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ABSTRACT

Catastrophic forgetting (CF) poses a significant challenge in machine learning,
where a model forgets previously learned information upon learning new tasks.
Despite the advanced capabilities of Large Language Models (LLMs), they con-
tinue to face challenges with CF during continual learning. The majority of ex-
isting research focuses on analyzing forgetting patterns through a single train-
ing sequence, thereby overlooking the intricate effects that diverse tasks have
on model behavior. Our study explores CF across various settings, discover-
ing that model forgetting is influenced by both the specific training tasks and
the models themselves. To this end, we interpret forgetting by examining the
function vector (FV), a compact representation of functions in LLMs, which
offers a model-dependent indicator for the occurrence of CF. Through theoret-
ical and empirical analyses, we demonstrate that CF in LLMs primarily stems
from biases in function activation rather than the overwriting of task process-
ing functions. Leveraging these insights, we propose a novel function vector
guided training methodology, incorporating a regularization technique to stabi-
lize the FV and mitigate forgetting. Empirical tests on four benchmarks confirm
the effectiveness of our proposed training method, substantiating our theoretical
framework concerning CF and model function dynamics. Our code is available at
https://github.com/GangweiJiang/FvForgetting.git.

1 INTRODUCTION

Continual instruction tuning (Peng et al., 2023; Chung et al., 2024) has emerged as an indispens-
able ingredient in the development of Large Language Models (LLMs) (Brown et al., 2020; Radford
et al., 2019; Touvron et al., 2023b), enabling them to meet the demands of specific domains (Roziere
et al., 2023; Thirunavukarasu et al., 2023; Xue et al., 2024) and human preferences (Ouyang et al.,
2022). However, a notable concern with such continual tuning is ”catastrophic forgetting” (Mc-
Closkey & Cohen, 1989; Kirkpatrick et al., 2017), where models may lose essential skills (Dou
et al., 2023; Chen et al., 2023) such as mathematical reasoning while adjusting to user instructions.
While instruction tuning effectively evolves LLMs, it’s critical to characterize and mitigate forget-
ting within these models.

Research on LLM forgetting (Luo et al., 2024; Wang et al., 2023c; Wu et al., 2024a) generally ex-
amines alterations in specific abilities like reading comprehension, factual knowledge, mathematical
reasoning skills, and so on, underscoring the universal existence of catastrophic forgetting. As they
have primarily studied from a single training sequence, they fail to establish the connection between
model forgetting and the characteristics of training data. Concurrently, there is a notable gap in
understanding the internal mechanisms that underlie model forgetting. To date, only a limited body
of research has ventured into this area; notably, the work of Kotha et al. (2024), proposing the task

∗Corresponding authors

1

https://github.com/GangweiJiang/FvForgetting.git


Published as a conference paper at ICLR 2025

inference hypothesis, explores how conflicts between task processors lead to forgetting. Neverthe-
less, the existing literature still struggles to track the internal mechanisms behind forgetting, which
is crucial for understanding why and when forgetting occurs in language models after learning new
tasks and how to avoid it.

In this study, we conduct thorough experiments on various continual instruction tuning benchmarks
covering multiple language models, task sequences, and evaluation metrics. Our investigation fo-
cuses on the research question: When does forgetting happen? The experimental results suggest that
model forgetting is a complex outcome of various factors, including the nature of training and test
tasks, and the state of the model. However, traditional methodologies for evaluating task similarities
to characterize forgetting—such as those based on feature similarity (Ramasesh et al., 2020; Lee
et al., 2021) and readout similarity (Lee et al., 2021)—tend to overlook the distinctive task-related
information inherent in different models. Meanwhile, purely model-dependent measurements, like
the L2 distance of model parameters after being fitted on a new task (Lin et al., 2023; Evron et al.,
2024), necessitate training to compute task similarity. We identify a critical gap in the availability
of robust tools to dissect and understand the processes underlying forgetting.

To this end, we utilize the Function Vector approach (Todd et al., 2023), a method grounded in
mechanistic interpretability (Wang et al., 2023a; Bills et al., 2023), which represents the input-
output function within a model into a compact vector form. Our analysis begins with a revisitation
of the theoretical formulation of FV through the perspective of latent variable models (Baum &
Petrie, 1966; Gruber et al., 2007), and establishes that the FV serves as a traceable latent variable
in LLMs. We then examine model forgetting through the Function Vector perspective, successfully
identifying occurrence of forgetting by evaluating the similarity between training and testing tasks
(Sec. 3). Subsequent empirical investigations lead us to conclude that the fundamental driver of
forgetting is the shift in the mapping from the input x to the latent concept variable θ, rather than
erasure of previously learned task functions (Sec. 4).

Based on our analysis, we conclude that minimizing the shift in the function vector during train-
ing serves as a key strategy for mitigating forgetting. We propose a function vector guided training
mechanism as a simple yet efficient design for mitigating forgetting. This approach involves limiting
changes to the function vectors associated with training tasks through a regularization term, coupled
with the adoption of a function vector-guided Kullback-Leibler (KL) divergence loss. This loss
function aims to diminish the discrepancies between logits derived from zero-shot input and those
adjusted by function vector intervention, ensuring the fine-tuned model remains consistent with the
inner task function. Validated across multiple datasets and models, this method significantly allevi-
ates forgetting in both general and in-context learning abilities, confirming the correlation between
FV dynamics and forgetting.

Main findings and contributions. (1) We investigate catastrophic forgetting in LLMs covering
multiple language models, task sequences, and evaluation metrics, discovering that forgetting in
LLMs is highly model-dependent, and assert a new analytical tool for characterizing forgetting
behavior. (2) Using empirical and theoretical analysis based on the function vector framework, we
reveal that forgetting generally results from the activation of biased model functions rather than
overwriting previous functions. (3) We develop a function vector guided training approach that
preserves and aligns function vectors during fine-tuning, significantly improving both general and
in-context learning across multiple continual learning datasets.

2 PRELIMINARIES

2.1 CATASTROPHIC FORGETTING

Continual learning (Serra et al., 2018; Wu et al., 2024c;b) seeks to tackle the core challenge of
incrementally learning from a sequence of real-world tasks over time, specifically addressing how
to adapt to new tasks without forgetting previously learned knowledge – a phenomenon widely
known as catastrophic forgetting (McCloskey & Cohen, 1989; Kirkpatrick et al., 2017).

In this paper, we focus on continual learning of a language model M0, which has already been
pre-trained on a vast data corpus DPT using language modeling tasks (Brown et al., 2020; Radford
et al., 2019) followed by preference optimization via human feedback (Ouyang et al., 2022). Specif-
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ically, we assume a stream of tasks T1, T2, . . . , TN , where each j-th task Tj consists of a dataset
Dj = {xi

j , y
i
j}, with xi

j and yij representing the inputs and outputs text sequences, respectively. On
each task Tj , the model Mj−1 is optimized towards minimization of the loss LTj

(Mj−1), coupled
with a continual learning objective if applied, resulting in the updated model Mj . This continual
learning process, applied into a language model, is commonly referred to as continual instruction
tuning (Peng et al., 2023; Chung et al., 2024).

2.2 FUNCTION VECTOR

Following the mechanistic interpretability work in LLMs (Todd et al., 2023; Hendel et al., 2023),
we investigate the internal workings of a task on LLMs through function vector — compact vector
representation of input-output task identified within the hidden states of transformers during in-
context learning (ICL (Brown et al., 2020)). An activation patching (Meng et al., 2022; 2023; Wang
et al., 2023a) procedure is performed on the ICL hidden states to determine the casual set of attention
heads that mediate tasks. These heads collaborate to convey a function vector (FV) which represents
the LLM’s function specific to input-output task. Function vector is regarded as an efficient way to
characterize function execution within LLMs (Todd et al., 2023).

Formally, for a given dataset DT of task T , the function vector θT is derived through two steps:

First, the activation patching is performed to determine the attention heads set (denoted as S)
with significant cause-and-effect relationship between ICL inputs and correct outputs. Specifi-
cally, the model will run on a counterfactual ICL input [p̂, x] incorporating a label-shuffled prompt
p̂ = [(x1, ŷ1), ..., (xn, ŷn)], which typically leads to incorrect outcomes. Then the representation
at specific head for [p̂, x] is substituted by the averaged task activation h̄T

lk and calculated its causal
effect (CE) on the model’s output.

CElk([p̂, x]) = P
MhT

lk
→h̄T

lk
(y | [p̂, x])− PM (y | [p̂, x]). (1)

Here, h̄T
lk ∈ Rd symbolizes the mean activations of in-context learning input for task T at the

last token position across layer l and head k, with d being the dimension of the layer output as
hT
lk = headljW

O
lj is the equivalent of the attention head output in the residual stream (Elhage et al.,

2021). MhT
lk→h̄T

lk denotes the model with a replacement operation on attention head (l, k) at last
token. A higher CE implies that the specific head’s state is critical for accurate predictions which
encodes of more task-relevant information. In this paper, S is the attention heads with top-10 CE.

Second, function vector θT is assembled by summing up the averaged ICL inputs activation from the
attention heads within S, formulated as θT =

∑
(l,k)∈S h̄T

lk ∈ Rd. The comprehensive methodology
for this extraction process can be found in the Appendix F.

In this paper, we revisit the definition of FV and study its dynamics before and after learning a new
task, providing a surrogate lens to uncover the inherent mechanisms of forgetting in LLMs.

