
Towards Optimal Caching and Model Selection for
Large Model Inference

Anonymous Author(s)
Affiliation
Address
email

Abstract

Large Language Models (LLMs) and other large foundation models have achieved1

impressive results, but their size exacerbates existing resource consumption and2

latency challenges. In particular, the large-scale deployment of these models is3

hindered by the significant resource requirements during inference. In this paper,4

we study two approaches for mitigating these challenges: employing a cache to5

store previous queries and learning a model selector to choose from an ensemble6

of models for query processing.7

Theoretically, we provide an optimal algorithm for jointly optimizing both8

approaches to reduce the inference cost in both offline and online tabular settings.9

By combining a caching algorithm, namely Greedy Dual Size with Frequency10

(GDSF) or Least Expected Cost (LEC), with a model selector, we achieve optimal11

rates in both offline and online settings. Empirically, simulations show that our12

caching and model selection algorithm greatly improves over the baselines, with up13

to 50× improvement over the baseline when the ratio between the maximum14

cost and minimum cost is 100. Experiments on real datasets show a 4.3×15

improvement in FLOPs over the baseline when the ratio for FLOPs is 10, and16

a 1.8× improvement in latency when the ratio for average latency is 1.85.17

1 Introduction18

The recent emergence of Large Language Models (LLMs) and foundation models has significantly19

increased the capabilities of AI systems (Bubeck et al., 2023; Nori et al., 2023; Ziegler et al., 2019;20

Ouyang et al., 2022; OpenAI, 2023; Beeching et al., 2023; Chowdhery et al., 2022; Wei et al., 2022a;21

Google, 2023). However, this progress comes at the cost of increased resource consumption and22

latency during both training and inference, presenting challenges not only in real-world deployment23

but also in terms of environmental impact and energy usage (Sharir et al., 2020; Patterson et al., 2021;24

Bommasani et al., 2022). For instance, LLM-based chatbots typically consist of large transformer-25

based networks with parameter counts ranging from one to several hundred billion (Zhou et al.,26

2023). Moreover, the auto-regressive nature of LLMs exacerbates the issue of latency and resource27

consumption because the model can only generate one token at a time. Thus, compared to traditional28

AI-powered services, language model inference costs are much higher and the latency is significantly29

longer, making it nearly impossible to process each query using LLMs in high-throughput query30

systems like search engines.31

In this paper, we explore two simple yet effective strategies: employing a caching system to store32

previous queries and developing a model selector to choose the most appropriate model from a set33

of models for processing the queries. The general workflow of our proposed LLM-based inference34

system is shown in Figure 1: upon receiving a query or prompt, we initially check if it can be retrieved35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

from the cache. If the query is not found in the cache, we employ the model selector to determine36

which model should be used for processing it first, based on the estimated cost for both models.37

The choice of cost function and models can vary based on the goal. One measure of cost, for example,38

could be floating point operations (FLOPs). Other alternatives could include the number of API calls39

as a measure of resource consumption, latency as a measure of time consumption, or a score provided40

by a user as a measure of user satisfaction. The cost could also be a weighted sum of multiple factors.41

For the models, a natural choice would be to have a small and a large model, where the small model42

costs less and is also less accurate, and the large model has a higher cost and also provides higher43

accuracy. Another alternative would be to have models with expertise in different areas, i.e., each44

model has high accuracy in its own area of expertise. We provide more discussion in Appendix A.45

Cache
query

hit

miss
Selector

Small Model

Large Model

𝑐! <	𝑐"

𝑐! >	𝑐"

Figure 1: A workflow for LLM-based inference with caching and model selection.

There is a long history of existing literature on caching algorithms, with prominent applications46

including computer architecture and web retrieval (Smith, 1982; Wang, 1999; Kumar and Singh,47

2016). Existing caching algorithms deal with queries with different frequencies and cost, and must48

also provide guidelines for choosing the cache size. In addition to these well-known difficulties, using49

caching for LLMs raises new challenges, including:50

• The need for fuzzy search. Since the prompt lies in a discrete space that is exponentially51

large with respect to the token size, it is impossible to match and save all distinct queries.52

