of palindromes. The idea is that since we do not use positional masking, we can use
arbitrary order on positions, in particular, one that puts the language of palindromes into FO(Mon).
Due to the space constraints, we omit a more detailed discussion of this.
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