3 CATASTROPHIC FORGETTING OF LLMS

This section empirically examines the research question of when forgetting occurs during continual
instruction tuning, specifically in relation to task types, training stages and language models.

Datasets. We build the task sequences for continual instruction tuning using SuperNI (Wang et al.,
2022), a collection of NLP tasks with expert-written instructions that are unseen to the pre-trained
model. SuperNI is commonly used for assessing cross-task generation and conflict after fine-tuning
language models. To investigate the relationship between forgetting and task types, i.e., generation
and classification, we design six task sequences. These sequences consist of pure generation tasks,
pure classification tasks and mixed sequences containing both generation and classification tasks.
Their main information is listed in Table 4, with additional details available in Appendix D.

Evaluation metrics. We adopt the following five metrics to quantify various aspects of forget-
ting: (1) GP = 1

Ng

∑Ng

j=1 a
T e
j

N , which is the average zero-shot performance across Ng general
evaluation tasks after instruction tuning on the final N -th task. Here, aqm denotes the zero-shot
performance on task q after sequentially tuning the m-th task, and T e

j refers to the j-th general eval-
uation task. Performance is uniformly measured using Rouge-L (Lin, 2004), where classification
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Table 1: Final performance on 3 SuperNI benchmarks on 4 language models. Hella., Com., Alpa.,
and Ob. denote evaluation score on Hellswag, CommonsenseQA, Alpaca, Object Count datasets,
respectively. The ∆ value in red bold style is compared to performance of their initial model M0.
Higher Forget or lower ∆ represents more forgetting. Main conclusion: Forgetting consistently
occurs in both general and newly learned tasks, showing considerable variations depending on the
types of tasks, stages of training, and the specific language models involved.

Zero-Shot Performance in General Task In-Context Performance in General Task Performance in Trained Task

Hella. Com. Alpa. Ob. GP ↑/∆ ↑ Hella. Com. Alpa. Ob. IP ↑/∆ ↑ AP ↑ FP ↑ Forget ↓

Llama2-7b-chat

M0 57.89 57.37 26.5 27.12 42.22 58.95 57.89 35.17 34.21 46.55 / / /
NI-Seq-C1 47.37 40.00 32.00 31.61 -4.48 24.21 27.89 28.89 26.84 -19.60 86.10 83.80 2.30
NI-Seq-G1 48.95 39.47 27.36 39.72 -3.35 37.89 42.63 28.84 38.95 -9.48 24.96 19.35 5.61
NI-Seq-M1 52.11 42.63 31.09 29.51 -3.39 45.79 31.05 24.58 33.16 -12.91 59.02 54.32 4.69

Llama3-8b-chat

M0 81.58 58.42 22.64 40.04 50.67 85.26 63.16 27.42 49.47 56.32 / / /
NI-Seq-C1 79.47 46.84 23.27 32.32 -5.20 79.47 40.00 25.62 45.79 -8.60 83.40 82.10 1.30
NI-Seq-G1 72.63 35.79 22.05 29.39 –10.70 67.89 31.05 19.77 41.58 -16.26 28.29 21.09 7.19
NI-Seq-M1 78.42 40.00 21.93 21.58 -10.19 76.84 40.00 21.32 35.91 -12.81 60.74 52.62 8.11

Mistral-7b-instruct

M0 73.68 60 24.74 5.02 40.86 79.47 66.32 32.36 37.89 54.01 / / /
NI-Seq-C1 63.16 50.00 32.04 15.3 -0.75 66.84 51.05 36.8 37.89 -5.87 84.70 85.40 -0.70
NI-Seq-G1 57.37 45.26 26.3 13.81 -5.18 57.89 35.79 32.04 39.47 -12.71 27.62 19.77 7.85
NI-Seq-M1 65.26 47.89 33.02 12.35 -1.23 63.68 38.42 34.79 45.79 -8.34 61.96 57.00 4.95

Llama2-13b-chat

M0 69.47 51.05 28.99 15.09 41.15 75.26 57.89 35.46 43.16 52.94 / / /
NI-Seq-C1 65.79 52.63 34.18 21.51 +2.38 66.32 48.42 38.48 38.95 -4.90 83.20 82.26 0.93
NI-Seq-G1 63.16 38.95 28.12 13.84 -5.13 65.79 32.11 30.92 34.21 -12.18 25.64 18.16 7.47
NI-Seq-M1 71.58 49.47 34.10 28.09 +4.66 70.53 48.42 36.51 37.37 -4.73 60.10 56.33 3.76

accuracy equals Rouge-L with output post-processing (Zhao et al., 2024). We set Ng = 4 gen-
eral evaluation tasks, covering Hellaswag (Zellers et al., 2019), CommonsenseQA (Talmor et al.,
2018), Alpaca (Hendrycks et al., 2020), and BBH-Object-Count (Srivastava et al., 2022), and this
setting also applies to 4 and is extended to Ng = 6 in Sec. 6. (2) IP = 1

Ng

∑Ng

j=1 â
T e
j

N , which
is the average in-context performance on Ng general evaluation tasks after tuning on the last N -
th task. The in-context performance, âqm, is conditioned on the n-shot ICL input [p, x], where
p = [(x1, y1), ..., (xn, yn)] with n = 5 for this work. (3) FP = 1

N

∑N
j=1 a

Tj

N , which is the average
zero-shot performance across all N instruction tuning tasks after tuning on the final N -th task. Tj

represents the j-th instruction tuning task in the sequence. (4) AP = 1
N

∑N
j=1 a

Tj

j , which is the aver-
age zero-shot performance when learning every j-th instruction tuning task. (5) Forget = AP−FP,
which has been widely adopted Wu et al. (2022); Ke et al. (2023) to measure forgetting. More
detailed information about the datasets and evaluation metrics is presented in Appendix D.

Instruction tuning setup. For each task in the sequence, we continually fine-tune four lan-
guage models, including Llama2-7b-chat, Llama2-13B-chat (Touvron et al., 2023b), Llama3-8B-
chat (Dubey et al., 2024), Mistral-7B-instruct-v2.0 (Jiang et al., 2023) using the causal language
model loss (Radford et al., 2019). Unless otherwise noted, we use the LoRA fine-tuning ap-
proach (Hu et al., 2021), employing the Adam optimizer with a learning rate of 1e−4 and a batch
size of 32. Additional implementation details can be found in the Appendix E.

We report the results on continual learning of four language models on three SuperNI sequences
in Table 1, highlighting that forgetting occurs across general ability, in-context learning ability,
and fine-tuned ability. Higher scores for general and in-context abilities signify better mitigation
of forgetting. For fine-tuned ability, we report the values of AP, FP and their difference Forget,
where a lower Forget value indicates less forgetting. A detailed breakdown of the results for the
other three SuperNI sequences is provided in Appendix F. Figure 1 illustrates the forgetting of the
Llama2-7b and Llama3-8b models during continual learning on NI-seq-C1 and NI-seq-G1. The
vertical axis signifies the training stage, where Mi denotes the model after completing the i-th task.
The horizontal axis displays test performance across tasks, with the performance of M0 (without
continual instruction tuning) shown at the top. The heatmaps show the relative shifts in performance
compared to M0, with declines indicated by bluer values and improvements by redder colors.

4



Published as a conference paper at ICLR 2025

(a) Llama2-7b-chat on NI-Seq-G1

Trained Task Evaluation General Task Evaluation In-Context Evaluation Trained Task Evaluation General Task Evaluation In-Context Evaluation

(c) Llama3-8b-chat on NI-Seq-G1

(d) Llama3-8b-chat on NI-Seq-C1(b) Llama2-7b-chat on NI-Seq-C1

( I ) (III)(II)

( I ) (III)(II) ( I ) (III)(II)

( I ) (III)(II)

Figure 1: Performance heatmap during continual learning of 2 different sequences on Llama2-7b-
chat and Llama3-8b-chat. The numbers above the heatmap indicate the baseline performance of
each task, with the performance of the pre-trained model for general testing (e.g., in a-(II) 66.3
is the score of Commonsense on original Llama2-7b-chat) and performance right after completing
current task for trained task testing (e.g., in a-(I) 28.2 is the score of T2 on Llama2-7b-chat post
2-th task training). The numbers on the heatmap show the percentage change relative to the baseline
(e.g., in a-(I) the first column 47 indicates the score at 38.6*47%). Main conclusion: (1) Learning
generation tasks (a/c) vs. classification tasks (b/d) leads to more forgetting. (2) Forgetting may
reduce naturally (a-(II)/d-(II)); (3) Forgetting is model-dependent (a/b vs. c/d).

From Table 1 and Fig. 1, we observe two major trends: (1) consistent forgetting of LLMs across
both general and newly acquired tasks, irrespective of the task sequence type, and (2) considerable
variability in forgetting across evaluation tasks – e.g., Hellaswag appeals more prone to forgetting
than Alpaca. Beyond these general findings, we further investigate how forgetting is influenced by
task types, training stages, and the specific language models employed.

Task type perspective: generation task sequences lead to greater forgetting. Upon analyzing the
performance of NI-Seq-C1 (classification tasks) and NI-Seq-G1 (generation tasks) in Table 1, we
observe a noticeable increase in forgetting when learning generation task sequences. For instance,
the Llama3-8b-chat model shows larger performance declines with NI-Seq-G1 (10.7, 16.2, and 7.2
in general, in-context, and trained tasks, respectively) compared to NI-Seq-C1 (5.2, 8.6, and 1.3
declines). Additionally, the forgetting score Forget of all models over all tasks in the NI-Seq-C1
sequence is below 2.3, suggesting a stronger ability to mitigate forgetting for LLMs than small
language models (Qin & Joty, 2022; Razdaibiedina et al., 2023). We further evaluate LLMs with
more sequences, obtaining similar observations as shown in Appendix F.

