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A RELATED WORK

Our content recommendation task follows the paradigm of sequential recommendation (SRec)
(Kang & McAuley, 2018; Wang et al., 2019). Accordingly, our work is closely aligned with the
research on sequential recommendation and diffusion model (DM)-based sequential recommenda-
tion. In this section, we review the studies on these two topics in detail.

A.1 SEQUENTIAL RECOMMENDATION

Sequential recommendation (SRec) has been widely studied in RSs, owing to the natural tempo-
ral order of users’ behaviors (Wang et al., 2019; 2021). SRec can be technically divided into two
categories: traditional sequential models and deep learning-based models. Traditional sequential
models generally leverage sequential pattern mining (Yap et al., 2012) or Markov chain models
(He & McAuley, 2016) to model the item dependencies in users’ interaction sequences. Tradi-
tional sequential methods can only capture simple interaction patterns or short-term dependencies,
thereby cannot achieve satisfactory recommendation performance. To overcome these limitations,
deep learning-based sequential recommendation methods are proposed to model complex and long-
term dependencies in users’ behaviors. Among this category, one research line focuses on designing
the effective sequence encoders and backbone networks to encode users’ interaction sequence, in-
cluding GRU (Hidasi et al., 2015), CNNs (Tang & Wang, 2018), Transformer (Kang & McAuley,
2018), and Mamba (Liu et al., 2025b). Building upon these, another research line further introduces
advanced models, such as Graph Neural Networks (GNNs) (Chang et al., 2021) and generative
models (Deldjoo et al., 2024). Among them, generative models have recently attracted significant
attention. In particular, DMs Liu et al. (2025a) and large language models (LLMs) (Sheng et al.,
2025) have emerged as the two most prominent approaches. DM-based methods will be discussed in
detail in Section A.2. LLM-based methods focus on leveraging the open-world knowledge encoded
in LLMs to enhance sequential recommendation performance (Harte et al., 2023).

A.2 DIFFUSION MODELS FOR SEQUENTIAL RECOMMENDATION

In recent years, owing to the strong capability to model complex distributions of user behaviors
and item content, diffusion models (DMs) have been widely applied in recommendation scenarios
(Wei & Fang, 2025; Lin et al., 2024), including top-K recommendation (Wang et al., 2023b; Zhao
et al., 2024) and multimodal recommendation (Ma et al., 2024c; Li et al., 2025a). In SRec, DM-
based recommendation methods can be broadly categorized into two types: next item generation-
based methods, and data augmentation-based methods. The former generally employ sequence
encoders (e.g., GRU and Transformer) to encode users’ context items into condition embeddings,
which then guide the generation of next items (Yang et al., 2023b; Liu et al., 2025a; Li et al.,
2025b; Cai et al., 2025; Hu et al., 2024; Li et al., 2025b; Ma et al., 2024b; Wang et al., 2024b;
Xie et al., 2024). For example, (Yang et al., 2023b; Liu et al., 2025a) utilize Transformer to learn
condition embeddings from users’ historical interactions, which are then utilized to guide the next-
item generation process. The latter category leverages DMs to generate additional interaction data
in order to enrich users’ interaction sequences and alleviate sequence sparsity. For instance, (Liu
et al., 2023; Ma et al., 2024a; Wu et al., 2023) propose generating pseudo interaction sequences with
DMs to mitigate the sequence sparsity problem. Additionally, several methods integrate contrastive
learning with diffusion models to generate augmented views, thereby enhancing the training of DM-
based recommendation methods (Cui et al., 2024b;a; Qu & Nobuhara, 2025).

Although these methods have achieved remarkable success, they pose a significant risk of generating
uncredible content recommendations (e.g., fake news (Wang et al., 2022; 2024a; Ma et al., 2025),
misinformation (Pathak et al., 2023; Fernandez et al., 2024)), which can severely harm both user
experience and societal well-being. While (Ma et al., 2025) attempts to leverage DMs to mitigate
fake news, its effectiveness is limited under the challenge of scarce labeled data. This limitation mo-
tivates us to steer DMs towards credible content recommendation while simultaneously addressing
the challenge of learning from only limited annotated data.
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B MORE EXPERIMENTAL DETAILS

B.1 DATASETS

In our task setting, we require users’ chronological interaction sequences with content items, to-
gether with labels indicating whether each item contains uncredible content. However, only a lim-
ited number of public datasets fulfill these requirements. In this paper, we utilize three datasets:
PolitiFact, GossipCop, and MHMisinfo.

The PolitiFact and GossipCop datasets are derived from the FakeNewsNet repository1 , which col-
lects data from two well-known fact-checking websites: PolitiFact and GossipCop. These datasets
provide user–news interaction sequences along with labels that indicate whether each news article
is fake or true. The MHMisinfo dataset is collected from a video-based mental health misinforma-
tion dataset2 , containing users’ interaction sequences with videos annotated by whether the videos
contain mental health misinformation. Although this dataset records user–video interactions, the
original video and image contents are not provided. Therefore, we represent the items using their
video descriptions instead of visual features.

Given the high sparsity of these datasets, we adopt a data augmentation strategy following common
practice (Yang et al., 2023b;a). Specifically, for each user, we transform their interaction sequence
into multiple sub-sequences by treating each item as the target item and the items preceding it as
historical context. This transformation increases the number of user–item interaction sequences and
enriches the training data. The statistics of these datasets are reported in Table 1. After augmenta-
tion, the datasets have more sequences, thereby the recommendation performances of Rec4Mit and
HDInt are different from the results reported in (Wang et al., 2022) and (Wang et al., 2024a).

Table 1: The statistics of the three used datasets after preprocessing.
Datasets PolitiFact GossipCop MHMisinfo
# Content items 616 9,529 3,160
# Credible content items 306 6,792 2,815
# Uncredible content items 310 2,737 345
# Training sequences 103,335 510,149 38,083
# Test sequences 21,490 68,002 8,060

B.2 BASELINE DESCRIPTIONS

In this section, we introduce the baseline methods used in our comparison.