Thus, to be at all useful, approximate matching and grouping is required when retrieving53

queries saved in the cache.54

• The randomness of the cost. The cost for processing each query is a random variable55

that depends on the query and has a large variance due to the auto-regressive generation56

procedure and the difference in the length and quality of generated responses. When57

combined with the long-tailed distribution of the query frequency, the estimation of the cost58

requires a non-trivial algorithm design.59

• The effect of model selection. When the cache system is combined with the model selector,60

the estimation of cost must change accordingly to take into consideration the different costs61

induced by various models.62

For the fuzzy search problem, semantic search or vector-embedding-based ideas provide a systematic63

solution that includes embedding extraction and matching algorithms (Bast et al., 2016; Chang et al.,64

2020; Kamalloo et al., 2023). To simplify the problem, we assume that there exists some semantic65

search oracle that can group the prompts with the same semantic meaning and that the total cache66

size is limited by the number of queries, ignoring the difference in cache size between each individual67

query and response.68

The remainder of this paper is organized as follows. In Section 2, we formally define the pipeline of69

caching and model selection. In Section 3, we study the optimality of the Least Expected Cost (LEC)70

caching strategy, which estimates the frequency and cost of processing each query, and evicts the one71

with the least estimated expected cost when there is only one model to call. In section 4, we consider72

the case when we have access to two models, and jointly design optimal caching and model selector.73

In both sections, we start by assuming there are infinite samples and then analyze the offline and74

online learning cases where the cost and frequency need to be learned from data. The experimental75

results are presented in Section 5. We discuss the potential choices of cost, model, and output in the76

real world in Appendix A. We provide a brief discussion of the generalization to variable cache sizes77

in Appendix B and of the generalization to multi-model selection in Appendix C.78

2

1.1 Related Work79

Cache Replacement Algorithms Traditional cache replacement algorithms investigate optimal80

ways to cache queries with different frequencies, costs, and cache sizes. To address varying81

frequencies, a standard approach is to use a Least Frequently Used (LFU) or Least Recently Used82

(LRU) cache eviction strategy (Lee et al., 2001). These have been proven to be optimal for both83

adversarial and stochastic queries (Stallings and Paul, 2012; Bura et al., 2021). Caching has also84

been combined with machine learning advice and online learning analysis in the literature Chang85

et al. (2018); Shuja et al. (2021); Jiang et al. (2019); He et al. (2017); Mukhopadhyay and Sinha86

(2021); Faizal et al. (2023). When varying costs and varying frequencies exist simultaneously, Jin87

and Bestavros (2000); Arlitt et al. (2000) propose and study the Greedy Dual-Size with Frequency88

(GDSF) replacement algorithm, which takes both frequency and cost into consideration. Bahn (2005)89

proposes the Least Expected Cost (LEC) algorithm, which is similar to GDSF, except that it estimates90

frequency from data. Our work extends this idea by attempting to learn a model for both frequency91

and cost from data. And we explore the statistical optimality of these algorithms in both offline and92

online settings. We also investigate combining caching algorithms with model selection in order to93

boost performance.94

Acceleration of LLM Inference Much effort has been devoted to reducing the cost and latency of95

LLMs during inference. For example, post-training quantization-based approaches aim to compress96

the model size by using lower-precision arithmetic without losing too much accuracy (Gholami et al.,97

2021; Frantar et al., 2023). Early-exit frameworks aim to utilize the output in the middle decoder98

blocks so that only a small fraction of decoder blocks are called when processing a query (Bakhtiarnia99

et al., 2022; Schuster et al., 2022). The Mixture of Experts approach designs a gating function that100

only assigns a small fraction of the network for each query (Fedus et al., 2022). Embedding recycling101

caches activations from an intermediate layer of a pre-trained model to accelerate the training and102

inference procedure (Du et al., 2020; Wei et al., 2022b; Saad-Falcon et al., 2023). LLM cascade starts103

with the smallest model and continues to call larger models if the output is not acceptable (Chen104

et al., 2023b). The big little transformer decoder framework uses a smaller model to generate a draft105

response and calls the large model to identify the unreliable tokens and do correction (Kim et al.,106

2023). Similar ideas have been combined with speculative sampling to guarantee that the output107

remains the same in distribution as that of the large models (Chen et al., 2023a; Leviathan et al.,108