Training stage perspective: forgetting may naturally mitigate during training. Figure 1 illus-
trates the extent of forgetting at each training phase across various evaluation datasets. Contrary to
the nearly consistent performance drop seen in previous studies (Luo et al., 2024; Wu et al., 2022),
we frequently observe a phenomenon where performance initially decreases but later rebounds. For
instance, the fourth column of (a)-(II) shows the “Ob.” test score dropping to 67% on the M2 model;
however, after two stages, the performance leaps to 122%. This contradiction further raises questions
about how sequential fine-tuning on new tasks impacts the internal capabilities of LLMs, allowing
them to recover previously forgotten capabilities.

Model perspective: forgetting is model-dependent. We compare forgetting between LLMs,
specifically, for the “Ob.” task performance shown in (a)-(II) and (c)-(II), continual instruction
tuning of Llama2-7b-chat demonstrates a performance increase of up to 146% relative to using
the Llama2-7b-chat itself, while that of Llama3-7b-chat shows a decrease to 73%. This suggests
that forgetting is not only task-related but also heavily influenced by model-dependent factors such
as model size, architecture, and the diversity of pre-training data. These factors shape each model’s
unique capacity for tasks, revealing that the mere feature similarity between tasks (e.g., hidden states
in the last layer) is insufficient to predict model-dependent forgetting patterns (see Appendix F).
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4 CORRELATIONS BETWEEN FUNCTION VECTORS AND FORGETTING

The previous section prompts a more effective measure for characterizing catastrophic forgetting,
surpassing those traditionally used in continual learning research with small models, such as fea-
ture similarity (Ramasesh et al., 2020; Lee et al., 2021) and readout similarity (Lee et al., 2021)
between tasks. They fail to overlook the distinctive task-related information inherent in different
models. Other model-dependent measures, such as the ℓ2-distance of model parameters after tuning
on new tasks (Lin et al., 2023; Evron et al., 2024). In addition, we have proven that these traditional
measures (e.g., feature similarity and ℓ2-distance) are loosely correlated with forgetting in LLMs
in Fig. 6. In this section, we first establish that the similarity between function vectors (FV, see
Sec. 2) is strongly correlated with diverse forgetting patterns across task types, training stages, and
language models.

Forgetting coincides with changes in FV similarity between model updates. We now explore
the relationship between forgetting and variations in function vectors across evaluation tasks. As
shown in Figure 2, we evaluate the performance on the four general evaluation tasks throughout the
sequence for both generation and classification settings, alongside shifts in function vectors θT e .
“Fv sim” in the diagram refers to Cosine(θ0T e , θ

j
T e), where θjT e is the FV of evaluation task T e

after fine-tuning the j-th task. We observe a clear consistency between the performance decline and
variations in function vectors. Specifically, as performance drops, the similarity between FV θ0T e

and FV θjT e generally declines, whereas this similarity tends to increase as performance recovers.
For example, in the Hellaswag task within NI-Seq-G1 (top right subplot in Figure 2), the correlation
coefficient (R2 value) between zero-shot performance and our proposed similarity measure reaches
0.873. This finding underscores that fluctuations in the FV often coincide with model forgetting,
and justifies the rationale of characterizing forgetting through function vectors.

(a) Llama2-7b-chat on NI-Seq-G1 (b) Llama2-7b-chat on NI-Seq-C1

Figure 2: The shifts in function vector with 0/5-shot performance during tuning. The bar chart
corresponding to the left y-axis shows the similarity of function vectors to their initial state. The
line graph corresponding to the right y-axis depicts the model’s Rouge-L metric on test data. Main
conclusion: There exists a significant correlation between performance (line data) and FV similarity
(bar data). The correlation plots with more data point are provided in Fig. 6.

5 CAUSAL PATHWAY TO FORGETTING THROUGH FUNCTION VECTORS

Before delving into how function vectors causally influence forgetting, we revisit the function vector
θT from the perspective of latent variable models (Baum & Petrie, 1966; Gruber et al., 2007). The
specific FV θT in Sec. 2 is derived from the sum of activations of certain attention heads in the
LLM via causal analysis, when provided with ICL input of task T . θT represents a latent variable
descriptive of task T ; conditioning predictions on θT produces a model function specific to task
T ,i.e.,

PM (y|x,
∑

(l,k)∈S

hlk = θT )→ fT (y|x). (2)

Here, fT characterizes the function of task T within the model, where different function vectors
activate distinct functions, enabling the model to exhibit diverse abilities.

Prior research (Xie et al., 2021; Wang et al., 2024a) has established that under a latent variable
assumption, in-context learning in LLMs can be rewritten as:

PM

(
y | xT

1 , y
T
1 , . . . , x

T
n , y

T
n , x

)
=

∫
Θ

PM (y | θ, x)PM

(
θ | xT

1 , y
T
1 , . . . , x

T
n , y

T
n , x

)
dθ, (3)
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where PM denotes the predictive probability of the LLM M , and θ is a potentially high dimensional
latent variable within the space Θ. For example, in the task of predicting the antonym (y) of a word
(x), the latent variable could correspond to “writing the antonym of the word” (θ). This framework
indicates that ICL boosts performance by deducing the correct θ from observed input-output pairs.

(a) Llama2-7b-chat on NI-Seq-G1 (b) Llama2-7b-chat on NI-Seq-C1

Figure 3: Intervention results on fine-tuned
model. ’+ Source FV’ and ’- Target FV’ refers to
Evidence I and Evidence II, respectively. Main
conclusion: intervention with related function
vector mitigating forgetting.

By comparing this framework with Eq. 2, we
conclude that LLM predictions hinge on two
critical factors: first, the prediction given by
the model’s task-specific function PM (y|x, θT ),
and second, the capacity of an input x to accu-
rately trigger its corresponding Function Vec-
tor θT (i.e., PM (θT |x)). Previous work in
continual learning has considered the role of
task-specific functions (a.k.a, model parame-
ters) on forgetting, sparked methods such as
gradient orthogonalization (Lopez-Paz & Ran-
zato, 2017; Chaudhry et al., 2018) and parame-
ter regularization (Kirkpatrick et al., 2017; Wu
et al., 2024c) to mitigate its impact. However,
our research hypothesizes that in continual in-
struction tuning of LLMs, the intrinsic cause of
forgetting is the bias of the latent variable θT
elicited by the input x, as supported by the fol-
lowing empirical findings.

Finding I: forgetting is mitigated by adding
the source FV with respect to the evaluation
task. For each evaluation task T e, we con-
ducted an intervention experiment during con-
tinual instruction tuning by adding the source
function vector, i.e., θ0T e , into the LLMs (blue line in Figure 3). Here, the source FV θ0T e is extracted
from the original LLM M0 following the procedure described in Section 2. The intervention involves
adding the function vector to a specific layer during inference (hl = hl + θ0T e ), and the reported re-
sults reflect the best performance obtained by iterating over layers [3, 6, 9, 12, 15]. The findings
indicate that integrating the source FV θ0T e into inference – which explicitly transforms PM (y|x) to
PM (y|x, θ0T e) – substantially restores model performance. For instance, Figure 3(a) shows an aver-
age performance increase of 7.3 on Hellaswag through this intervention. This improvement signifies
that explicitly injecting the latent variable θ0T e helps identify the function specific to the evaluation
task T e, i.e.,PM (y|x, θ0T e), thereby mitigating forgetting.

Finding II: forgetting is mitigated by subtracting the biased FV with respect to the current
training task. Similarly, we conduct the intervention experiment again on each evaluation task T e

by subtracting the target FV, i.e., θjTj
, as depicted by the red line in Figure 3. Here, the target FV

θjTj
represents the function of task Tj after the model has been trained on j-th task. It is calculated

as
∑

(l,k)∈S h̄
Tj ,j
lk , where h̄Tj ,j denotes the mean activation from in-context learning inputs in task

Tj . The intervention involves modifying the representations in a specific layer during inference
through subtracting the function vector (hl = hl − θjTj

). The results reveal a surprising reduction
in forgetting. For example, removing the target FV during Hellaswag inference, as shown in Fig. 3
(b) top, increases the model M5’s performance from 39.5 to 49.1. This finding suggests that the
groundtruth latent variable θ0T e has been confounded by the biased target FV introduced during
training on incoming tasks; substracting it mitigates this interference and thus reduces forgetting.

Finding III: forgetting of the in-context learning ability is severe. In Table 1 and Fig. 1, one
of the most significant observations is that the forgetting of in-context learning (ICL) ability is
notably more severe than the zero-shot ability when evaluated on general tasks. For instance, in
Llama2-7b-chat trained on NI-Seq-C1, the forgetting of Hellaswag reaches 34.7 for ICL, while in
the zero-shot setting, the value is just 8.94. We attribute this to the overfitting of the mapping
PM

(
θ | xT

1 , y
T
1 , . . . , x

T
n , y

T
n , x

)
to a biased target FV in task Tj . This results in a distorted, complex

mapping as evident from the correlation between CommonsenseQA 5-shot evaluations and FV shifts
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during NI-Seq-G1 training on Llama2-7b-chat (Figure 2). Notably, 5-shot performance declines
faster than zero-shot as the FV shifts from M2 to M3, but recovers when it stabilizes at M5.