Traditional sequential recommendation methods:

• GRU4Rec (Hidasi et al., 2015) utilizes the Gated Recurrent Unit (GRU) to model the temporal
dependencies of items in users’ interaction sequences.

• SASRec (Kang & McAuley, 2018) employs the Transformer architecture to model the item de-
pendencies in users’ interaction sequences. This is one of the most representative sequential rec-
ommendation methods.

• Bert4Rec (Sun et al., 2019) replaces SASRec’s unidirectional Transformer with a bidirectional
Transformer architecture to model complex item dependencies. It also introduces a cloze task
paradigm for sequential recommendation.

• LRU4Rec (Yue et al., 2024) designs linear recurrent units for sequential recommendation. It
decomposes linear recurrence operations and proposes recursive parallelization, reducing model
size and enabling efficient parallel training.

Contrastive learning-based sequential recommendation methods:

• CL4SRec (Xie et al., 2022) uses contrastive learning to address the data sparsity problem in
sequential recommendation. It designs three sequence augmentation operations for contrastive

1https://github.com/KaiDMML/FakeNewsNet
2https://zenodo.org/records/13191247
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learning: item cropping, item masking, and item reordering. Transformer is used as the sequential
encoder of CL4SRec.

• ContraRec (Wang et al., 2023a) proposes two types of contrastive perspectives to enhance the per-
formance of contrastive learning-based sequential recommendation: context-target contrast and
context-context contrast. Transformer is used as the sequential encoder of ContraRec.

Sequential recommendation methods for mitigating uncredible content:

• Rec4Mit (Wang et al., 2022) first utilizes a disentangler to extract event- and veracity-aware in-
formation, respectively. Thereafter, the event embeddings are utilized to derive users’ genuine
preferences and predict the next items users may be interested in.

• HDInt (Wang et al., 2024a). Similar to Rec4Mit, HDInt is also dedicated to mitigating fake news
in recommender systems. HDInt also considers the political bias. We omit this part, since it
requires additional data and the political bias is not considered in our task.

• PRISM (Ma et al., 2025) proposes a protection-enhanced news recommendation method based
on interest-aware sequential modeling. It utilizes DMs’ controllable ability to learn user interest
and mitigate fake news. However, it assumes all the labels of fake news are fully available, which
does not hold in the real world. It is also a DM-based sequential recommendation method.

DM-based recommendation methods:

• DreamRec (Yang et al., 2023b) assumes that each user has an “oracle” item in mind and selects
items that match his ideal item. It uses a Transformer to learn users’ preferences, which then serve
as the condition for generating the oracle item for each user.

• DiffuRec (Li et al., 2023) employs a diffusion model to represent item embeddings in a distribu-
tion space and then feeds the embeddings into an approximator to generate target item represen-
tations. It argues that the standard objective function of DMs is unsuitable for recommendation
tasks and uses cross-entropy loss to optimize model parameters.

• PreferDiff (Liu et al., 2025a) proposes a surrogate optimization objective which extend BPR
recommendation loss (Rendle et al., 2009) to variational format. Meanwhile, this surrogate opti-
mization objective can also be extended to multiple negative items.

B.3 EVALUATION METRICS

HR@K and NDCG@K are two commonly used metrics to evaluate the recommendation accuracy,
thereby we do not make further introduction for them. Credible Rate (CR@K) is a metric to measure
the credibility of a recommendation model. Specifically, it calculates the average rate of the credible
content items in the recommendation lists:

CR@K =
1

|Stest|
∑

s∈Stest

K − |Rs ∩ IGround−truth
unc |
K

, (1)

where Stest is the test set of sequences. Rs is the recommendation list for sequence s.
IGround−truth
unc denotes the ground-truth set of uncredible items. |Rs ∩ IGround−truth

neg | calculates
the number of uncredible items in the recommendation list. The higher value of CR@K means the
better performance in delivering credible recommendations.

In addition, we test how our methods perform in terms of both accurate and credible recommenda-
tions, we design a combined metric HC@K (i.e., combining HR@K and CR@K). Formally, HC@K
is calculated as follows:

HC@K =
2×HR@K× (CR@K/2)

HR@K+ (CR@K/2)
. (2)

This combined metric is inspired by the F1-score, which combines precision rate and recall rate.
To note that, since the values of HR@K and CR@K are not on the same scale, we divide CR@K
with a factor of 2 to rescale it into a similar value level with HR@K. This adjustment ensures a
fair combination; otherwise, the metric with a much smaller magnitude would disproportionately
dominate the combined score.
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B.4 IMPLEMENTATION DETAILS

In this paper, we consider a more challenging and realistic scenario in which only a small proportion
of uncredible items are verified. To simulate this setting, we randomly select 20% of the uncredible
items with available labels during the training process, while the labels of the remaining items are
treated as unknown. It is similar to the semi-supervised setting. In contrast, during the testing stage,
all content labels are provided to enable an accurate evaluation.

The items in PolitiFact and GossipCop are news articles, and we use their textual descriptions as item
content. In MHMisinfo, although the items are videos, only textual descriptions are available; thus,
we can only rely on the textual descriptions for content representation. We encode these textual de-
scriptions into language embeddings using LLaMA2-7B (Touvron et al., 2023), and further project
them into a lower dimension through an MLP. Following (Liu et al., 2025a), we fix the transformed
embedding dimension at 3072 for all DM-based methods, as they exhibit strong performance only
with higher embedding sizes. For other methods, the embedding size is set to 64. We also experi-
mented with larger embedding sizes for these methods, but observed little or no performance gain,
and even performance drops for some methods, consistent with the findings in (Liu et al., 2025a).

In our implementation, we select Transformer as our sequence encoder. Following the standard
configuration (Vaswani et al., 2017), the Transformer architecture in our implementation includes
multi-head attention, position-wise feed-forward network, layer normalization, and dropout.

