000 SPARSITY IN SPIKING NEURAL NETWORKS (SNNS) AND THE А 001 DERIVATION OF I(W)

002 003 004

006

007

024 025

026

035

037

038

039

Here is the derivation of the sparsity measure $I(W) = 1 - d^{1/q-1/p} \cdot \frac{\|W\|_p}{\|W\|_q}$ (which denotes as $I_{p,q}(W)$ in the manuscript) for spiking neural networks (SNNs), incorporating the formula update 005 and focusing on scaling invariance, sensitivity to sparsity reduction, and cloning invariance, combined with spatiotemporal dynamics and sparsity in SNNs.

800 SNNs communicate through discrete spikes, exhibiting the following key features: (1) Discrete 009 activation: Postsynaptic neurons emit spikes only at specific time points. They are either active 010 (firing spikes) or inactive (not spiking), resulting in sparse data flow. (2) Structure sparsity: Sparsity refers to the proportion of nonzero elements in a weight matrix. 011

The sparsity measure $I(W) = 1 - d^{1/q-1/p} \cdot \frac{\|W\|_p}{\|W\|_q}$ is rigorously constructed to reflect these properties. The sparsity measure $I(W) = 1 - d^{1/q-1/p} \cdot \frac{\|W\|_p}{\|W\|_q}$ satisfies these properties, where: $\|W\|_p = \left(\sum_{i=1}^d |w_i|^p\right)^{1/p}$ is the ℓ_p -norm of W, $\|W\|_q = \left(\sum_{i=1}^d |w_i|^q\right)^{1/q}$ is the ℓ_q -norm of W, d is the dimensionality of W, p < q ensures that sparsity is more effectively captured. The additional 012 013 014 015 016 017 term 1- allows I(W) to range between 0 (no sparsity) and 1 (maximum sparsity). Because when 018 the sparsity is 100%, which means all the elements in SNNs are 0, then I(W) is 1. While when there 019 are no zero elements, that is, the orginal fully connected SNNs, then I(W) is 0. The term $d^{1/q-1/p}$ 020 ensures that I(W) is independent of the vector length, satisfying the cloning property. Without this 021 term, it would vary with the size of W, even for identical sparsity patterns. Below, we derive this 022 formula and explain how it aligns with SNN characteristics.

In detail, the measure I(W) is designed to satisfy the following key properties:

A.1 SCALING INVARIANCE

027 In SNNs, the scaling invariance corresponds to: (1) Independence of weight scaling: If the weight 028 matrix W is scaled (e.g., multiplied by a constant), its sparsity structure remains unchanged, and so 029 should I(W). (2) Independence of temporal scaling: Changes in spike magnitudes (the activation value) should not affect the sparsity measure, ensuring the measure accurately reflects temporal 031 dynamics. 032

Under the constraints of sparsity measurement, the sparsity measure should remain unchanged if the 033 weight matrix W is scaled by a positive constant $\alpha > 0$. Specifically: 034

$$I(\alpha W) = 1 - d^{1/q - 1/p} \cdot \frac{\|\alpha W\|_p}{\|\alpha W\|_q},$$

Since:

 $\|\alpha W\|_p = \alpha \|W\|_p \quad \text{and} \quad \|\alpha W\|_q = \alpha \|W\|_q,$

substituting into I(W) yields:

$$I(\alpha W) = 1 - d^{1/q - 1/p} \cdot \frac{\alpha \|W\|_p}{\alpha \|W\|_q} = 1 - d^{1/q - 1/p} \cdot \frac{\|W\|_p}{\|W\|_q} = I(W).$$

Therefore, in SNNs, it ensures that I(W) remains unaffected when all weights are scaled proportionally (e.g., multiplying W by a constant $\alpha > 0$). Meanwhile, a natural advantage lies in the fact that SNNs rely solely on discrete spike timing and firing rates to transmit information, ensuring consistency across all magnitudes of discrete spike trains. Therefore, the scaling weight magnitudes or activation value intensity do not change the network sparsity.

048 049 050

051

045

046

047

A.2 SENSITIVITY TO SPARSITY REDUCTION

In SNNs, sparsity reduction can occur in two distinct forms: (1) Weight sparsity: Decreased sparsity 052 corresponds to more nonzero weights, leading to a reduction in I(W). (2) Temporal sparsity: If more neurons fire simultaneously, temporal sparsity decreases, and I(W) reflects this reduction.

Consider two weight matrices: (1) $W_1 = [10, 0, 0, 0]$. The sparse one with few neurons fire, resulting in a smaller $||W||_p$, a lower $||W||_q$, and a high I(W). (2) $W_2 = [5, 5, 0, 0]$. Less sparse one with more neurons fire simultaneously, increasing $||W||_p$ more then $||W||_q$, causing I(W) to decrease compared to the case with W_1 .