To summarize, the above empirical findings, alongside the strong correlations between forgetting
and changes in FVs demonstrated in Section 4, and our causal mediation analysis in Appendix F
which reveals a shift in the set S of causal attention heads (i.e., signifying the magnitude and di-
rection of the function vector) during continual instruction tuning, collectively advocate that: (1)
forgetting is primarily driven by modifications in PM (θ|x), rather than changes in PM (y|x, θ); (2)
in LLMs, the function responsible for handling a specific task is not overwritten but is instead over-
shadowed by newly introduced functions.

6 FUNCTION VECTOR GUIDED TRAINING DESIGN

In this section, we present the function vector guided training design that serves as an effective
mechanism for mitigating the forgetting of general abilities applicable to a wide range of language
models and continual learning baselines. We introduce the overall architecture, present experimental
results, and analyze how function vector guided training works.

Function vector guided training. The correlation between forgetting and the function vector im-
plies a principle for training method design. That is, training should be capable of maintaining the
correct mapping of inputs to function vectors and thus mitigating forgetting. Based on this principle,
we propose function vector-guided training as a simple yet efficient design to mitigate forgetting.
Our method introduces two novel regularization terms:

First, to mitigate the introduction of a biased function vector during training, we restrict the alter-
ations in FVs tied to the training tasks, effectively maintaining the model’s PM (θT |x) unchanged.
To this end, restrictions are imposed on the activation values of specific heads signifying the function
vector with a FV consistency loss. When training task Tj , the loss is specified as follows:

ℓFV =
∑

(l,k)∈S

d
(
h
Mj−1

lk (x), hM
lk (x)

)
, (4)

where hM
lk (x) denotes the activations on last input token of head j in layer l on input x from model

M and Mj−1 is the model before training task Tj . d(·, ·) is the distance metrics between variables,
and we adopt L2 distance in this paper.

Furthermore, we introduce a FV-guided KL-divergence loss to align the task function raised by
zero-shot inputs and the FV-intervened one. The detailed function for training task Tj is as below:

ℓKL = KL[PM (· | x)∥P
M

hl→hl+θ0
Tj

j−1

(· | x)]. (5)

PM (· | x) is the predicted probability distribution for each token in the vocabulary Y given input

x. M
hl→hl+θ0

Tj

j−1 denotes the model trained after j − 1 tasks with intervention by the function vector
θ0Tj

, that is θ0Tj
is added to the activation hl of layer l during the forward pass. l is selected as 9 in

this paper. Then, the overall optimization objective is to minimize the loss ℓ = ℓLM + α1ℓFV +
α2ℓKL, where ℓLM = − logPM (y|x) is the language modeling loss (Brown et al., 2020) and
α1, α2 are trade-off hyper-parameters. The algorithm procedure and implementation details are
provided in B and E, respectively. This FV-guided fine-tuning leverages the function PM (y|x, θT )
within the model to guide the fine-tuning, ensuring that the model retains a robust causal pathway
PM (y|x, θT )PM (θt|x) after fine-tuning and minimizes the impact of newly introduced functions on
past abilities.

Main results. The experiments were conducted on three language models, demonstrating their
effectiveness in combination with existing continual learning methods, such as Incremental Lora Hu
et al. (2021) (IncLora), Elastic Weight Consolidation Kirkpatrick et al. (2017) (EWC), Orthogo-
nal Lora Wang et al. (2023b) (OLora), and Instruction-based Memory Replay Wang et al. (2024b)
(InsCL). Besides the three task sequences we adopted in the previous sections, we also addressed
the effectiveness of our approach on the public benchmark TRACE Wang et al. (2023c), which
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Table 2: Performance of baselines and their improved version with Function Vector Guided (FVG)
training on four benchmarks. Main conclusion: FVG significantly prevent forgetting in general and
in-context learning capabilities (GP and IP).

Method NI-Seq-G1 NI-Seq-C1 NI-Seq-M1 TRACE
GP ↑ IP ↑ FP ↑ GP ↑ IP ↑ FP ↑ GP ↑ IP ↑ FP ↑ GP ↑ IP FP ↑

L
la

m
a2

-7
b-

ch
at

M0 49.85 54.43 49.85 54.43 49.85 54.43 49.85 54.43

LoraInc 47.16 30.94 19.35 45.83 27.71 83.80 47.55 37.23 54.33 46.17 38.08 41.20
+FVG +3.34 +25.25 +2.84 +3.98 +25.53 +1.70 +2.65 +15.78 +3.52 +6.92 +16.17 +12.13

Ewc 33.48 26.87 17.72 46.08 38.76 85.00 44.47 41.69 55.85 49.07 47.98 54.22
+FVG +15.73 +27.18 +0.85 +3.11 +15.96 +0.37 +6.18 +13.99 +0.01 +2.21 +6.01 -8.77

O-lora 45.15 31.90 22.67 41.54 20.54 79.33 50.16 39.52 56.94 36.96 29.38 37.13
+FVG +4.89 +23.59 +0.11 +8.38 +33.93 +6.2 +0.29 +14.95 -0.42 +14.32 +24.61 +8.32

InsCL 45.80 41.79 27.14 44.03 35.69 81.67 49.76 43.09 60.83 46.46 41.63 52.95
+FVG +2.65 +8.30 +0.91 +5.00 +16.11 +1.23 +0.98 +8.32 -2.22 +6.70 +11.04 +0.92

L
la

m
a3

-8
b-

c. M0 56.61 60.61 56.61 60.61 56.61 60.61 56.61 60.61

LoraInc 45.51 39.85 21.10 51.89 54.63 82.10 48.00 47.82 52.63 50.31 52.61 27.14
+FVG +7.79 +15.31 +3.10 +3.99 +5.19 +0.30 +4.88 +4.75 +5.78 +3.84 +6.29 +7.22

InsCL 46.48 49.46 28.53 52.11 57.30 82.50 49.46 53.50 60.92 51.87 51.22 37.32
+FVG +6.60 +8.06 -0.85 +3.52 +1.58 -0.60 +4.34 +2.75 -2.80 +2.04 +7.92 +6.66

M
is

tr
al

-7
b-

i. M0 47.55 57.51 47.55 57.51 47.55 57.51 47.55 57.51

LoraInc 42.81 38.82 19.78 48.00 53.00 85.4 49.79 51.02 57.01 51.91 51.37 44.68
+FVG +4.49 +16.61 +0.64 +2.35 +2.67 -0.50 -2.41 +4.02 +0.43 -1.49 +5.14 +10.37

InsCL 43.46 51.06 25.78 40.77 49.49 83.03 42.38 52.27 58.01 50.90 50.39 55.99
+FVG +2.71 +4.64 -0.30 +6.75 +4.27 +2.07 +6.13 +3.40 -0.84 -0.98 +6.12 +1.19

includes a learning sequence comprised of multi-choice QA, code generation, mathematical reason-
ing, and summarization tasks. Table 2 shows the continual instruction tuning performance on four
benchmarks, leading to several key observations:

(a) Llama2-7b-chat on NI-Seq-G1 w/wo      
function vector guided training

(b) Llama2-7b-chat on NI-Seq-C1 w/wo    
function vector guided training

Figure 4: The shifts in function vector with 0/5-shot
performance with function vector guided training.
Main conclusion: FVG prevents the shift in FV (yel-
low bar) and thus mitigates forgetting (orange line).

Observation 1: Function vector guided
training significantly reduces forgetting in
both general and in-context learning capa-
bilities. Traditional continual learning meth-
ods experience substantial forgetting, with
InsCL performing somewhat better yet still
experiencing a minimum decline of 11.34%
on IP. By contrast, function vector guided
training achieves consistent and substantial
gains in combating this issue, enhancing
performance in the Llama2-7b-chat across
all baselines, achieving average increases
of 5.44 in GP and 17.52 in IP. Function
vector-guided training provides a methodol-
ogy to break through the forgetting of gen-
eral knowledge in existing models.

Observation 2: function vector guided training does not compromise the plasticity in learning new
tasks. This technique demonstrates a negligible reduction in the FP metric, signifying a well-
maintained balance between plasticity and stability. For the TRACE datasets with the IncLora
method, our method shows an improvement of 12.13 on the Llama2-7b-chat model, showing large
potential in protecting performance on the training sequence as well. Nonetheless, under certain
scenarios, like when utilizing the InsCL replay method on NI-Seq-M1, our strategy yields a 2.8
drop in FP. This could be attributed to the conflict between the diverse gradient information from
the memory buffer and our regularization component.

Observation 3: The effectiveness of continual learning methods varies with the type of training se-
quence. As discussed above, different training tasks impact existing capabilities in distinct ways.
For instance, while learning classification tasks results in relatively minor forgetting, sequences of
generative tasks tend to lead to more pronounced issues. Consequently, the conventional approach
of uniformly applying the same strategy to every training task demonstrates significant variance in
performance across different sequences. Specifically, InsCL exhibits a performance decline on the
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NI-Seq-C1 dataset compared to IncLora, while it shows improvements on the other three datasets.
In contrast, our method retains the model’s task-specific functions and thoroughly accounts for the
characteristics of the current learning task, thereby achieving consistent and considerable enhance-
ments across a diverse range of datasets.