For our method Disco, the hyperparameter w is tuned within {0.5, 1, 1.5, 2, 5}. We fix m at
10,000 and tune γ within {0.1, 0.2, 0.3, 0.4, 0.5} to control the maximum selection ratio as well as
the growth rate of the current selection ratio. The maximum number of diffusion steps is fixed at
2,000 and the DDIM step is set to 100, following the settings of (Liu et al., 2025a). For all DM-based
methods, we utilize a linear schedule for βt in range [0.0001, 0.02]. In our implementation, we do
not use a classifier-free guidance (Ho & Salimans), since we found it does not influence much to the
performance of Disco. In our implementation, we found that the singular values in Λ are relatively
large; therefore, the threshold for constructing the null space of uncredible features is fixed at 3 for
all datasets in our experiments. We search learning rate in range {1e-5, 5e-5, 1e-4, 5e-4, 1e-3}. The
batch size is searched in {2048 × 2i}i=0,1,2,3. The model parameters are initialized using normal
initialization and optimized by AdamW (Loshchilov & Hutter, 2017). The hyperparameter settings
of baseline methods are reported in Table 2. All experiments are conducted on an NVIDIA A40
GPU with 48 GB of memory. Each method is run five times, and we report the average performance
along with the standard deviation.

Table 2: The hyperparameter settings of baseline methods.
Methods Hyperparameter searching space

GRU4Rec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0
SASRec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0
Bert4Rec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, mask probability∼{0.2, 0.4, 0.6, 0.8}
LRURec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, dropout rate∼{0.2, 0.4, 0.6, 0.8}
CL4SRec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, mask/reorder/crop proportion∼{0.2, 0.4, 0.6, 0.8},

λ ∼{0.1, 0.3, ..., 0.9}
ContraRec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, mask/reorder/crop proportion∼{0.2, 0.4, 0.6, 0.8},

τ1, τ2 ∼{0.1, 0.2, ..., 1}, γ ∼{0, 0.01, 0.1, 1, 5, 10}
Rec4Mit lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, k ∼{2, 4, ..., 20}
HDInt lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, λ ∼{1, 2, ..., 10}, γ ∼{2, 4, 6, 8, 10}
PRISM lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, T ∼{500, 1000, 1500, 2000}, w ∼{0, 2, 4, 6, 8},

λOT , λc, λr, λrec ∼{0.2, 0.4, 0.6, 0.8, 1}, embedding size∼{64, 128, 256, 512, 1024, 2048, 3072}
DreamRec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, T ∼{500, 1000, 1500, 2000}, w ∼{0, 2, 4, 6, 8},

embedding size∼{64, 128, 256, 512, 1024, 2048, 3072}
DiffuRec lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, T ∼{16, 32, 64, 128}, δ=0.001,

embedding size∼{64, 128, 256, 512, 1024, 2048, 3072}
PreferDiff lr∼{1e-2, 5e-2, 1e-3, 5e-3, 1e-4}, weight decay=0, T ∼{500, 1000, 1500, 2000}, w ∼{0, 2, 4, 6, 8},

λ ∼{0.2, 0.4, 0.6, 0.8}, embedding size∼{64, 128, 256, 512, 1024, 2048, 3072}

B.5 MORE HYPERPARAMETER EXPERIMENTS

The hyperparameter γ controls the selection ratio of potential uncredible items. We evaluate the
performance of Disco (using combined metric HC@5) under different values of γ in range {0.1,
0.2, 0.3, 0.4, 0.5}. As shown in Figure 1, Disco achieves the best performance when fixing w =
0.1 on PolitiFact and GossipCop, and w = 0.4 on MHMisinfo. Lower values prevent the model
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Figure 1: Effect of γ on Disco.

from effectively capturing potentially uncredible items, while higher values may introduce excessive
noise, both of which degrade model performance.

B.6 TIME EFFICIENCY ANALYSIS

We conduct experiments to evaluate the training and inference cost (in seconds) of our model Disco
and four DM-based methods under the same batch size. As shown in Table 3, the training cost of
Disco is relatively higher than DreamRec and PreferDiff, mainly due to our additional designs for
credible content recommendation, including content disentanglement and credible subspace projec-
tion. This is acceptable due to the higher recommendation accuracy and credibility of our proposed
method. Our training cost is much lower than that of DiffuRec an PRISM. As for inference cost,
our proposed method Disco demonstrates the highest efficiency. This is because we adopt DDIM
(Song et al., 2021) as our generation strategy, which is more efficient than the DDPM (Ho et al.,
2020) paradigm employed by DreamRec, DiffuRec and PRISM. Even compared with PreferDiff,
which also adopts DDIM, Disco also exhibits higher efficiency. It is because we do not employ
classifier-free guidance in our implementation, since it has limited influence on our model while in-
curring additional time consumption. Although Disco requires disentangling item embeddings first
in the inference stage, it’s inference cost remains comparable to PreferDiff on GossipCop dataset,
which contain large number of items.

Table 3: Time cost (s) of different models on PolitiFact, GossipCop, and MHMisinfo.
Datasets Time cost (s) DreamRec DiffuRec PRISM PreferDiff Disco

PolitiFact Training/epoch 9.4 74.8 25.3 11.3 12.6
Inference 278.2 224.3 994.3 15.2 10.5

GossipCop Training/epoch 43.3 376.9 137.6 58.8 73.1
Inference 956.8 783.1 3223.6 127.9 133.5

MHMisinfo Training/epoch 3.3 26.9 8.9 3.9 4.2
Inference 107.6 87.1 372.9 8.7 7.7

C WHY DMS POSE A DANGER OF GENERATING UNCREDIBLE CONTENT
RECOMMENDATION?

In this section, we empirically and theoretically analyze why existing DM-based recommendation
methods risk generating uncredible recommendations.

