
Under review as a conference paper at ICLR 2024

APPENDIX

Proof of Proposition 1. As Hahn showed, for every ε > 0 and L > 0 there exists c ≥ 0 such
that, for all larger enough n, if we consider as inputs binary strings of length n, for every UHAT
T consisting of L layers, there exists a fixation of εn input bits such that, under this fixation, the
output of T is determined by c unfixed bits Hahn (2020). However, it cannot hold for an UHAT
recognizing approximate majority, for example, when ε = 1/10. Regardless of how we fix n/10+c
input bits, if we fix the remaining bits to 0s, the circuit Cn rejects our string, and if we fix them to
1s, it accepts our string, even though the output of the UHAT remains unchanged.

Proof of Lemma 1. At position i = 0, . . . , n− 1, this transformation can be written as follows:

xi 7→ xi −max{0, xi + i− (n+ 1)}.
It can easily be done with ReLU layer, using a positional encoding p(i, n) = i− n. However, it can
also be done with a positional encoding that does not depend on n, for example p(i) = (i, 1/(i+1)).
We just have to “transmit” n−1 to every position in the UHAT. For that, it is enough to have a unique
hard attention layer, where attention in every position is maximized at j = n− 1 (which allows that
to “send” n to every position). For instance, consider vi = 1/(i+1), A(x) = −x, and observe that:

arg max
j=0,...,n−1

⟨Avi,vj⟩ = arg max
j=0,...,n−1

− 1

(i+ 1)(j + 1)
= {n− 1}

for every i = 0, . . . , n− 1. This finishes the proof of the lemma.

Proof of Proposition 5. Upper bound: We first show that every regular language over Σ =
{a1, . . . , ad} has a Parikh-equivalent language in UHAT. By Parikh’s Theorem, the Parikh image
of this given regular language is represented by a semilinear set S in dimension d. Our proof
employs Theorem 1. Since FO(Mon) is closed under disjunction, it suffices to consider only
linear sets S. Thus, take an arbitrary linear set S = v0 +

∑r
i=1 viN, where vi (i > 0) is a

non-zero vector. We will give a language L over the alphabet of Σ = {a1, . . . , ad} definable in
FO(Mon) (thus UHAT-recognizable, by Theorem 1) such that P(L) = S. We will use the linear set
S = (1, 1, 0) + (2, 0, 1)N as a running example.

For i = 0, . . . , r and j = 1, . . . , d, define vji to be the natural number corresponding to the jth

argument of vi. Define wj
i to be the string av

j
i

j , i.e., aj repeated vji times, while ℓi denotes the
“length abstraction” of vi, i.e., ℓi :=

∑d
j=1 v

j
i . Finally, let wi be the concatenation of w1

i , . . . , w
d
i .

Using our example of S = (1, 1, 0) + (2, 0, 1)N, then we have w0 = a1a2 and w1 = a1a1a3. We
also have ℓ0 = 2 and ℓ1 = 3.

Next we define the language L as follows:

L := w0 · w∗1 · · ·w∗r
Using our running example, L would be a1a2(a1a1a3)∗. It is easy to see that P(L) = S.

To show that this language is in FO(Mon)-definable, we demonstrate that it is regular and belongs
to AC0. It is regular because it is defined through concatenation and Kleene star. Since AC0 is closed
under concatenation2 it remains to show that languages of the form w∗, where w is a word, are in
AC0. We only have to care about input lengths that are multiples of |w|, for other input lengths the
language is empty. Then we split the input into blocks of |w| letters. We just need an AC0-circuit,
checking that every block coincides withw. For example, this can be done with an AND over blocks
of constant-size circuits, checking equality to w.

Lower bound: An example of a language that is in FO(Mon) (and so in UHAT) whose Parikh
image is not semilinear (and therefore, no Parikh-equivalent regular language) is

L = {ak : k is a prime number}.
Note that Σ = {a}. This can be easily defined in FO(Mon) using the unary predicate Θ := {k ∈
N : k + 1 is a prime number} as follows: ∃xΘ(x) ∧ ¬∃y > x.