How does function vector-guided training work? Following our principle of designing function
vector-guided training, we test the mechanics of this approach by examining the shifts in function
vectors during training. We visualize the alteration of function vectors during function vector-guided
training in Fig. 4, following the setting in Sec. 4. It becomes evident that the methods we propose
can effectively maintain the shifts in function vectors for general tasks, even without the need to
access their training data. As the FVs remain stable during the fine-tuning phase, the performance
on general tasks is effectively safeguarded.

7 RELATED WORK

Catastrophic forgetting in fine-tuned language models. Fine-tuning foundational LLMs (Tou-
vron et al., 2023a;b) has become a generic technique for enhancing their capacity of following
instructions (Wei et al., 2022; Zhang et al., 2024a;b) and mastering domain-specific content (Yue
et al., 2023; Christophe et al., 2024). However, adopting such technique can have a negative effect
of hurting the original ability of LLMs, which is widely known as Catastrophic Forgetting (Kirk-
patrick et al., 2017; Luo et al., 2024; Kotha et al., 2024; Wu et al., 2024b). In context of LLMs,
existing approaches towards mitigating this issue can mostly be categorized into three types: regu-
larizing the update of model parameters (Huang et al., 2021; Cha et al., 2021), replaying previous
or self-synthesized data (Scialom et al., 2022; Huang et al., 2024a) and resisting interference via
parameter-efficient fine-tuning (Razdaibiedina et al., 2023; Wang et al., 2023b). In this work, we
aims to characterize CF in LLMs through the function vector, concluding that such forgetting primar-
ily stems from biases in function activation rather than the overwriting of task processing functions.
To this end, We propose function vector guided training, a regularization-based method to protect
task activation from being improperly destroyed during fine-tuning to cure the forgetting issue.

Mechanistic analysis to fine-tuning. Existing works on analyzing the internal mecha-
nism (Räuker et al., 2023; Ferrando et al., 2024) of fine-tuning mainly focus on how LLMs acquire
new capacity, arguing that models learn a minimal transformation on top of the original capabil-
ity (Jain et al., 2024) (wrappers), subtractable and reusable parameter shift vectors (Huang et al.,
2024b; Gao et al., 2024) (task vectors) and to align input queries with their internal knowledge that
are already acquired in the pre-training stage (Ren et al., 2024). Nevertheless the inherent reason for
the forgetting issue brought by fine-tuning currently remains unclear, and hence our work instead
targets on this important point. We have successfully identified the compact task representation,
known as the function vector, can tracks task forgetting in LLMs. Our empirical data indicate a
strong correlation between shifts in the function vector and the phenomenon of task forgetting.

8 CONCLUSION

In this study, we tackle the issue of catastrophic forgetting in LLMs via a detailed investigation using
the FV approach, highlighting its pivotal role in characterizing and mitigating forgetting phenomena.
Our analysis across a vast array of benchmarks reveals that model forgetting is intricately linked to
shifts in latent concept variables (characterized by function vector), facilitated by our novel func-
tion vector-guided training strategy. This method, integrating a regularization term with a function
vector-guided KL divergence loss, significantly curtails forgetting, thereby enhancing both general
and in-context learning capabilities of LLMs in continual learning settings.
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A FUNCTION VECTOR EXTRACTION

We next consider how to extract θc for a given dataset Dc, drawing on the concept of function
vectors proposed by Todd et al. (2023). This extraction is carried out using in-context learning (ICL)
samples, where the model incorporates task-relevant information into its hidden states as it engages
with examples with the ICL prompt. This process is associated with the emergence of θc (Todd et al.,
2023; Hendel et al., 2023). Subsequently, a causal mediation analysis (Pearl, 2013; Vig et al., 2020;
Li et al., 2024) is conducted on the ICL inputs to identify attention heads with significant causal
impacts on the output, and aggregating their representations results in θc. Interestingly, this vector
remains effective even under zero-shot input scenarios. The detailed procedure is outlined below:

First, we start by gathering the task-conditioned activation for each model head by averaging the
ICL input representation of the given task Dc, i.e.,

h̄c
lj =

1

|Dc|
∑

(x)∈Dc

hℓj ([p, x]) . (6)

Where p = [(x1, y1), ..., (xN , yN )] represents the N-shot ICL prompt text made up of held-out
samples of task c, hlj is the model activation at the last token, layer l and position j, and h̄c

lj

represents the task-conditioned activations.

Then to assess the existence of a cause-and-effect relationship between h̄c
lj and correct output, we

employ causal mediation analysis. The model will run on a counterfactual ICL input [p̂, x] incorpo-
rating a label-shuffled prompt p̂ = [(x1, ŷ1), ..., (xN , ŷN )], typically leading to incorrect outcomes.
We then substitute the value of the specific head with the task-specific conditioned activation h̄lj

and calculate its causal effect (CE) on the model’s output.

CElj([p̂, x]) = P
M

hlj→h̄c
lj
(yi | [p̂, x])− PM (yi | [p̂, x]). (7)

Here, Mhlj→h̄c
lj denotes the model with a replacement operation on attention head (l, j) at last

token of the input sentence. A higher CE suggests that the specific head’s state is crucial in enabling
accurate predictions, denoting the encoding of more task-relevant information. For each head at
layer l and position j,we adopt the approach proposed by Todd et al. (2023) to calculate the average
CE across a variety of tasks. Subsequently, we identify the top 10 heads with the highest average
CE (recorded as set S) as the most critical in conveying task-relevant information. The task vector
θc is is then obtained by aggregating the task-conditioned activation from the attention heads in the
set S, i.e., θc =

∑
(l,j)∈S h̄c

lj .

We then evaluates the effectiveness of the function vector (θc) through intervention experiments
on the initial model across multiple datasets. Results show that the FV significantly influences the
output behavior for specific tasks, with its introduction notably improving zero-shot performance in
certain tasks and removal diminishing the model’s ability to produce correct outputs. This suggests
that the model’s specific abilities can be identified and analyzed by studying the corresponding FV.

B FUNCTION VECTOR GUIDED TRAINING ALGORITHM

Algorithm 1 outlines the procedure for function vector guided continual learning. It begins with
a sequence of tasks, each paired with its corresponding dataset, as well as a pre-trained language
model (referred to as M0). Based on the approach from Todd et al. (2023), a collection of held-out
datasets {D̄1, D̄2, . . . , D̄K} is utilized to determine the set of function vector heads. Furthermore,
it is proposed that the function vector head set S is applicable across different datasets, allowing us
to collect this set S only once.
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Algorithm 1: Function vector guided training procedure
Input: Given a sequence of tasks {T1, T2, ....TN} and their corresponding datasets

{D1, D2, ....DN}, a series of held-out dataset {D̄1, D̄2, ....D̄K} to figure out the set of
function vector heads, pre-trained language model M0

Output: Language model MN trained after N tasks
1 Function Main({D1, D2, ....DN}, {D̄1, D̄2, ....D̄K}, M0):
2 S ← GetFunctionVectorSet({D̄1, D̄2, ....D̄K}, M0)
3 for t← 1 to N do
4 h̄lk ← 1

200

∑
xi∈Dt|2001

hlk ([pi, xi]) // task-conditioned activation

5 θTt ←
∑

(l,k)∈S h̄lk

6 Mi ← FVGuidedTraining(Dt,Mt−1, θTt
,S)

7 end
8 return MN

9 return
10 Function GetFunctionVectorSet({D1, D2, ....DK}, M):
11 s← Array[:, :, :](0)
12 for t← 1 to K do
13 h̄lk ← 1

100

∑
xi∈Dt|1001

hlk ([pi, xi]) // task-conditioned activation

14 for l← 1 to LayerNum do
15 for k ← 1 to HeadNum do
16 foreach (x, y) in Dt |120100 do
17 CElk([p̂, x])← PMhlk→h̄lk

(y | [p̂, x])− PM (y | [p̂, x])
18 s[t, l, k]← s[t, l, k] + CElk([p̂, x]) // p̂ label-shuffled prompt
19 end
20 end
21 end
22 end
23 smean ← 1

K

∑K
i=1 s[i, :, :] // average across datasets

24 S ← GetTop10Indices(smean)
25 return S
26 return
27 Function FVGuidedTraining(D,M, θT , S):
28 foreach B = (xi, yi) in GenerateBatches(D) do
29 ℓLM ← 1

|B|
∑

(x,y)∈B − logPM (y | x) // language modeling loss

30 ℓFV ← 1
|B|

∑
(x)∈B

∑
(l,k)∈S d

(
h
Mt−1

lk (x), hM
lk (x)

)
// FV consistency loss

31 ℓKL ← 1
|B|

∑
(x)∈B KL[PM (· | x)∥P

M
hl→hl+θT
t−1

(· | x)] // FV-guided

KL-divergence loss
32 M.UpdateWeights(ℓLM + ℓFV + ℓKL)
33 end
34 return M
35 return

C ILLUSTRATION OF CAUSAL PATHWAY TO FORGETTING.

To help the understanding of ”the causal pathway to forgetting through function vector”, we provide
the illustrations in Figure 5 and the detailed discussions in Section 5. Refer to the caption of Figure 5
for more information.