2022).109

2 Formulation110

We formalize the workflow in Figure 1. Consider the set of (finite) prompts / queries Q ⊂ Rd. In the111

t-th round, a query qt ∈ Q is sampled from a fixed population distribution P ∈ ∆(Q). We maintain112

a small set of cache Lt ⊂ Q with |Lt| ≤ L. We say the query hits the cache if the query satisfies113

qt ∈ Lt. When the query hits the cache, the incurred cost is 0. When the query does not hit the cache,114

we choose among the existing models to process the query.115

In the processing stage, we first describe the setting of caching without model selection, and extend it116

to the case of caching with model selection.117

2.1 Caching without Model Selection118

In the case when we only have one model, let Cl(q) denote the random variable of the cost when119

processing the query with the model. Assume that Cl(q) is supported on [B1, B2] with B2 > B1 > 0120

being the upper and lower bounds for the cost. Let c⋆l (q) = E[Cl(q)] be the expected true cost of121

processing the query q. The cost for a given query q and cache L can be written as:122

cost(q,L) = 1(q ̸∈ L)E[Cl(q)] = 1(q ̸∈ L)c⋆l (q).
By taking the expectation over the distribution q, we have the expected cost as123

cost(L) =
∑
q

P (q)1(q ̸∈ L)c⋆l (q).

In the offline learning setting, we collect an offline dataset and hope to learn a caching policy L̂ such124

that cost(L̂) is minimized.125

3

In the online setting, the query comes in a streaming fashion. At the beginning of each round, we126

receive a query qt. If the query misses the current cache Lt, we let the model to process the query127

and receive a cost ct ∼ PCl
. Then we can choose to update the cache Lt by adding the current query128

and response to the cache, and replacing one of the existing cached items if the cache Lt is full. If the129

query hits the cache qt ∈ Lt, then the cost for this round is set to 0 with no more observations. In this130

case, we are interested in characterizing the average difference in the cost throughout the execution131

of the online learning process. This can be characterized by the regret:132

Regretcache(T) =
T∑

t=1

E[cost(qt,Lt)− cost(qt,L⋆)].

2.2 Caching with Model Selection133

For the simplicity of the notation, we focus on the case of selecting from a small model and a large134

model1, and discuss how it can be generalized to the case of selecting from multiple models in135

Appendix C. Let Cs(q) denote the random variable of the cost when processing the query with the136

small model, and Cl(q) denote the random variable of the cost when processing the query with the137

large model. We assume that both random variables are supported on [B1, B2]. We observe i.i.d.138

samples from random variables Cs(q) when executing the small model, and Cl(q) when executing139

the large model. Denote the expected cost as c⋆s(q) = E[Cs(q)] and c⋆l (q) = E[Cl(q)].140

Let π : Q 7→ [0, 1] be the (possibly random) model selection policy that maps the query q to values141

in [0, 1], where π(q) = 1 represents that the query is always sent to the small model, and π(q) = 0142

represents the query is always sent to the large model. The randomness in the policy π is independent143

of the cost Cs(q), Cl(q). The total cost can be written as the following function of the query q, cache144

L and policy π:145

cost(q,L, π) = 1(q ̸∈ L)E[Cs(q)π(q) + Cl(q)(1− π(q))]

= 1(q ̸∈ L)(c⋆s(q)π(q) + c⋆l (q)(1− π(q))).

By taking the expectation over q, we have the expected cost as146

cost(L, π) =
∑
q

P (q)1(q ̸∈ L)(c⋆s(q)π(q) + c⋆l (q)(1− π(q))).

In the offline learning setting, we collect an offline dataset and hope to learn a caching policy L̂ and a147

selector π̂ such that cost(L̂, π̂) is minimized. In the online setting, we get to update the cache in each148

round by adding the current query into the cache and evicting the ones in the cache if full. When149

the query qt misses the cache in round t, we will observe a sample from Cs(qt) if it is processed150

by the small model, or a sample from Cl(qt) if it is processed by the large model. There will be no151

observations of cost if qt hits the cache. We aim at minimizing the regret:152

Regretsel(T) =
T∑

t=1

E[cost(qt,Lt, πt)− cost(qt,L⋆, π⋆)].

3 Optimal Caching without Model Selection153

3.1 Population Setting154

We start with the population setting where the probability distribution P and the cost c⋆l are both155

known. In the case with only one model, the optimal caching strategy is the Least Expected Cost156

(LEC) or Greedy Dual Size with Frequency (GDSF) algorithm:157

L⋆ = LLEC = argmin
L:|L|≤L

cost(L) = argmin
L:|L|≤L

∑
q∈Q

P (q)1(q ̸∈ L)c⋆l (q).