2if we have AC0-circuits C1, C2 for languages L1, L2, we can construct an AC0-circuit C for their concate-
nation as follows: C(x1 . . . xn) =

∨
i=1,...,n(C(x1 . . . xi) ∧ C(xi+1 . . . xn)).

11



Under review as a conference paper at ICLR 2024

Proof of Theorem 2. As before, we are proving that every formula ϕ of LTL(C,+) can be computed
position-wise by some AHAT encoder, via structural induction. We have already shown how to do
induction for all operators of LTL(Mon). In our proof, attention was always maximized at the
unique j, and in this case, there is no difference between unique and average hard attention.

It remains to show the same for operators that are in LTL(C,+) but not in LTL(Mon). First, we
show that given a formula ϕ, computed position-wise by some AHAT, there is also an AHAT that
computes

←−
#ϕ and

−→
#ϕ position-wise.

Using future positional masking and equal weights, we can compute at position i the quantity:

yi =
ϕ(w, 0) + . . .+ ϕ(w, i)

i+ 1
=

←−
#ϕ(w, i)

i+ 1
, i = 0, 1, . . . , n− 1.

Next, we have to compute

zi =

(←−
#ϕ(w, i)− ϕ(w, i)

)
i+ 1

.

This can be achieved as follows:

zi = yi −
ϕ(w, i)

i+ 1
= yi −min

{
ϕ(w, i),

1

i+ 1

}
.

As our positional encoding includes 1/(i+1), this computation is a composition of ReLU and affine
transformations.

Our next goal is to get rid of the coefficient 1/(i+ 1). For that, we create a layer with the following
attention function:

⟨Avi, Bvj⟩ = 2j · zi −
j2

i+ 1
, i, j = 0, . . . , n− 1. (1)

Such attention function is possible because (1) is a bilinear form of vi and vj . Indeed, vi

contains 1/(i + 1) and vj contains j, j2 due to our positional encoding, and also vi contains

zi =

(←−
#ϕ(w,i)−ϕ(w,i)

)
i+1 .

Denoting di =
←−
#ϕ(w, i)− ϕ(w, i), we get that (1) is equal to

⟨Avi, Bvj⟩ = 2j · di
i+ 1

− j2

i+ 1
=
−(di − j)2 + d2i

i+ 1
.

Observe that di =
←−
#ϕ(w, i) − ϕ(w, i) takes values in {0, . . . , n − 1}. Hence, for a fixed i, the

quantity (1) is uniquely maximized at j = di. In this way, we get j = di to position i. Adding
ϕ(w, i) to di, we get

←−
#ϕ(w, i). To get

−→
#ϕ(w, i) to position i, we observe that:

−→
#ϕ(w, i) = (ϕ(w, 0) + . . .+ ϕ(w, n− 1))− ((ϕ(w, 0) + . . .+ ϕ(w, i− 1))

=
←−
#ϕ(w, n− 1)− di.

This is computable at position i because
←−
#ϕ(w, n−1) can be “sent” to all positions via the attention

function, always maximized at the last position (see the proof of Lemma 1).

Our next goal is: given a formula ϕ, computable position-wise by some AHAT, and a unary nu-
merical predicate Θ, provide an AHAT that computes Θ(

←−
#ϕ) and Θ(

−→
#ϕ) position-wise. As we

have already shown, we can assume that we already have counting terms
←−
#ϕ and

−→
#ϕ computed

position-wise. Next, we create a layer with the following attention function:

⟨Avi, Bvj⟩ = 2j ·
−→
#ϕ(w, i)− j2 = −(j −

−→
#ϕ(w, i))2 +

−→
#ϕ(w, i)2.