D DATASETS

Three continual instruction tuning benchmarks and severel general evaluation datasets are adopts in
this paper. The detailed information is as follows:
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Figure 5: Illustration of causal pathway to forgetting. In (a), the pre-trained model is expressed in
a latent variable assumption. It assumes task T0 establishes a predictive pathway (shown in orange)
that aligns well with the task (high probability with θ0T0

). In (b), it shows the model after learning
a new task T1 without regularization, which will necessarily update the function attention heads,
i.e., PM (θ|x), (shown in red blocks), producing new function vectors θ1T0

and θ1T1
that are biased

toward T1. These shifts in function vectors lead to a derailed predictive pathway (shown in purple)
with erroneous predictions for task T0; in other words, forgetting of T0 occurs. In summary, the
modifications in PM (θ|x) rather than PM (y|x, θ) are the primary driving force behind forgetting.

Table 3: A summary of dataset statistics in TRACE includes information on the source of the context,
average length in terms of word count for English, German, and code datasets, and character count
for Chinese.

Dataset Source Category Avg len Metric Language #data

ScienceQA Science Multi-Choice QA 210 ROUGE-L English 3,000
FOMC Finance Multi-Choice QA 51 ROUGE-L English 3,000
MeetingBank Meeting Summary 2853 ROUGE-L English 3,000
C-STANCE Social media Multi-Choice QA 127 ROUGE-L Chinese 3,000
Py150 Github Code generation 422 ROUGE-L Python 3,000
NumGLUE-cm Math Math reasoning 32 ROUGE-L English 3,000

TRACE benchmark. TRACE benchmark is released by Wang et al. (2023c) for the study of
forgetting in LLMs, which consists of 8 different complex generation tasks including multi-choice
QA, code generation, mathematical reasoning and summary. Without loss of generaliztion, we select
6 out of 8 raw tasks to construct the training sequence as our experiments setup. The statistical
information is listed in Table 3.

The training epoch for this benchmark is 5 for C-STANCE, Py150, NumGLUE-cm, 3 for FOMC
and ScienceQA, and 7 for MeetingBank. We evaluate them with a self-construct evaluation code
based on OpenCompass code framework.

SuperNI benchmark. SuperNI benchmark is widely utilized in existing instruction-following
works. We select 26 tasks from the original dataset and set the training size to 1000 and training
epoch set to 10. The statistical information is listed in Table 5.

General evaluation sets. For the general evaluation datasets, we utilize Hellaswag (Zellers et al.,
2019), CommonsenseQA (Talmor et al., 2018), OpenbookQA (Mihaylov et al., 2018), Natural
Question Kwiatkowski et al. (2019), Lambada Paperno et al. (2016), Alpaca Taori et al. (2023)
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Table 4: Basic information of continual learning task sequences used in main text.
Sequence Task type Num. per task

NI-Seq-C1 NI195 → NI1343 → NI1310 → NI1292 → NI363 Classification 1,000
NI-Seq-C2 NI231 → NI1343 → NI220 → NI224 → NI273 Classification 1,000
NI-Seq-G1 NI618 → NI1290 → NI589 → NI511 → NI1357 Generation 1,000
NI-Seq-G2 NI1355 → NI141 → NI619 → NI163 → NI002 Generation 1,000
NI-Seq-M1 NI360 → NI363 → NI1290 → NI339 → NI1510 Classification & Generation 1,000
NI-Seq-M2 NI195 → NI611 → NI292 → NI488 → NI024 Classification & Generation 1,000
TRACE Cstance → Fomc → Meet → Py150 → SciQA → Numgluecm Classification & Generation 3,000

Table 5: A summary of dataset statistics in SuperNI.
Dataset Source Category Avg len Metric Language #data

NI002 Quoref Question Answering 360 ROUGE-L English 1000
NI1290 Xsum Summarization 363 ROUGE-L English 1000
NI1292 Yelp review full Sentiment Analysis 130 ROUGE-L English 1000
NI141 Odd man out Word Semantics 9 ROUGE-L English 1000
NI273 Europarl Text Matching 15 ROUGE-L English 1000
NI024 Cosmosqa Question Answering 82 ROUGE-L English 1000
NI1310 Multilingual amazon reviews Sentiment Analysis 59 ROUGE-L English 1000
NI163 Synthetic Program Execution 23 ROUGE-L English 1000
NI292 Storycommonsense Information Extraction 48 ROUGE-L English 1000
NI1343 Amazon us reviews Sentiment Analysis 70 ROUGE-L English 1000
NI195 Sentiment140 Sentiment Analysis 14 ROUGE-L English 1000
NI1355 Sentence compression Summarization 25 ROUGE-L English 999
NI589 Amazon fine food reviews Summarization 84 ROUGE-L English 1000
NI1357 Xlsum Summarization 454 ROUGE-L English 1000
NI360 Numersense Fill in The Blank 26 ROUGE-L English 1000
NI339 Record Question Answering 185 ROUGE-L English 1000
NI220 Rocstories Title Generation 60 ROUGE-L English 1000
NI224 Scruples Ethics Classification 338 ROUGE-L English 1000
NI611 Mutual Dialogue Generation 162 ROUGE-L English 1000
NI1510 Evalution Information Extraction 7 ROUGE-L English 1000
NI231 Iirc Question Answering 229 ROUGE-L English 1000
NI488 Synthetic Program Execution 16 ROUGE-L English 1000
NI618 Multilingual amazon reviews Summarization 47 ROUGE-L English 1000
NI363 Sst2 Sentiment Analysis 19 ROUGE-L English 1000
NI619 Ohsumed Title Generation 161 ROUGE-L English 1000
NI511 Reddit tifu dataset Summarization 400 ROUGE-L English 1000
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Table 6: Input template for calculating instruction probability and training for different tasks.
Task Prompts

ScienceQA ”Input”: ”Choose an answer for the following question and
give your reasons. Question: [x] Answer:”, ”Output”: ”[y]”

FOMC ”Input”: ”What is the monetary policy stance for the following text? A. dovish, B. hawkish,
C. neutral. Choose one from A, B and C. Text: [x] Stance:”, ”Output”: ”[y]”

C-STANCE
(Translate Chinese to English) ”Input”: ”Determine the attitude of
the following text towards the specified object. Select one: A. Support,
B. Oppose, C. Neutral. Output A, B or C. Text: [x1] Object: [x2] Attitude:”, ”Output”: “[y]”

MeetingBank ”Input”: ”Write a summary of the following meeting transcripts.
Meeting transcripts: [x] Summary:”, ”Output”: “[y]”

Py150 ”Input”: “¡s¿ [x]”, ”Output”: “[y]”

NumGLUE-cm ”Input”: ”Solve the following math problem. Question: [x] Answer:”, ”Output”: “[y]”

NI-xxx

”Input”: ”Definition: In this task, you’re given [Description].
Now complete the following examples
Input: [x]
Output:”, ”Output”: ”[y]”

and Bbh-Object Count Srivastava et al. (2022). All the datasets is downloaded from https:
//github.com/open-compass/opencompass and truncate to 190 samples for efficiency.

Input template In this paper, the specific instruction template used for each dataset is given below,
as show in Table 6.

E IMPLEMENTATION

We adopt Llama2-7b-chat, Llama2-13B-chat (Touvron et al., 2023b), Llama3-8B-chat (Dubey et al.,
2024), Mistral-7B-instruct-v2.0 (Jiang et al., 2023) as the base models, with their effectiveness in
both understanding world knowledge and following instructions. Without specific notification, the
model is fine-tuned with LORA approach Hu et al. (2021), where the rank dimension set to 8 and the
target module is query and value weight matrices. For IncLora, OLora, and InsCL methods, a new
adapter is initialized at the beginning of learning new task while keep the previous Lora adapters
fixed. For Ewc, only one big adapter is initialized during the sequential learning, where rank is set
to 48 for TRACE, and 40 for NI benchmarks.

The maximum input sequence length is set to 512 and the maximum output sequence length is
set to 128. We train the model with the decoder only task calculating gradient only on the output
tokens. We use an Adam optimizer with a weight decay of 1e-4 and the learning rate set to 1e-4 for
TRACE and FUNC, 1e-3 for LONG (following Wang et al. (2023c)). The batch size is set to 8 and
accumulate gradient step is set to 2 for each GPU while we run on 4 A100 GPUs with Deepspeed.
The training size and epochs can be found in the introduction of datasets.

Implementation Detail of Optimization Objective

In order to enhance the reproducibility of the paper, we provide the detailed calculation formula for
the loss function ℓFV and ℓKL when training task Tj :

ℓFV =
∑

(l,k)∈S

∥hMj−1

lk (x)− hM
lk (x)∥22 (8)

ℓKL =

V∑
i=1

PM (Yi | x)[logPM (Yi | x)− logP
M

hl→hl+θTj
j−1

(Yi | x)] (9)

Here, PM (Yi | x) denotes the output probability of token Yi and V = |Y| is the vocabulary size.
As for the hyper-parameters α1 and α2, we perform a grid search on [2, 1, 0.5, 0.25, 0.08, 0.02] and
set α1 = 1 and α2 = 0.08 as the final choice.

20

https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass


Published as a conference paper at ICLR 2025

Table 7: Final performance on 3 SuperNI benchmarks on 4 language models. Hella., Com., Alpa.,
and Ob. denote evaluation score on Hellswag, CommonsenseQA, Alpaca, Object Count datasets,
respectively. The Del. value in red bold style is compared to performance of their initial model M0.
Higher Forget or lower Del. represent more forgetting. Main conclusion: Forgetting consistently
occurs in both general and newly learned tasks, showing considerable variations depending on the
types of tasks, stages of training, and the specific language models involved.