1Note that although we name the models as small and large models, we do not impose any assumption on the
relationship between their costs. And the model size and cost function can be arbitrary for both models.

4

The traditional frequency-based caching strategy, including Least Recent Used (LRU) and Least158

Frequently Used (LFU), aims at caching the most frequent queries:159

LLFU = argmin
L:|L|≤L

∑
q∈Q

P (q)1(q ̸∈ L).

We show in Appendix D that the ratio between the cost of LFU and LEC can be as high as maxq∈Q c⋆l (q)
minq∈Q c⋆l (q)

160

in the worst case, which shows that LFU can be highly-suboptimal when the cost varies largely.161

3.2 Finite Sample Setting: Offline Learning162

From the previous section, we see the characterization of the optimal caching strategy in the population163

setting. Consider the finite-sample offline learning setting, where we hope to produce one cache L164

based on prior data such that the introduced cost is minimized. Let DN = {(q1, c1), · · · , (qN , cN)},165

where qi is sampled from the distribution P (·), and ci is a sample from random variable Cl(qi).166

We consider estimating P, c⋆l with some oracles P̂ = DenEstOracle(q1, · · · , qN), ĉl(q) =167

RegressionOracle(DN). In practice, one may remove the last year of the pre-trained language168

model and concatenate it with a linear head and fine-tune the model as the estimators. For theoretical169

analysis, we focus on the tabular case, where we set both P̂ and ĉl(q) to be the plug-in estimator:170

P̂ (q) =

∑N
i=1 1(qi = q)

N
, (1)

ĉl(q) =

{∑N
i=1 1(qi=q)ci∑N
i=1 1(qi=q)

, if
∑N

i=1 1(qi = q) > 0

B1, if
∑N

i=1 1(qi = q) = 0
. (2)

In practice, the distribution of q may have a long tail. Although the estimation of P (q) is uniformly171

good for all q, the estimation of c⋆(q) can be bad for the queries that are visited less. To select172

the maximum L elements from the imbalanced samples, we compensate the plug-in estimator by173

introducing pessimism (Rashidinejad et al., 2021; Jin et al., 2021)2. As we show in Lemma 1, the true174

frequency for any query q ∈ L⋆ is lower bounded by some constant that depends on B1, B2, |Q|. Thus175

the pessimism helps eliminate those less visited queries in the long tail distribution and encourages176

caching the queries in L⋆. The lower-confidence-bound based estimator is:177

L̂ = argmin
L:|L|≤L

∑
q∈Q

1(q ̸∈ L)P̂ (q) ·max

(
B1,

(
ĉl(q)− (B2 −B1)

√
log(6N |Q|/δ)

2
∑N

n=1 1(qn = q)

))
.

We show how the cost for the caching from the empirical estimate differs from the optimal cost.178

Theorem 1. Assume that N ≥ 8B2|Q| log(3L/δ)
B1

and taking δ = 1/N . We have179

E[cost(L̂)− cost(L⋆)] ≤ C(B2 −B1)L ·

√
B2|Q| log(N |Q|)

NB1
.

The proof is deferred to Appendix E, where we prove a stronger high probability bound rather than a180

bound in expectation. From the theorem, we know that the cost of the finite-sample caching policy181

converges to the cost of the optimal policy at a rate of 1/
√
N , which achieves the optimal dependence182

on N . The insights from the tabular case also indicate that the cost needs to be estimated in a183

conservative fashion when considered for the cache replacement algorithm.184

3.3 Finite Sample Setting: Online Learning185

We summarize the caching algorithm pipeline in 1, which relies on the two estimation oracles186

DenEstOracle and RegressionOracle, which estimate both the frequency and cost of models from187

data.188

2If we impose a uniform lower bound on the probability P (q), then the pessimism can be replaced with the
plug-in estimator. However, it is usually not the case in practice since P (q) usually comes with a long tail.