C.1 EMPIRICAL FINDINGS

In DM-based recommendation methods, the condition and diffusion target are two critical factors.
In this section, we conduct experiments to examine how they influence the recommendation cred-
ibility of DM-based methods. Specifically, we divide the training dataset into four subsets based
on whether the context items or the diffusion target (i.e., target items) contain uncredible content.
We use ✓ to denote that context items or target items contain uncredible content, and ✗ to denote

5
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Table 4: Performance comparison of DreamRec and PreferDiff under different settings of uncredible
content items in condition and diffusion target on PolitiFact and GossipCop datasets. Best results
are highlighted in bold.

Methods
Whether contain uncredible content items? Politi Gossip
condition diffusion target HR@10 NDCG@10 CR@10 HC@10 HR@10 NDCG@10 CR@10 HC@10

DreamRec

Training with complete dataset 0.3287 0.2047 0.8437 0.3661 0.5501 0.3704 0.8336 0.4742
✗ ✗ 0.2674 0.1571 0.9935 0.3477 0.4658 0.3160 0.9771 0.4769
✗ ✓ 0.0577 0.0409 0.1888 0.0716 0.0372 0.0284 0.0522 0.0307
✓ ✗ 0.2671 0.1541 0.9875 0.3467 0.1927 0.1368 0.9340 0.2728
✓ ✓ 0.0684 0.0413 0.0806 0.0507 0.0539 0.0404 0.0450 0.0317

PreferDiff

Training with complete dataset 0.3554 0.2147 0.8981 0.3968 0.6022 0.3999 0.8228 0.4887
✗ ✗ 0.3035 0.1915 0.9591 0.3717 0.5036 0.3657 0.9315 0.4839
✗ ✓ 0.0557 0.0410 0.1073 0.0547 0.0407 0.0304 0.0833 0.0412
✓ ✗ 0.2625 0.1553 0.8561 0.3254 0.2074 0.1454 0.9076 0.2847
✓ ✓ 0.0568 0.0385 0.0837 0.0482 0.0573 0.0421 0.0254 0.0208

the opposite. After this dataset division, we train two representative DM-based recommendation
methods (DreamRec (Yang et al., 2023b) and PreferDiff (Liu et al., 2025a)) on each subset. From
the results reported in Table 4, we can find that these two factors indeed affect the recommenda-
tion credibility of DM-based methods. We refer to these two factors as uncredible condition and
uncredible diffusion target.

• Uncredible condition. When controlling the diffusion target, if the context items contain uncredi-
ble content that leads to an uncredible condition, the credibility metric CR@10 (i.e., credible Rate)
decreases to some extent for both DreamRec and PreferDiff across the PolitiFact and GossipCop
datasets. This finding indicates that the uncredible condition is a factor contributing to the risk of
DMs generating uncredible recommendation results.

• Uncredible diffusion target. When controlling the condition, if the diffusion target is an un-
credible item (i.e., an uncredible diffusion target), CR@10 drops to an extremely low level. This
further emphasizes that the uncredible diffusion target is another key contributing factor.

Apart from these two findings, we also observe that training with the complete datasets yields worse
recommendation credibility compared to the subset where neither the condition nor the diffusion
target contains uncredible items. This further validates that the uncredible condition and the uncred-
ible diffusion target are indeed the key contributing factors that place DM-based recommendation
methods at risk of generating uncredible recommendation results.

Moreover, although simply removing uncredible items from the datasets can improve recom-
mendation credibility, it significantly deteriorates recommendation accuracy. This is because
uncredible items may also reflect users’ genuine preferences, thereby discarding them restricts the
model’s ability to accurately learn users’ true interests. Therefore, it is crucial to design advanced
models that can mitigate the recommendation of uncredible content while simultaneously preserv-
ing high recommendation accuracy. This is the motivation and research significance of our proposed
model, Disco.

C.2 THEORETICAL ANALYSIS

Proof: Uncredible condition can enhance DM’s generation of uncredible results

The training of a conditional DM is to maximize Epdata(en,c) [log pθ(en|c)], where en is the diffu-
sion target (i.e., the last item in a user’s interaction sequence) and c is the condition. This training
objective pushes the generation toward the real data distribution.
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When an uncredible content-related condition cunc is utilized to guide the generation process, the
model aims to maximize Epdata(en,cunc) [log pθ(en|cunc)]. Then, we have:

Epdata(en,cunc) [log pθ(en|cunc)] =Epdata(cunc)Epdata(en|cunc) [log pθ(en|cunc)]

=Epdata(cunc)

[∫
en

pdata(en|cunc)log pθ(en|cunc)den
]

=Epdata(cunc) [−H(pdata(e
∗
n|cunc), pθ(e∗n|cunc)]

=Epdata(cunc) [−H(pdata(e
∗
n|cunc))]

− Epdata(cunc) [DKL(pdata(e
∗
n|cunc)∥pθ(e∗n|cunc))]

=−Hpdata
(E|Cunc)

− Epdata(cunc) [DKL(pdata(e
∗
n|cunc)∥pθ(e∗n|cunc))] ,

(3)

where E represents the whole generation space and e∗n ∈ E . Cunc is the whole space of uncredible
condition cunc. H(·, ·) is the entropy between two variables or distributions. According to the above
derivation, we have:

Hpdata
(E|Cunc) =− Epdata(en,cunc) [log pθ(en|cunc)]

− Epdata(cunc) [DKL(pdata(e
∗
n|cunc)∥pθ(e∗n|cunc))]

≤ −Epdata(en,cunc) [log pθ(en|cunc)] .
(4)

Ideally, when the model is optimally trained, the DKL term will approach zero, indicating that the
conditional generation distribution approaches the real data distribution. Therefore, the mutual in-
formation between the whole conditional generation space E and the whole uncredible condition
space Cunc can be calculated as:

Ipθ
(E , Cunc) =Ipdata

(E , Cunc)
=Hpdata

(E)−Hpdata
(E|Cunc)

≥Hpdata
(E) + Epdata(en,cunc) [log pθ(en|cunc)] .