Zero-Shot Performance in General Task In-Context Performance in General Task Performance in Trained Task

Hella. Com. Alpa. Ob. Avg./Del. Hella. Com. Alpa. Ob. Avg./Del. AP FP Forget

Llama2-7b-chat

M0 57.89 57.37 26.50 27.12 42.22 58.95 57.89 35.17 34.21 46.56 / / /
NI-Seq-C1 47.37 40.00 32.00 31.61 37.75 24.21 27.89 28.89 26.84 26.96 86.10 83.80 2.30
NI-Seq-C2 65.26 55.79 30.99 23.47 43.88 67.37 54.21 32.66 27.89 45.53 91.80 88.10 3.70
NI-Seq-G1 48.95 39.47 27.36 39.72 38.88 37.89 42.63 28.84 38.95 37.08 24.97 19.36 5.61
NI-Seq-G2 48.42 32.11 26.30 31.05 34.47 17.89 27.89 15.37 38.95 25.03 49.42 43.37 6.06
NI-Seq-M1 52.11 42.63 31.09 29.51 38.84 45.79 31.05 24.58 33.16 33.65 59.02 54.33 4.70
NI-Seq-M2 65.26 43.16 30.08 37.09 43.90 44.21 27.89 27.64 37.37 34.28 73.19 55.79 17.40

Llama3-8b-chat

M0 81.58 58.42 22.64 40.04 50.67 85.26 63.16 27.42 49.47 56.33 / / /
NI-Seq-C1 79.47 46.84 23.27 32.32 45.48 79.47 40.00 25.62 45.79 47.72 83.40 82.10 1.30
NI-Seq-C2 80.53 55.79 23.62 42.19 50.54 84.21 50.00 24.70 44.21 50.78 91.00 89.90 1.10
NI-Seq-G1 72.63 35.79 22.05 29.39 39.97 67.89 31.05 19.77 41.58 40.07 28.29 21.10 7.20
NI-Seq-G2 63.68 41.58 20.9 15.37 35.38 66.84 44.74 15.35 23.58 37.63 57.77 55.66 2.11
NI-Seq-M1 78.42 40.00 21.93 21.58 40.48 76.84 40.00 21.32 35.91 43.52 60.74 52.63 8.11
NI-Seq-M2 80.53 58.42 20.95 42.28 50.55 74.21 51.05 23.93 19.79 42.26 74.49 52.34 22.16

Mistral-7b-instruct

M0 73.68 60.00 24.74 5.02 40.86 79.47 66.32 32.36 37.89 54.01 / / /
NI-Seq-C1 63.16 50.00 32.04 15.30 40.13 66.84 51.05 36.80 37.89 48.15 84.70 85.40 -0.70
NI-Seq-C2 75.79 60.00 32.07 36.63 51.12 73.68 58.95 35.76 37.37 51.44 91.50 90.30 1.20
NI-Seq-G1 57.37 45.26 26.30 13.81 35.69 57.89 35.79 32.04 39.47 41.30 27.63 19.78 7.85
NI-Seq-G2 33.68 42.63 29.68 52.11 39.53 41.58 36.32 20.46 30.53 32.22 51.05 43.86 7.19
NI-Seq-M1 65.26 47.89 33.02 12.35 39.63 63.68 38.42 34.79 45.79 45.67 61.96 57.01 4.96
NI-Seq-M2 57.37 48.42 31.67 35.58 43.26 67.37 47.89 34.72 46.53 49.13 72.22 65.95 6.27

Llama2-13b-chat

M0 69.47 51.05 28.99 15.09 41.15 75.26 57.89 35.46 43.16 52.94 / / /
NI-Seq-C1 65.79 52.63 34.18 21.51 43.53 66.32 48.42 38.48 38.95 48.04 83.20 82.27 0.93
NI-Seq-G1 63.16 38.95 28.12 13.84 36.02 65.79 32.11 30.92 34.21 40.76 25.64 18.17 7.47
NI-Seq-M1 71.58 49.47 34.10 28.09 45.81 70.53 48.42 36.51 37.37 48.21 60.10 56.34 3.76

For the hyperparameters of existing continual learning methods, we refer to the well-searched value
reported in previous paper. Specifically, for Ewc the scaling factor on regularization term is set to
4,000, for O-lora the number is 0.5. The memory size of InsCL is set to 30 for NI benchmark and
50 for TRACE.

Implementation Detail of Function Vector Framework When extracting the function vector
from in-context samples, we use 10-shot input prompt randomly selected from held-out train-
ing dataset. The task-conditioned activations are average on samples filtered with correct 10-
shot answer from the validation set with 200 samples. As for the set S of the casual atten-
tion heads, we follow the position in Todd et al. (2023) for Llama2-7b-chat and Llama2-13b-
chat, and validate its efficiency on our own datasets. Specifically, for Llama2-7b-chat, the set
S is [(14, 1), (11, 2), (9, 25), (12, 15), (12, 28), (13, 7), (11, 18), (12, 18), (16, 10), (14, 16)]. For
Llama2-13b-chat the set S is [(13, 13), (12, 17), (15, 38), (14, 34), (19, 2), (19, 36), (13, 4),
(18, 11), (10, 15), (13, 23)]. As for Llama3-8b-chat and Mistral-7b-instruct, we run the casual anal-
ysis experiments on 15 datasets and calculate the average CE to get the final casual attention heads
set. For Llama3-8b-chat, the set S is [(27, 28), (13, 27), (15, 28), (17, 8), (21, 2), (10, 12), (15, 16),
(15, 2), (15, 1), (31, 24)]. For Mistral-7b-instruct, the set S is (14, 31), (26, 29), (12, 4), (12, 7),
(30, 4), (30, 9), (22, 30), (14, 19), (11, 10), (18, 1)].

F EXTENDED EXPERIMENTAL RESULTS

Results on more sequences. In addition to the results of the three sequences presented in Sec. 3,
we conducted the similar experiments on more sequences and found forgetting patterns similar to
the experimental results described in the main text. The detailed experimental results on totally 6
sequences are shown in Table 7.
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Figure 6: The correlation plot on model performance and different similarity metrics. The y-axis
shows Rouge-L metric on test data, while the x-axis represents the degree of similarity between the
current model state and its initial condition. The calculation of each similarity metrics is (1) FV simi-
larity: Cosine(θ0T e , θ

j
T e). (2) Last hidden state similarity: Cosine(

∑
h0
−1,−1(x),

∑
hj
−1,−1(x)). (3)

Parameter L2 distance: ∥W j −W 0∥2. The dotted line in each figure denotes the performance for
original model. Main conclusion: There is a significant correlation between performance and FV
similarity (sub-figures in the first column), while the other two metrics—last hidden state similarity
and L2 distance—do not show such strong correlation.

Correlation plot on model performance and different similarity measurements. In this sec-
tion, we provide scatter plots to illustrate the correlation between model performance and function
vector (FV) similarity, alongside two other metrics: the similarity of the last layer hidden states and
the L2 distance of parameters. The calculations for each similarity measure are as follows:

FV similarity is calculated using Cosine(θ0T e , θ
j
T e), where θjT e represents the FV of the evalua-

tion task T e after fine-tuning the j-th task. Last layer hidden states similarity is derived from
Cosine

(∑
x∈E h0

−1,−1(x),
∑

x∈E hj
−1,−1(x)

)
, where E is the test dataset and hj

−1,−1 denotes the
model’s output representation at the last token position in the last layer after fine-tuning the j-th task.
Parameter L2 distance is defined as ∥W j−W 0∥2, with W j being the model weight post fine-tuning
the j-th task. Here the reported model performance is te 5-shot results on the evaluation dataset.

For each evaluation task, we collected 40 data points from various models across different task
sequences and stages and created correlation diagrams. The results, detailed in Figure 6, demonstrate
a notable correlation between model performance and FV similarity. This is particularly significant
for tasks like Hellaswag, CommonsenseQA, and Alpaca, where a decrease in similarity corresponds
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Table 8: Performance of baselines and their improved version with Function Vector Guided (FVG)
training or Model Averaging (MA). Main conclusion: MA performance better on fine-tuned
datasets (FP) compared to FVG, but struggles in the general/in-context datasets setting (GP/IP).

Method NI-Seq-G1 NI-Seq-C1 NI-Seq-M1
GP ↑ IP ↑ FP ↑ GP ↑ IP ↑ FP ↑ GP ↑ IP ↑ FP ↑

L
la

m
a2

-7
b-

ch
at

M0 49.85 54.43 49.85 54.43 49.85 54.43

LoraInc 47.16 30.94 19.35 45.83 27.71 83.80 47.55 37.23 54.33
+MA +0.87 +10.35 +1.46 +2.81 +16.55 -0.17 +3.90 +9.95 +2.22

+FVG +3.10 +18.97 +0.84 +3.98 +25.53 +1.70 +2.65 +15.78 +3.52

Ewc 33.48 26.87 17.72 46.08 38.76 85.00 44.47 41.69 55.85
+MA +6.58 +11.27 +2.59 +1.57 +7.64 +0.40 +5.54 +7.71 +0.92

+FVG +15.73 +27.18 +0.85 +3.11 +15.96 +0.37 +6.18 +13.99 +0.01

L
la

m
a3

-8
b-

c. M0 56.61 60.61 56.61 60.61 56.61 60.61

LoraInc 45.51 39.85 21.10 51.89 54.63 82.10 48.00 47.82 52.63
+MA +4.39 +8.01 +2.07 +1.99 +2.42 +2.00 +3.67 +5.82 +4.70

+FVG +7.79 +15.31 +3.10 +3.99 +5.19 +0.30 +4.88 +4.75 +5.78

to an increase in model forgetting. However, for scenarios where no forgetting occurs, such as
in Object Count, there is no apparent correlation between FV similarity and performance. These
observations inspire further investigations into the mechanisms of task transfer in LLMs.