1. Compute norms: $-\|W_1\|_p = 10$, $\|W_2\|_p = 2^{1/p} \cdot 5$, $\|W_1\|_q = 10$, $\|W_2\|_q = 2^{1/q} \cdot 5$

2. Sparsity measure:

$$I(W_1) = 1 - d^{1/q - 1/p}, \quad I(W_2) = 1 - d^{1/q - 1/p} \cdot 2^{1/p - 1/q}.$$

3. Since p < q, 1/p - 1/q > 0, so $2^{1/p-1/q} < 1$. Thus:

$$I(W_2) < I(W_1)$$

Thus, it keeps sensitivity to spatial and temporal sparsity, that is, the distribution of weights or spike activations (firing rates). When it changes weight distribution with more nonzero weights, leading to a reduction in I(W) corresponds to sparsity decreasing. When temporal sparsity decreases (more neurons firing at the same time), the distribution becomes denser, which directly affects the ratio $||W||_p/||W||_q$, leading to a decrease in I(W).

A.3 CLONING INVARIANCE

It should satisfy the property of Cloning Invariance in SNNs from these two aspects: (1) Spatial network expansion: Cloning weights for larger networks does not change sparsity. (2) Temporal expansion: Repeating activities over time does not affect sparsity, ensuring temporal consistency.

For the case of incorporating spatial vectors, the sparsity measure I(W) should remain invariant when the weight matrix is cloned:

$$I(W) = I([W, W])$$

This ensures that cloning or repeating the matrix does not affect the sparsity measure.

1. For a cloned matrix [W, W]:

$$||[W,W]||_p = 2^{1/p} ||W||_p, \quad ||[W,W]||_q = 2^{1/q} ||W||_q$$

2. Substituting into I([W, W]):

$$I([W,W]) = 1 - (2d)^{1/q-1/p} \cdot \frac{\|[W,W]\|_p}{\|[W,W]\|_q}$$
$$I([W,W]) = 1 - (2d)^{1/q-1/p} \cdot \frac{2^{1/p} \|W\|_p}{2^{1/q} \|W\|_q}$$

3. Simplify:

$$I([W, W]) = 1 - d^{1/q - 1/p} \cdot \frac{\|W\|_p}{\|W\|_q} = I(W)$$

For the case of incorporating time steps in SNNs, if W is repeated across T time steps:

$$W_T = [W, W, \dots, W] \in \mathbb{R}^{d \times (nT)}$$

1. Norms for W_T :

$$||W_T||_p = T^{1/p} ||W||_p, \quad ||W_T||_q = T^{1/q} ||W||_q$$

2. Sparsity measure:

$$I(W_T) = 1 - (nT)^{1/q - 1/p} \cdot \frac{\|W_T\|_p}{\|W_T\|_q}$$

3. Substituting:

$$I(W_T) = 1 - (nT)^{1/q - 1/p} \cdot \frac{T^{1/p} ||W||_p}{T^{1/q} ||W||_q}$$

 108 4. Simplify: 109

112

120 121 122

125

$$I(W_T) = 1 - n^{1/q - 1/p} \cdot \frac{\|W\|_p}{\|W\|_q} = I(W)$$

In addition, considering temporal sparsity changes, if neuron activity differs across time steps, sparsity decreases. For dynamic weights $W'_T = [W^{(1)}, W^{(2)}, \dots, W^{(T)}]$, norms reflect this change:

$$||W_T'||_p = \left(\sum_{t=1}^T ||W^{(t)}||_p^p\right)^{1/p}, \quad ||W_T'||_q = \left(\sum_{t=1}^T ||W^{(t)}||_q^q\right)^{1/q}$$

118 Sparsity measure decreases with reduced temporal sparsity: 119

$$I(W'_T) = 1 - (nT)^{1/q - 1/p} \cdot \frac{\|W'_T\|_p}{\|W'_T\|_q}$$

Therefore, it satisfies the property of cloning invariance in SNNs from the spatial and temporal 123 dimensions. 124

SPARSITY DECREASES AS MORE NEURONS FIRE A.4 126

127 When the values of weights in SNNs are adjusted such that more neurons are active (e.g., more 128 neurons spike simultaneously), the sparsity should decrease. 129

The proof is here, in SNNs, the activation pattern of neurons is sparse. When more neurons fire 130 131 simultaneously, the weight matrix becomes denser (i.e., fewer zero entries in the matrix). This means that temporal sparsity is reduced, and more activations lead to a lower value for the sparsity 132 measure I(W). As the number of neurons firing simultaneously increases, $||W||_p$ grows faster than 133 $||W||_q$, which causes $\frac{||W||_p}{||W||_q}$ to increase, and thus I(W) decreases. 134

- 135 136
- 137

A.5 NEURAL NETWORK-SPECIFIC PROPERTIES

Neural Network-Specific properties describe how the sparsity measure should behave when SNNs' 138 parameters are adjusted or when the network is expanded. 139