(5)

The second equation is derived according to the property of mutual information: I(X,Y ) =
H(X) − H(X|Y ). As the training goes on, the second term becomes larger. At the same time,
Hpdata

(E) is a constant based on the real data distribution pdata. Hence, the lower bound of
Ipθ

(E , Cunc) also becomes larger. Based on this, we can conclude that training the diffusion model
with uncredible conditions increases the mutual information between the generation space and the
uncredible condition space. This indicates that the generation space increasingly contains uncredible
features reflected in the uncredible conditions.

Proof: Uncredible diffusion target can enhance DM’s generation of uncredible results

The optimization loss of existing DM-based recommendation methods can be formulated as:

L = Et∼U(0,T )[∥e0n − fθ
(
etn, c, t

)
∥22]. (6)

When an uncredible item embedding ej (j ∈ Iunc) is used as the diffusion target (i.e., uncredible
diffusion target) during training, the diffusion loss encourages the prediction direction of the diffu-
sion network fθ to move closer to ej . Specifically, the MSE distance between the diffusion target
and the output of fθ will be smaller, indicating higher similarity.

In the inference stage, the generation process of diffusion recommenders can be expressed as:

et−1
n = w1fθ(e

t
n, c, t) + w2e

t
n + w3ϵ, ϵ ∼ N (0, I), (7)

where w1 =
√
ᾱt−1βt

1−ᾱt
, w2 =

√
αt(1−ᾱt−1)

1−ᾱt
, and w3 =

√
1−ᾱt−1

1−ᾱt
(1− αt). This generation process

is performed step by step, and the final embedding e0n is taken as the generation result, which then
serves as the reference for item prediction and recommendations.

Let et−1
n denote the generated embedding at step t− 1 without using uncredible diffusion target ej

during training. In such case, the parameters of the diffusion network are denoted as θ. Similarly, let
êt−1
n denote the generated embedding at step t− 1 with ej as the uncredible diffusion target during

7
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training. In this case, the diffusion parameters are denoted as θ̂. We then calculate the difference in
similarity between the normalized ej and the normalized generated embeddings êt−1

n and et−1
n at

step t− 1 as follows:

∆t−1 = sim(ej , ê
t−1
n )− sim(ej , e

t−1
n )

=
[
w1

(
fθ̂(ê

t
n, c, t)− fθ(e

t
n, c, t)

)
+ w2 (ê

t
n − etn) +�����w3(ϵ

t − ϵt
]
· e⊤j

= w1

(
fθ̂(ê

t
n, c, t)− fθ(e

t
n, c, t)

)
· e⊤j + w2 (ê

t
n − etn) · e⊤j .

(8)

Here, we utilize the dot product to calculate the similarity. To avoid the interference from sampled
noise, we use ϵt to denote the sample noise ϵ in step t− 1, and use it for both generation processes
to control this variable.

When t = T , we have:

∆T−1 = sim(ej , ê
T−1
n )− sim(ej , e

T−1
n )

= w1

(
fθ̂(ê

T
n , c, T )− fθ(e

T
n , c, T )

)
· e⊤j + w2

(
êTn − eTn

)
· e⊤j

= w1

(
fθ̂(ϵ

T , c, T )− fθ(ϵ
T , c, T )

)
· e⊤j +((((((((

w2

(
ϵT − ϵT

)
· e⊤j

= w1

(
fθ̂(ϵ

T , c, T ) · e⊤j − fθ(ϵ
T , c, T ) · e⊤j

)
= w1︸︷︷︸

>0

(
sim

(
ej , fθ̂(ϵ

T , c, T )
)
− sim

(
ej , fθ

(
ϵT , c, T

)))︸ ︷︷ ︸
>0

> 0.

(9)

We control the process of two generations start from the same point êTn = eTn = ϵT for fair com-
parison. As mentioned earlier, the prediction direction of fθ̂ is closer to ej than that of fθ. Hence,
the MSE distance between the output of fθ̂ and to ej is smaller than that between the output of fθ
and ej . When the embeddings are normalized, a smaller MSE distance corresponds to a higher dot
product similarity. Consequently, sim

(
ej , fθ̂(ϵ

T , c, T )
)
− sim(ej , fθ

(
ϵT , c, T )

)
> 0. At the same

time, w1 > 0, therefore ∆T−1 > 0. This indicates that, when starting from the same initial point,
the generation result at step T −1 produced by model fθ̂, which has been trained with an uncredible
diffusion target, will be more similar to this uncredible diffusion target.

When t = T − 1, we have:

∆T−2 = w1

(
fθ̂(ê

T−1
n , c, T − 1)− fθ(e

T−1
n , c, T − 1)

)
· e⊤j + w2

(
êT−1
n − eT−1

n

)
· e⊤j

= w1C
+
T−1 + w2

(
sim(ej , ê

T−1
n )− sim(ej , e

T−1
n )

)
= w1C

+
T−1 + w2∆

T−1.
(10)

As mentioned before, when a uncredible item embedding ej is taken for training, the diffusion loss
will encourage the prediction direction of fθ̂ closer to ej . At the same time, êT−1

n is closer to ej , as
compared to that of eT−1

n . This further enforces fθ̂(ê
T−1
n , c, T − 1) more similar to ej , than that of

fθ(e
T−1
n , c, T − 1). Hence, the first term is a positive constant, and we denote it by C+

T−1.

Similarly, when t < T − 1, we have:

∆T−3 = w1C
+
T−2 + w2∆

T−2

= w1C
+
T−2 + w2(w1C

+
T−1 + w2∆

T−1)
= w1C

+
T−2 + w1w2C

+
T−1 + w2

2∆
T−1.

(11)

∆T−4 = w1C
+
T−3 + w2∆

T−3

= w1C
+
T−3 + w2(w1C

+
T−2 + w1w2C

+
T−1 + w2

2∆
T−1)

= w1C
+
T−3 + w1w2C

+
T−2 + w1w

2
2C

+
T−1 + w3

2∆
T−1.