Contrarily, the other two metrics—last hidden state similarity and L2 distance—do not show such
strong correlation, indicating their limited effectiveness in reflecting model forgetting.

Relationship between forgetting and changes in FV similarity between tasks. In Figure 7, we
present the similarity between the FVs of training and evaluation tasks, alongside the correspond-
ing forgetting after training. This similarity between FVs is defined as Cosine(θj−1

T e , θj−1
Tj

), where

θj−1
T e , θj−1

Tj
are the function vectors extracted from model Mj−1 on evaluation task T e and the cur-

rent training task Tj , respectively. We observe a non-trivial phenomenon: the lower the similarity
between the FVs of two tasks, the greater the extent of forgetting on the evaluation task after train-
ing. For instance, in the first column of Figure 7, the most severe forgetting occurs at task T2 while
function vectors exhibit low similarity. This contrasts with prior findings (Ramasesh et al., 2020; Lee
et al., 2021), where higher task feature similarity was linked to greater forgetting. We hypothesize
that this phenomenon stems from the substantial capacity and universality of LLMs, enabling them
to construct new functions based on old ones without overwriting as continual instruction tuning
proceeds. The lower similarity between the FVs of the training and evaluation tasks indicates more
diverse functions introduced, which exacerbates the challenge of locating the groundtruth function
corresponding to the evaluation task and thus leads to forgetting. We defer proof of this hypothesis
to Section 5.

Relationship between forgetting and hidden states similarity. In Figure 7, we present the
similarity between the FVs of training and evaluation tasks, alongside the corresponding for-
getting after training. To further verify that simple feature similarity is insufficient to repre-
sent the forgetting phenomenon, we also include a heatmap of last layer hidden states similar-
ity between training and testing tasks. This representational similarity was obtained through
Cosine(

∑
x∈T h−1

−1(x),
∑

x∈E h−1
−1(x)), where T,E represent the training and testing tasks, re-

spectively, and h−1
−1 represents the model’s output representation at the last input token position of

the last layer. By comparing the first and third rows in Figure 7, we were unable to identify any
significant correlation between them, indicating that relying solely on simple model representations
to study the forgetting phenomenon is not advisable.

Comparison between model averaging. To further demonstrate the advanced nature of our algo-
rithm, we compared FVG with Model Averaging (Lin et al., 2024). Model averaging is a technique
often used to improve the robustness and performance of models. It involves taking the average
of multiple model parameters across different training runs or stages and has been proven for its
effectiveness in mitigating forgetting.

We evaluate Model Averaging on three benchmarks with combination of IncLora and EWC methods
on Llama2-7b-chat and Llama3-8b-instruct models. Specifically, we perform Model Averaging on
pre-trained model and final model with the averaging ratio set to 0.2. The results are shown in
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(a) Llama2-7b-chat on NI-Seq-G1 (b) Llama2-7b-chat on NI-Seq-C1
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Figure 7: Heatmaps of performance shift (Top) and function vector similarity (Bottom) between
training and test tasks before tuning. For performance shift, the value at position (j′, j) represents
the percentage change of task j at moment Mj′ relative to the baseline metrics. For FV similarity,
the value at position (j′, j) corresponds to Cosine(θj

′

T e , θ
j′

Tj
). Main conclusion: Lower FV similarity

(bluer value in the second row table) between tasks correlates with increased forgetting (bluer value
in the first row table) after training; however, similarity in hidden states does not demonstrate this
correlation.

(a) Llama2-7b-chat on NI-Seq-G1 (b) Llama2-7b-chat on NI-Seq-C1

Figure 8: The shifts in function vector with 5-shot performance with function vector guided training
(FVG) and model averaging (MA). Main conclusion: FVG and MA prevents the shift in FV (yellow
and light blue bar) and thus mitigating forgetting (orange and light blue line).

Table 8. It shows a better performance on fine-tuned datasets (FP) compared to function vector
guided training, but struggles in the general/in-context datasets setting (GP/IP).

While Model Averaging contributes to avoiding forgetting, it is interesting to see the explaination
in the perspective of function vector. We provide the shift in function vector before and after model
averaging with corresponding performance in Fig. 8. Cross-method comparative analysis shows that
methods capable of maintaining the stability of FV changes tend to yield better results. Specifically,
model averaging, when compared to its predecessor Inclora, mitigates shifts and enhances perfor-
mance. Furthermore, an examination across various training stages indicates a positive correlation
between performance and the extent of FV shifts including Model Averaging.

Effectiveness of Function Vector To assess the effectiveness of the extracted θT , referred to as the
Function Vector (FV) in this study, we conduct a series of intervention experiments across multiple
datasets (see Fig. 9) on the initial model Llama2-7b-chat. These experiments consisted of either
inserting or removing an FV at the hidden states of a specific layer at the the last token position, to
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examine the influence on the model output. More precisely, in the transformer’s forward residual
stream, the instruction vector θT modifies the hidden states at a select layer l as hl = hl + θT .

Figure 9: Intervention results on four
datasets via function vector. Main conclu-
sion: Function is effective in regulating the
final outputs.

We reported the intervention findings on four dis-
tinct datasets: 1) CommensenseQA (different from
the evaluation set mentioned above in input instruc-
tion), multiple-choice questions on common sense
reasoning; 2) Antonym, a task aimed at generat-
ing antonyms; 3) AGNews, a text classification task
with the article’s category as the label; and 4) Last-
Spanish, a task that output the Spanish translation
of the list’s final item. The results highlighted that
the FV directly affects the model’s output behavior
for specific tasks. In tasks such as Antonym, Last-
Spanish, and CommonsenseQA, introducing FV sig-
nificantly improved the zero-shot performance from
a low level. Conversely, in the cases of AGNews
and CommonsenseQA, removing the FV resulted in
a deterioration of the model’s ability to produce the
correct output. In contrast, interventions with ran-
dom vectors had a negligible effect on the model.

Alternation of casual attention head during train-
ing. We carried out causality analysis experiments
to identify the latest causal attention head S in the
model, which was fine-tuned on NI-Seq-G1. Specifically, these causality analysis experiments were
performed across six datasets, and the average Cross-Entropy (CE) was calculated to determine the
final set of causal attention heads. The findings are presented in Fig. 10. We observed a gradual
yet slight shift in the set S . This indicates that changes in the model’s function vector occur not
only in values but also in positions, though such changes are slow and do not significantly alter the
importance of the original positions. Therefore, the function vectors mentioned in this paper are
extracted from uniform positions.
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( 14 , 1 ) ( 11 , 2 ) ( 11 , 18 )
( 6 , 16 ) ( 6 , 9 ) ( 6 , 30 )
( 14 , 9 ) ( 12 , 15 ) ( 1 , 8 )
( 13 , 23 ) ( 9 , 25 ) ( 14 , 7 )
( 8 , 5 ) ( 28 , 13 ) ( 8 , 0 )

( 14 , 1 ) ( 11 , 18 ) ( 11 , 2 )
( 6 , 16 ) ( 12 , 15 ) ( 6 , 9 )
( 14 , 9 ) ( 6 , 30 ) ( 14 , 7 )
( 12 , 28 ) ( 30 , 26 ) ( 1 , 8 )
( 13 , 23 ) ( 8 , 26 ) ( 28 , 13 )

( 14 , 1 ) ( 11 , 2 ) ( 11 , 18 )
( 6 , 16 ) ( 9 , 25 ) ( 1 , 8 )
( 13 , 23 ) ( 8 , 26 ) ( 6 , 30 )
( 6 , 9 ) ( 18 , 26 ) ( 12 , 28 )
( 14 , 9 ) ( 12 , 15 ) ( 10 , 4 )

( 14 , 1 ) ( 11 , 18 ) ( 11 , 2 )
( 6 , 16 ) ( 6 , 9 ) ( 9 , 25 )
( 8 , 26 ) ( 12 , 26 ) ( 12 , 28 )
( 1 , 8 ) ( 14 , 7 ) ( 13 , 23 )
( 14 , 9 ) ( 22 , 25 ) ( 12 , 18 )

( 14 , 1 ) ( 11 , 2 ) ( 0 , 3 )
( 0 , 25 ) ( 11 , 18 ) ( 9 , 25 )
( 12 , 15 ) ( 12 , 28 ) ( 28 , 13 )
( 6 , 9 ) ( 8 , 26 ) ( 1 , 2 )
( 14 , 7 ) ( 0 , 21 ) ( 6 , 30 )

( 14 , 1 ) ( 11 , 18 ) ( 11 , 2 )
( 28 , 13 ) ( 12 , 28 ) ( 6 , 16 )
( 12 , 15 ) ( 9 , 25 ) ( 6 , 30 )
( 8 , 26 ) ( 6 , 9 ) ( 19 , 12 )
( 12 , 18 ) ( 14 , 9 ) ( 18 , 26 )

Figure 10: Alternation in the casual attention head during Llama2-7b-chat training on NI-Seq-G1.
The positions of top-10 heads are listed in each heatmap, while the newly introduced heads are
marked as red. Main results: The position of function vector shifts at a quite slow speed during
training
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