5

Algorithm 1 Caching in Online Learning

1: Initialize the set of cache L1 = {}, past observations H1 = {}, ĉl,0(q) = B1,∀q ∈ Q.
2: For iteration t = 1, 2 · · · , T
3: Receive query qt.
4: Update the density estimation P̂t = DenEstOracle(q1, · · · , qt).
5: If qt ∈ Lt:
6: Output the cached result, set ĉl,t = ĉl,t−1, update the past observation Ht = Ht−1

⋃
(qt,×),

and continue.
7: Use the large model to process the query, and observe a cost ct ∼ PCl(q).
8: Update the past observation Ht = Ht−1

⋃
(qt, ct).

9: Update ĉl,t = RegressionOracle(Ht).
10: If |Lt| < L:
11: Let Lt+1 be the union of Lt and qt.
12: Else if P̂t(qt) · ĉl,t(qt) > minq∈Lt P̂t(q) · ĉl,t(q) :
13: Replace the minimizer element of P̂t(q) · ĉl,t(q) in the cache Lt with qt to get Lt+1.

For theoretical analysis, we focus on the tabular case and take the oracles as follows189

P̂t(q) =

∑t
i=1 1(qi = q)

t
, (3)

ĉl,t(q) =

{
B1, if

∑t
i=1 1(ci ̸= ×, qi = q) = 0,

max
(
B1,

∑t
i=1 1(ci ̸=×,qi=q)ci∑t
i=1 1(ci ̸=×,qi=q)

− (B2 −B1)
√

log(6T |Q|/δ)
2
∑t

i=1 1(ci ̸=×,qi=q)

)
, otherwise

(4)

For the estimation of density, we use plug-in estimator since there is no imbalance in the sampling190

process. For the estimation of the cost, we subtract the confidence bound to include pessimism. We191

have the following regret guarantee.192

Theorem 2. When substituting the DenEstOracle and RegressionOracle with Equation (3) and (4)193

and set δ = 1/T , we have for some universal constant C:194

Regretcache(T) ≤
CL(B2 −B1)B2|Q|L log2(T |Q|)

B1
·
√
T .

On the other hand, for any caching policy {Lt}Tt=1, there exist some cases of P (q), c⋆l (q) such that195

for some universal constant C ′,196

Regretcache(T) ≥ C ′
√
T .

The proof is deferred to Appendix F. Different from the offline case, one interesting feature of the197

online case is the partial observation phenomenon: when the query hits the cache, it will not be198

processed by the model, and thus we cannot observe the sample from Cl(q) in this round. This is199

different from the traditional bandit literature where the selected arm is always observed in each200

round. And the partial observation thus requires new upper and lower bound analysis.201

4 Optimal Caching and Model Selection202

4.1 Population Setting203

In the case when we have access to two models, we need to design a good caching and model204

selection strategy jointly. We can compute the optimal caching and model selection policy as205

L⋆, π⋆ = argminL,π cost(L, π), which gives the following solution:206

π⋆(q) = 1(c⋆s(q) ≤ c⋆l (q)),

L⋆ = argmin
L:|L|≤L

∑
q∈Q

P (q)1(q ̸∈ L)min (c⋆s(q), c
⋆
l (q)) .

6

Such optimal strategies are straightforward: π⋆ always assigns the query to the model with a smaller207

cost, and L⋆ saves the L queries with the largest P (q) ·min (c⋆s(q), c
⋆
l (q)).208

For the model selection algorithm, we consider two baselines: (a) one always uses large model209

πl(q) ≡ 0; (b) one always uses the small model πs(q) ≡ 0. This is related to the LLM cascade idea210

in the concurrent work (Chen et al., 2023b). We provide more discussions in Appendix A, and the211

comparisons between baselines and π⋆ in Appendix D.212

4.2 Finite Sample Setting: Offline Learning213

Consider the finite sample case. Let DN = {(q1, cs,1, cl,1), · · · , (qN , cs,N , cl,N)}, where cs,n is a214

sample from random variable Cs(qn), the observed cost for processing query qn with small model215

in round n. And cl,n is a sample from random variable Cl(qn), the observed cost for processing216

query qn with the large model in round n. We consider estimating P, c⋆s, c
⋆
t with some oracles217

P̂ = DenEstOracle(q1, · · · , qN), ĉs(q), ĉt(q) = RegressionOracle(DN). We focus on the tabular218

case for theoretical analysis, where we set P̂ , ĉs(q) and ĉl(q) to be the plug-in estimator:219

P̂ (q) =

∑N
i=1 1(qi = q)

N
, ĉl(q) =

{∑N
i=1 1(qi=q)cl,i∑N

i=1 1(qi=q)
, if

∑N
i=1 1(qi = q) > 0

B1, if
∑N

i=1 1(qi = q) = 0
,

ĉs(q) =

{∑N
i=1 1(qi=q)cs,i∑N

i=1 1(qi=q)
, if

∑N
i=1 1(qi = q) > 0

B1, if
∑N

i=1 1(qi = q) = 0
.