(12)

· · ·
∆0 = w1C

+
1 + w1w2C

+
2 + · · ·+ w1w

T−2
2 C+

T−1 + wT−1
2 ∆T−1

=

T−1∑
m

w1w
m−1
2 C+

m︸ ︷︷ ︸
>0

+wT−1
2 ∆T−1︸ ︷︷ ︸

>0

= sim(ej , ê
0
n)− sim(ej , ê

0
n)

> 0.

(13)
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According to above analysis, the final generated result ê0n using diffusion network fθ̂ is more similar
with uncredible item embedding ej , as compared to the final generated result e0n using diffusion
network fθ. This indicates that when uncredible items are used as the diffusion targets during
training, the model tends to generate outputs that carry more uncredible features, i.e., embeddings
that are more similar to uncredible items.

Algorithm 1 Training of Disco

1: Input: Training dataset Strain = {(en, eneg, spre, sunc)}|Strain|
s=1 , available uncredible item

set Iunc, trainable parameters Θ, total diffusion steps T , learning rate η, variance schedules
{αt}Tt=0.

2: Output: Optimized parameters Θ.
3: F = Stack({eunci }i∈Iunc) ▷ Construct uncredible feature matrix
4: repeat
5: (en, eneg, s

pre, sunc) ∼ Strain ▷ Sample training data
6: cpre = Tramsformer(spre) ▷ Obtain preference-related condition
7: cunc = Mean(sunc) ▷ Obtain uncredible content-related condition
8: Update F by Algorithm 3 ▷ Progressive uncredible feature matrix enhancement
9: [U1;U2],Λ,V = SVD(F⊤) ▷ Construct null space of uncredible feature matrix

10: ẽn = enU2U
⊤
2 ▷ Credible subspace projection for diffusion target en

11: ẽn = (ẽn + en)/2 ▷ Residual connection
12: t ∼ Uniform(1, T ) ▷ Sample diffusion step
13: ẽtn =

√
ᾱtẽ

0
n +
√
1− ᾱtϵ ▷ Add noise to the embedding of diffusion target

14: etneg =
√
ᾱte

0
neg +

√
1− ᾱtϵ ▷ Add noise to the embedding of negative preference item

15: Θ← Θ− η∇ΘLDisco(ẽn, eneg, cpre, cunc, t,Θ) ▷ Update parameters
16: until convergence
17: return Θ

Algorithm 2 Inference of Disco

1: Input: Test dataset Stest = {spre}|Stest|
s=1 , trained diffusion network parameters θ ∈ Θ, total

reverse steps T , DDIM steps T ′, variance schedules {αt}Tt=0.
2: Output: A recommendation list for each user/sequence.
3: spre ∼ Stest ▷ Sample test sequence
4: cpre = Transformer(spre) ▷ Obtain preference-related condition
5: for t′ = T ′, · · · , 1 do
6: t = ⌊t′ × (T/T ′)⌋ ▷ Calculate DDIM denoising step
7: eTn ∼ N (0, I) ▷ Start from Gaussian noise

8: et−1
n =

√
ᾱt−1(1−αt)

1−αt
fθ(e

t
n, c

pre, t) +
√
αt(1−ᾱt−1)

1−ᾱt
etn +

√
1−ᾱt−1

1−ᾱt
(1− αt)ϵ ▷

Step-by-step generation
9: end for

10: ŷi = e0n · e⊤i ▷ Calculate the matching score between a user/sequence and a candidate item ei
11: R = {i|TopK(ŷi), i ∈ I} ▷ Select top K items with highest matching scores
12: returnR

Algorithm 3 Progressive enhancement of uncredible feature matrix
1: Input: Original uncredible feature matrix F, available uncredible item set Iunc, current iteration

j, maximum selection ratio γ, maximum iteration m to reach γ.
2: Output: Updated uncredible feature matrix F.
3: UD(i) = 1

|Iunc|
∑

i′∈Iunc
cos(eunci , eunci′ ) ▷ Calculate uncredible degree of items in I \ Iunc

4: ratio(j) = min(γ, j
mγ) ▷ Calculate the selection ratio at current iteration

5: select ⌊|I \ Iunc| · ratio(j)⌋ items with highest uncredible degree ▷ Select potential uncredible
items

6: Add potential uncredible items into Iunc ▷ Extension of uncredible item set
7: F = Stack({eunci }i∈Iunc

) ▷ Enhancement of uncredible feature matrix
8: return F

9
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D DERIVATION OF EQUATION 5

In this section, we provide the derivation of Equation 5. For simplicity, we only need to derive
the first term, since the derivation of the second term follows the same procedure. The detailed
derivation is as follows:

−Eq

[
log

pθ
(
e0:Tn |cpre

)
q(e1:Tn |e0n)

]
1
= − Eq

[
log

p(eTn |cpre)pθ(e0n|e1n, cpre)
∏T

t>1 pθ
(
et−1
n |etn, cpre

)
q(e1n|e0n)

∏T
t>1 q(e

t
n|et−1

n , e0n)

]

2
= − Eq

log
p(eTn |cpre)pθ(e0n|e1n, cpre)

∏T
t>1 pθ

(
et−1
n |etn, cpre

)
q(e1n|e0n)

∏T
t>1

q(et−1
n |et

n,e
0
n)q(e

t
n|e0

n)

q(et−1
n |e0

n)


3
= − Eq

log
p(eTn |cpre)pθ(e0n|e1n, cpre)

∏T
t>1 pθ

(
et−1
n |etn, cpre

)
����
q(e1n|e0n)�

���q(e2
n|e

0
n)

����q(e1
n|e

0
n)
· · · q(eT

n |e0
n)

�����
q(eT−1

n |e0
n)

∏T
t>1 q(e

t−1
n |etn, e0n)


4
= − Eq

[
log p(e0n|e1n, cpre) + log

pθ(e
T
n )

q(eTn |e0n)
+ log

∏T
t>1 pθ

(
et−1
n |etn, cpre

)∏T
t>1 q(e

t−1
n |etn, e0n)

]
5
= − Eq

[
log p(e0n|e1n, cpre)

]
− Eq

[
log

pθ(e
T
n )

q(eTn |e0n)

]
−

T∑
t>1

Eq

[
log

pθ
(
et−1
n |etn, cpre

)
q(et−1

n |etn, e0n)

]
6
= − Eq

[
log p(e0n|e1n, cpre)

]︸ ︷︷ ︸
reconstruction term

+DKL
(
q(eTn |e0n)∥pθ(eTn )

)︸ ︷︷ ︸
prior matching term

+

T∑
t>1

Eq

[
DKL

(
q(et−1

n |etn, e0n)∥pθ
(
et−1
n |etn, cpre

))]
︸ ︷︷ ︸

denoising matching term

.