140 1. Sparsity Changes with Weight Adjustment

141 Definition: For each spiking neuron i, there exists a $\beta_i > 0$ such that for any positive α , adjusting 142 the weight matrix W by adding α to w_i results in an increase in the sparsity measure. 143

Proof for I(W): The sparsity measure I(W) is sensitive to the concentration of nonzero weights. 144 When a small weight adjustment is made that concentrates weights more in certain neurons, the 145 sparsity decreases (because nonzero weights become more focused). This leads to an increase in 146 $||W||_p$, and thus I(W) will increase, as expected. 147

- 148 2. Adding Zero Weights Increases Sparsity
- 149 Definition: Adding zero weights to the network increases the sparsity measure, as the nonzero 150 weights are now less concentrated. 151
- Proof for I(W): Adding zero weights results in more zero entries in the weight matrix for SNNs, 152 decreasing the concentration of nonzero elements. This leads to a lower $||W||_p$, which, based on 153 the formula, increases I(W). Therefore, I(W) correctly reflects the increase in sparsity when zero 154 weights are added. 155
- 156 157

158

161

В **REPRODUCIBILITY CHECKLIST**

- This paper: 159
 - Includes a conceptual outline and/or pseudocode description of AI methods introduced (yes)

162 163	• Clearly delineates statements that are opinions, hypothesis, and speculation from objective
164	facts and results (yes)
165	• Provides well marked pedagogical references for less-familiare readers to gain background
166	necessary to replicate the paper (yes)
167	Does this paper make theoretical contributions? (yes) If yes, please complete the list below.
168	Does this paper make theoretical contributions: (yes) if yes, please complete the list below.
169	• All assumptions and restrictions are stated clearly and formally. (yes)
170	• All novel claims are stated formally (e.g., in theorem statements). (yes)
171	 Proofs of all novel claims are included. (NA)
172	
173	• Proof sketches or intuitions are given for complex and/or novel results. (NA)
174	• Appropriate citations to theoretical tools used are given. (yes)
175	• All theoretical claims are demonstrated empirically to hold. (yes)
176 177	• All experimental code used to eliminate or disprove claims is included. (yes)
178 179	Does this paper rely on one or more datasets? (yes)
180	If yes, please complete the list below.
181	• A motivation is given for why the eventiments are conducted on the selected detects ()
182	• A motivation is given for why the experiments are conducted on the selected datasets (yes)
183	• All novel datasets introduced in this paper are included in a data appendix. (NA)
184	• All novel datasets introduced in this paper will be made publicly available upon publication
185	of the paper with a license that allows free usage for research purposes. (NA)
186 187	• All datasets drawn from the existing literature (potentially including authors' own previ-
188	ously published work) are accompanied by appropriate citations. (yes)
189	• All datasets drawn from the existing literature (potentially including authors' own previously published work) are publicly available. (yes)
190	• All datasets that are not publicly available are described in detail, with explanation why
191	publicly available alternatives are not scientifically satisficing. (yes)
192	
193 194	Does this paper include computational experiments? (yes)
195	If yes, please complete the list below.
196 197	• Any code required for pre-processing data is included in the appendix. (yes).
198	• All source code required for conducting and analyzing the experiments is included in a
199	code appendix. (yes)
200	• All source code required for conducting and analyzing the experiments will be made pub-
201	licly available upon publication of the paper with a license that allows free usage for re-
202	search purposes. (yes)
203	• All source code implementing new methods have comments detailing the implementation,
204	with references to the paper where each step comes from (yes)
205	• If an algorithm depends on randomness, then the method used for setting seeds is described
206	in a way sufficient to allow replication of results. (yes)
207	• This paper specifies the computing infrastructure used for running experiments (hardware
208 209	and software), including GPU/CPU models; amount of memory; operating system; names and versions of relevant software libraries and frameworks. (yes)
210	• This paper formally describes evaluation metrics used and explains the motivation for
211	choosing these metrics. (yes)
212	• This paper states the number of algorithm runs used to compute each reported result. (yes)
213	 Analysis of experiments goes beyond single-dimensional summaries of performance (e.g.,
214 215	• Analysis of experiments goes beyond single-dimensional summaries of performance (e.g., average; median) to include measures of variation, confidence, or other distributional information. (yes)

216	The significance of any improvement or decrease in performance is judged using appropri-
217	ate statistical tests (e.g., Wilcoxon signed-rank). (yes)
218	This paper lists all final (hyper-)parameters used for each model/algorithm in the paper's
219	experiments. (yes)
220	
221	This paper states the number and range of values tried per (hyper-) parameter during devel-
222	opment of the paper, along with the criterion used for selecting the final parameter setting.
223	(yes)
224	
225	
226	
227	
228	
229	
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	
243	
244	
245	
246	
247	
248	
249 250	
250	
252	
252	
254	
255	
256	
257	
258	
259	
260	
261	
262	
263	
264	
265	
266	
267	
268	
269	