Similar to the case of caching without model selection, for long-tailed distribution P (q), the estimation220

of c⋆s(q), c
⋆
l (q) can be bad for the queries that are visited less. To select the maximum L elements221

from the plug-in estimator, we introduce pessimism to the estimate of ĉl and ĉs. This introduces the222

following design of caching and model selector L̂, π̂:223

π̂(q) = 1(ĉs(q) ≤ ĉl(q)),

L̂ = argmin
L:|L|≤L

∑
q∈Q

1(q ̸∈ L)P̂ (q)max

(
B1,min(ĉs(q), ĉl(q))− (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

)
.

We show the cost for the caching and model selector from the empirical estimate is close to the224

optimal cost. The proof is deferred to Appendix G.225

Theorem 3. Assume that N ≥ 8B2|Q| log(4L/δ)
B1

and take δ = 1/N . We have226

E[cost(L̂, π̂)− cost(L⋆, π⋆)] ≤ CL(B2 −B1) ·

√
B2|Q| log(8|Q|N)

B1N
.

4.3 Finite Sample Setting: Online Learning227

Now consider the online case. We first propose a meta-algorithm in Algorithm 2.228

We provide a theoretical analysis of the above meta-algorithm for the tabular case, with DenEstOracle229

P̂t(q) =
∑t

i=1 1(qi=q)

t , and RegressionOracle :230

ĉl,t(q) =

{
B1, if

∑t
i=1 1(si = 0, qi = q) = 0

max
(
B1,

∑t
i=1 1(si=0,qi=q)cl,i∑t

i=1 1(si=0,qi=q)
− (B2 −B1)

√
log(8T |Q|/δ)

2
∑t

i=1 1(si=0,qi=q)

)
, otherwise,

ĉs,t(q) =

{
B1, if

∑t
i=1 1(si = 1, qi = q) = 0,

max
(
B1,

∑t
i=1 1(si=1,qi=q)cs,i∑t

i=1 1(si=1,qi=q)
− (B2 −B1)

√
log(8T |Q|/δ)

2
∑t

i=1 1(si=1,qi=q)

)
, otherwise.

We provide the following theorem on the regret of the proposed algorithm.231

Theorem 4. Substituting the oracles in Algorithm 2 with the oracles above and δ = 1/T , we have232

Regretsel(T) ≤
CL(B2 −B1)B2|Q|L log2(T |Q|)

B1
·
√
T .

7

Algorithm 2 Joint Design of Caching and Model Selection

1: Initialize the set of cache L1 = {}, past observations H1 = {}, ĉl,0(q) = B1, ĉs,0(q) = B1,
model selection policy π0(q) = 1,∀q ∈ Q.

2: For iteration t = 1, 2 · · · , T
3: Receive query qt.
4: Update the density estimation P̂t = DenEstOracle(q1, · · · , qt).
5: If qt ∈ Lt: output the cached result, set ĉs,t = ĉs,t−1, ĉl,t = ĉl,t−1, πt = πt−1, update the

past observation Ht = Ht−1

⋃
(qt,×,×), and continue.

6: Select the models according to st = πt(qt).
7: Update the past observation Ht = Ht−1

⋃
(qt, st, ct).

8: Update ĉl,t, ĉs,t = RegressionOracle(Ht). Set πt+1(q) = 1(ĉs,t(q) < ĉl,t(q)).
9: If |Lt| < L: let Lt+1 be the union of Lt and qt.

10: Else if P̂t(qt) ·min (ĉs,t(qt), ĉl,t(qt)) > minq∈Lt P̂t(q) ·min (ĉs,t(q), ĉl,t(q)):
11: replace the minimizer element in the cache Lt on the RHS with qt to get Lt+1.