(14)

Equation 2 is derived through Bayes rule: q(etn|et−1
n , e0n) =

q(et−1
n |et

n,e
0
n)q(e

t
n|e

0
n)

q(et−1
n |e0

n)
. Equation 4 is

obtained since p(eTn |cpre) = p(eTn ) given eTn ∼ N (0, I), which is independent with condition cpre.

DMs generally optimize the denoising matching term DKL
(
q(et−1

n |etn, e0n)∥pθ
(
et−1
n |etn, cpre

))
in-

stead of the whole variational bound. Then, this denoising matching term can be derived into the
optimization loss L = Ee0

n,c
pre,t

[
1

2σ2
t

∣∣∣∣µq(e
t
n, e

0
n)− µθ(e

t
n, c

pre, t)
∣∣∣∣2
2

]
, by adding the condition

cpre into µθ(e
t
n, t) in (Ho et al., 2020). Similar with (Pathak et al., 2023), µq(e

t
n, e

0
n) is defined as

(Pathak et al., 2023):

µq(e
t
n, e

0
n) =

√
αt(1− ᾱt−1)e

t
n +
√
ᾱt−1(1− αt)e

0
n

1− ᾱt
. (15)

In our model, µθ(e
t
n, c

pre, t) is defined as:

µθ(e
t
n, c

pre, t) =

√
αt(1− ᾱt−1)e

t
n +
√
ᾱt−1(1− αt)fθ(e

t
n, c

pre, t)

1− ᾱt
, (16)

where fθ(e
t
n, c

pre, t) is the predicted e0n using the diffusion network fθ.
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Then, the optimization term can be rewritten as:

L =Ee0
n,c

pre,t

[
1

2σ2
t

∥∥µq(e
t
n, e

0
n)− µθ(e

t
n, t)

∥∥2
2

]
=Ee0

n,c
pre,t

[
1

2σ2
t

∥∥∥∥∥
√
αt(1− ᾱt−1)e

t
n +
√
ᾱt−1(1− αt)e

0
n

1− ᾱt

−
√
αt(1− ᾱt−1)e

t
n +
√
ᾱt−1(1− αt)fθ(e

t
n, c

pre, t)

1− ᾱt

∥∥∥∥∥
2

2

]

=Ee0
n,c

pre,t

[
1

2σ2
q (t)

∥∥∥∥√ᾱt−1(1− αt)

1− ᾱt
e0n −

√
ᾱt−1(1− αt)

1− ᾱt
fθ(e

t
n, c

pre, t)

∥∥∥∥2
2

]

=Ee0
n,c

pre,t

[
1

2σ2
q (t)

(√
ᾱt−1(1− αt)

1− ᾱt

)2 ∥∥e0n − fθ(e
t
n, c

pre, t)
∥∥2
2

]
.

(17)

In practice, the coefficient 1
2σ2

q(t)

(√
ᾱt−1(1−αt)

1−ᾱt

)2

is generally omitted (Ho et al., 2020). Hence,
the optimization loss of our preference-related condition guided generation can be rewritten as
Lpre = Ee0

n,c
pre,t

[∥∥e0n − fθ(e
t
n, c

pre, t)
∥∥2
2

]
. Similarly, the optimization loss of uncredible content-

related condition guided generation is: Lunc = Ee0
n,c

unc,t

[∥∥e0n − fθ(e
t
n, c

unc, t)
∥∥2
2

]
. Our Disco

model aims to encourage the generation guided by preference-related condition and discourage the
generation guided by uncredible content-related condition. To achieve this goal, the optimization
objective is formulated as shown in Equation ??:

L = Lpre − Lunc = Ee0
n,c

pre,t

[∥∥e0n − fθ(e
t
n, c

pre, t)
∥∥2
2

]
− Ee0

n,c
unc,t

[∥∥e0n − fθ(e
t
n, c

unc, t)
∥∥2
2

]
.

(18)

E CASE STUDY

In this section, we conduct a case study using the GossipCop dataset to evaluate the effectiveness of
Disco. The GossipCop dataset contains users’ interaction sequences with news articles, including
both true news (i.e., credible items) and fake news (i.e., uncredible items). Specifically, we present
the historical interaction sequences and recommendation lists for five users. The credible content
items are marked in green, while uncredible items are marked in red. In addition, to illustrate the
semantic relevance between content items, we utilize the same background color to highlight content
with similar or related topics. From Table 5, we have the following observations:

• Disco demonstrates strong capability in delivering credible recommendations. Specifically, al-
though all these users have interacted with uncredible items in their historical interaction se-
quences, the recommendation lists generated by Disco contain no uncredible content.

• Disco is capable of mitigating uncredible content while still preserving high recommenda-
tion accuracy. This is achieved by removing uncredible features while retaining users’ genuine
preference-related information. For example, taking User4 as an example, this user had histori-
cally interacted with some news (including fake news) about the death of celebrities (highlighted
in yellow). Disco can effectively capture this user’s genuine preference and recommend some
content also in such topics. It is worth noting that User4 had interacted with fake news about the
death of “Tom Petty”, and Disco recommends this user with a credible news article about the
same event. This plays an important role in countering misinformation, as it helps users correct
false impressions formed through prior exposure to uncredible content.