Again, this is possible because this expression is a bilinear form of vi and vj , due to our positional
encoding. It is maximized at ji = min{n − 1,

−→
#ϕ(w, i)} (when the counting term is equal to n,

12



Under review as a conference paper at ICLR 2024

since we do not have a position indexed by n, the maximizing position will be ji = n− 1). Having
Θ included in the positional encoding, we can get ji and θn(ji) to the ith position. Observe that:

θn(
−→
#ϕ(w, i)) = (I{

−→
#ϕ(w, i) ≤ n− 1} ∧ θn(ji)) ∨ (¬I{

−→
#ϕ(w, i) ≤ n− 1} ∧ θn(n))

Since in our positional encoding, θn(n) is included in every position, and since position-wise
Boolean operations can be done by an AHAT, it remains to compute the indicator I{

−→
#ϕ(w, i) ≤

n− 1}. Transmitting n once again to every position, we can write:

I{
−→
#ϕ(w, i) ≤ n− 1} = min{1, n−

−→
#ϕ(w, i)}.

This quantity can be computed by a composition of ReLU and affine transformations. We can get
θn(
←−
#ϕ(w, i)) to the ith position analogously.

Finally, we have to check that linear inequalities over counting terms can be done in AHAT. Given
formulas ϕ1, . . . , ϕk, ψ1, . . . , ψk already computed position-wise by some AHAT, we have to pro-
vide an AHAT that computes the formula

∑k
j=1 cj ·

←−−
#ϕj +

∑k
j=1 dj ·

−−→
#ψj ≥ 0 position-wise.

After computing counting terms for ϕ1, . . . , ϕk, ψ1, . . . , ψk, we first can compute their linear com-
bination, using affine position-wise transformations:

li =

k∑
j=1

cj ·
←−−
#ϕj(w, i) +

k∑
j=1

dj ·
−−→
#ψj(w, i).

Since coefficients are integral, li is integral as well, so we get:

I{li ≥ 0} = max{min{0, li}+ 1, 0}.
The last expression can be computed via composition of ReLU and affine transformations.

Proof of Corollary 2. We show that permutation-closed languages over binary alphabets and lan-
guages of the form perm(L), where L is a regular language, are expressible in LTL(C,+).

First, assume that L is a permutation-closed language over a binary alphabet {a, b}. Then whether
or not a word w̄ belongs to L is determined by the length of w and the number of a’s in w. In other
words, there a numerical predicate Θ such that for every n and for every w̄ ∈ {a, b}n, we have
w̄ ∈ L if and only if θn(|w̄|a) = 1 (recall that for a word w̄ and for a letter a, the expression |w̄|a
denotes the number of occurrences of a in w̄). Thus, L is expressible by the formula Θ(

−→
#a).

We now show that every language of the form perm(L), where L is regular, is expressible in
LTL(C,+).

As shown in Parikh (1966), if L is a regular language over the alphabet Σ = {a1, . . . , ad}, then

perm(L) = {w : P(w) ∈ S},
for some semilinear set S of dimension d. Semilinear sets correspond precisely to sets of tuples that
are definable in Presburger Arithmetic (e.g. see Haase (2018)). See standard textbook in mathemat-
ical logic for more details on Presburger Arithmetic (e.g. see Anderton (2001)). Since Presburger
Arithmetic admits quantifier-elimination, we may assume that S is a boolean combination of (a) in-
equalities of linear combination of counting terms, and (b) modulo arithmetic on counting terms (i.e.
an expression of the form |w|ai

≡ k (mod c), for some concrete natural numbers 0 ≤ k < c and
c > 0). For (b), one simply handles this using the formula Θ(

−−→
#ai), where Θ is a unary numerical

predicate consisting of all numbers n such that n ≡ k (mod c). For (a), take a linear inequality of
the form

ψ(|w|a1
, . . . , |w|ad

) :=

d∑
i=1

ci|w|ai
≥ 0,

where c1, . . . , cd ∈ Z. Such a formula ψ is already an atom permitted in LTL(C,+). Since
LTL(C,+) is closed under boolean combination, it follows that perm(L) is also in LTL(C,+)
and therefore, by Theorem 2, is in AHAT.

13