The proof is deferred to Appendix H. Compared with the lower bound in Theorem 2, we know the233

dependency on T is tight. The pessimism plays two different roles here: on one hand, it encourages234

the exploration for model selection to choose the ones with more uncertainty in the cost; on the other235

hand, it encourages the exploitation to be conservative about which query to save into the cache.236

For the model selector to work well, one needs to have a small yet accurate model selector. In the237

case when the model selector is not accurate, the small model always comes with a much smaller238

cost, and we are allowed to re-generate the responses and make corrections for the output, one may239

combine LEC with cascade Chen et al. (2023b) to achieve better performance.240

5 Experiments241

5.1 Simulations for Algorithm Analysis242

We conduct synthetic online and offline experiments for joint optimization of caching and model243

selection. In Figure 2, we plot the cumulative cost and regret in online learning for LFU and LEC244

caching algorithms. For LFU, we consider model selectors which always select the small or large245

models as the baselines. We set the frequency distribution as power distribution with α = 0.9. The246

ground truth cost for each query processed by both models is set as a sample from 100X + 1, where247

X is a random variable generated from a Bernoulli distribution with the parameter 0.5. We repeat the248

simulation 100 times and plot the mean and standard deviation in the figure. Our simulation suggests249

that LEC with model selector greatly improves the two baselines by a factor of 50× when the cost250

ratio is 100. We include additional results on the synthetic datasets for both online and offline settings251

with different α values, cost ratios, and selector accuracy in Appendix I.252

100 101 102 103 104

steps

10−1

100

101

102

103

104

105

Cu
m

ul
at

iv
e

Co
st

LFU+small
LFU+large
LEC+selector
Optimal

100 101 102 103 104

steps

101

102

103

104

105

Cu
m

ul
at

iv
e

Re
gr

et

LFU+small
LFU+large
LEC+selector

Figure 2: Comparisons between LFU with either small or large model selection and LEC with model
selector. Both the x-axis and y-axis are logarithmic scales. The shaded regime represents the standard
deviation calculated from the repeated experiments.

8

5.2 Experiments on Real Datasets253

We evaluate our algorithms on two tasks: next-token prediction on the Lambada Paperno et al. (2016)254

dataset and chat assistant on the OpenAssistant Köpf et al. (2023) dataset.255

For the next-token prediction task, we run the offline algorithm with two models: OPT-1.3B and256

OPT-13B Zhang et al. (2022) and use FLOPs as the cost. For a given query, an algorithm can choose257

to run the small model or the large model. If the small model is chosen but its result is wrong, the large258

model must be run and it will incur an additional penalty. We fine-tune a BERT-base model as the259

model selector by predicting whether the small model can give the correct result and achieve 80.2%260

accuracy. We compare our offline caching and selector algorithms against LFU, large-model-only,261

and cascade (which always calls the small model first). As shown in Table 1, LEC is better than LFU262

in all cases. Combining LEC and selector brings up to 4.3× cost reduction compared to the baseline263

“LFU + Large”. However, as the predictor accuracy is limited, the model selector may not be as good264

as the cascade algorithm in some cases. We leave the training of a better selector as future work.265

On the chat assistant task, we run the online algorithm with two models: FastChat-T5-3B and266

Vicuna-13B Chiang et al. (2023), and use the inference latency as the cost. The rules to call these two267

models are similar to the previous task: if the response from the small model is not good enough, the268

large model will be called. The ratio between the average latency of the large model and the small269

model is 1.85. After a sufficient number of online learning steps, the selector learns the accurate costs270

of two models on this finite prompts set, so “LEC + selector” outperforms other algorithms in all271

cases on Table 2 with up to 1.8× latency reduction compared to "LFU + large" baseline.272

α selector
accuracy

LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 80% 3.46 3.95 2.66 3.42 1.51 2.05
0.8 80% 10.77 12.11 8.18 10.33 4.09 4.76

0.2 100% 3.46 3.95 1.97 3.42 1.51 1.01
0.8 100% 10.77 12.11 6.04 10.33 4.09 2.50

Table 1: Evaluation of offline algorithms on the Lambada dataset with OPT-1.3B and OPT-13B. α
is the parameter of the power distribution of the prompts. The table lists cumulative costs (103) for
different algorithms.