F USAGE CLAIM OF LARGE LANGUAGE MODELS

We only utilize ChatGPT for polishing the academic writing, with the prompt “Proofread the gram-
mar and polish the writing of the given sentences”.
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Table 5: Five cases showcasing the historical interaction sequences and the recommendation lists
of five users sampled from GossipCop dataset. Credible refers to credible content (i.e., true news)
and Uncredible refers to uncredible content (i.e., fake news). In a user sample, the texts marked
by the same-color background refer to similar topics. “ground truth” means the corresponding
recommended content items have been actually read by the user in the test set.

User1 Historical
sequence

Credible: Justin
Timberlake, Chris
Stapleton release
’Say Something’
song, video.

Uncredible: Nicole
Kidman, Keith Ur-
ban: Secrets to a Suc-
cessful Relationship.

Uncredible:Kendall
Jenner Shades Scott
Disick Over Photo
With Sofia Richie
and His Kids.

Uncredible:
Grammy winners
2018: the complete
list.

Recommen-
dations

Credible 2018 Latin
GRAMMY Awards
Complete Winners
List.

Credible: Weinstein
Company Files for
Bankruptcy and Re-
vokes Nondisclosure
Agreements.

Credible: Oscars:
The Complete Win-
ners List.

Credible:
Pop superstar Lady
Gaga has officially
landed her first Las
Vegas residency.

Credible (ground
truth): TV News
Roundup: Netflix
Reveals Fuller House
Season 4 Premiere
Date

User2 Historical
sequence

Credible: 13 Nights
Of Halloween 2017
Schedule: Full List
of Movies.

Uncredible: Taylor
Swift will reportedly
keep her new album
off streaming ser-
vices like Spotify
and Apple Music for
a week.

Uncredible: Former
NBC interviewer
lashes out at Trump
in an NYT op-ed for
reportedly casting
doubt on the authen-
ticity of the infamous
tape.

Credible: ’Big Lit-
tle Lies’ Season 2
News, Premiere Date
& Cast.

Recommen-
dations

Credible (ground
truth): Justin Tim-
berlake Announces
New Album Man of
the Woods.

Credible: Seven-time
and defending cham-
pion says she isn’t
quite ready to return
after giving birth to
daughter in Septem-
ber.

Credible:
Pop superstar Lady
Gaga has officially
landed her first Las
Vegas residency.

Credible: Jamie
Lynn Spears’ second
child on the way
will join big sister
Maddie Briann.

Credible: ”Good
morning baby of
mine, John Sta-
mos’ fiance Caitlin
McHugh wrote as
she debuted her baby
bump...

User3 Historical
sequence

Credible: Hugh
Grant and Anna
Eberstein’s baby on
the way joins their
daughter.

Uncredible: The can-
cellation of the third
Sex and the City film
came with headline-
making fallout some-
thing Sarah Jessica
Parker struggled with

Uncredible: Selena
Gomez has com-
pleted her treatment
for depression and
anxiety and is re-
ported feeling

Credible: Congratu-
lations are in order
for Rachel McAdams
the 39-year-old ac-
tress is reportedly go-
ing to be a first-time
mom! Though she
has not personally
confirmed the baby
news

Recommen-
dations

Credible: All
Chicago West Baby
Photos Timeline.

Credible: Demi
Lovato Says She
Contemplated Suicide
at Age 7.

Credible: ’Black
Panther’ is the most
tweeted about movie
ever.

Credible (ground
truth): His wife
Faith Hill said the
country star had
been suffering from
dehydration.

Credible: Tisha
Campbell-Martin
Files For Divorce
From Husband of 21
Years

User4 Historical
sequence

Uncredible: Caitlyn
Jenner told Diane
Sawyer that she
had undergone the
final surgery in her
gender reassignment
procedures on Friday
night’s 20/20 special.

Credible: Indiana
police found the
actress unresponsive
after responding to a
911 call Saturday.

Credible: Roger
Ailes, Former Fox
News CEO, Dies At
77.

Uncredible:
Tom Petty Dead:
Celebrities React
on Social Media
Variety.

Recommen-
dations

Credible: An emo-
tional Celine Dion
returned to the stage
in Las Vegas on
Tuesday night.

Credible (ground
truth): Rocker
Tom Petty died
Monday after being
rushed to a Los
Angeles hospital.

Credible: Hugh
Hefner’s death cer-
tificate from the
Los Angeles County
Department of Public
Health.

Credible: The final
season of Netflix’s
”House of Cards”
keeps the secret of
how Frank Under-
wood died until the
very end.

Credible: Pauley Per-
rette announces she’s
leaving ”NCIS” after
15 seasons.

User5 Historical
sequence

Credible: Benjamin
Glaze had never
kissed a girl before
Katy Perry tricked
him during the ABC
reboot of American
Idol.

Uncredible: During
her chat with Ryan
Murphy Friday
(March 16) for the
opening night of
PaleyFest in Los
Angeles.

Credible: A longtime
aerialist for the
famed Cirque Du
Soleil plummeted to
his death in front of
a horrified crowd in
Florida on Saturday
night while trying
out a new act...

Uncredible: Justin
Bieber’s struggling
with his split from
Selena Gomez as
she’s all smiles on
her Australian vaca-
tion. Here’s how the
Biebs is coping with
his...

Recommen-
dations

Credible (ground
truth): Justin Bieber
Wants to Be With
Selena Gomez But
Is Hanging With
Baskin Champion.

Credible: The singer
covered Ariana
Grande’s ’Just a
Little Bit of Your
Heart’ in the arena
where her concert
was attacked...

Credible: Trevorrow
helmed the rebooted
franchise’s first in-
stallment.

Credible: Voting
closes at 5pm PT
today (June 29) for
this year’s News’ TV
Scoop Awards...

Credible: Blake
Shelton Gets His
Palms Read With
Jimmy Fallon, Jokes
About Having Too
Much Sex.
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