α LFU+
large

LFU+
cascade

LFU+
selector

LEC+
large

LEC+
cascade

LEC+
selector

0.2 9.21 13.93 7.26 8.70 8.78 6.01
0.5 19.93 30.40 15.25 18.55 16.99 11.93
0.8 28.05 42.31 21.24 25.94 20.24 15.50

Table 2: Evaluation of online algorithms on the OpenAssistant dataset with FastChat-T5-3B and
Vicuna-13B. α is the parameter of the power distribution of the prompts. The table lists cumulative
costs (103) for different algorithms.

6 Conclusion and Future Work273

In this paper, we study the joint optimization of caching and model selection and propose the optimal274

algorithm for the tabular case. There can be more problems along the line of caching and model275

selection for large models, including:276

• Designing the optimal caching and model selection algorithm when there is a query queue,277

where the query arrives at a random interval rather than a fixed interval. A more complicated278

serving pattern also needs to take batching strategies into consideration.279

• Understanding the scaling law of the predictors. We hope to use a small yet accurate model280

for prediction to reduce overhead introduced by the predictor. It is important to understand281

the trade-off between prediction accuracy, model size, and training data size.282

• Designing optimal caching algorithm when the responses generated in each round have283

diverse qualities.284

9

References285

M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. Evaluating content management286

techniques for web proxy caches. ACM SIGMETRICS Performance Evaluation Review, 27(4):287

3–11, 2000.288

H. Bahn. Web cache management based on the expected cost of web objects. Information and289

Software Technology, 47(9):609–621, 2005.290

A. Bakhtiarnia, Q. Zhang, and A. Iosifidis. Single-layer vision transformers for more accurate early291

exits with less overhead, 2022.292

H. Bast, B. Buchhold, E. Haussmann, et al. Semantic search on text and knowledge bases. Foundations293

and Trends® in Information Retrieval, 10(2-3):119–271, 2016.294

E. Beeching, Y. Belkada, K. Rasul, L. Tunstall, L. von Werra, N. Rajani, and N. Lambert.295

StackLLaMA: An RL fine-tuned LLaMA model for Stack Exchange question and answering, 2023.296

URL https://huggingface.co/blog/stackllama.297

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,298

J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card, R. Castellon, N. Chatterji,299

A. Chen, K. Creel, J. Q. Davis, D. Demszky, C. Donahue, M. Doumbouya, E. Durmus, S. Ermon,300

J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale, L. Gillespie, K. Goel, N. Goodman,301

S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu, J. Huang,302

T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani, O. Khattab, P. W. Koh,303

M. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee, T. Lee, J. Leskovec, I. Levent,304

X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning, S. Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair,305

A. Narayan, D. Narayanan, B. Newman, A. Nie, J. C. Niebles, H. Nilforoshan, J. Nyarko, G. Ogut,306

L. Orr, I. Papadimitriou, J. S. Park, C. Piech, E. Portelance, C. Potts, A. Raghunathan, R. Reich,307

H. Ren, F. Rong, Y. Roohani, C. Ruiz, J. Ryan, C. Ré, D. Sadigh, S. Sagawa, K. Santhanam,308

A. Shih, K. Srinivasan, A. Tamkin, R. Taori, A. W. Thomas, F. Tramèr, R. E. Wang, W. Wang,309

B. Wu, J. Wu, Y. Wu, S. M. Xie, M. Yasunaga, J. You, M. Zaharia, M. Zhang, T. Zhang, X. Zhang,310

Y. Zhang, L. Zheng, K. Zhou, and P. Liang. On the opportunities and risks of foundation models,311

2022.312

S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li,313

S. Lundberg, et al. Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv314

preprint arXiv:2303.12712, 2023.315

A. Bura, D. Rengarajan, D. Kalathil, S. Shakkottai, and J.-F. Chamberland. Learning to cache and316

caching to learn: Regret analysis of caching algorithms. IEEE/ACM Transactions on Networking,317

30(1):18–31, 2021.318

W.-C. Chang, F. X. Yu, Y.-W. Chang, Y. Yang, and S. Kumar. Pre-training tasks for embedding-based319

large-scale retrieval, 2020.320

Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi. Learn to cache: Machine learning for network321

edge caching in the big data era. IEEE Wireless Communications, 25(3):28–35, 2018.322

C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre, and J. Jumper. Accelerating large language323

model decoding with speculative sampling, 2023a.324

L. Chen, M. Zaharia, and J. Zou. Frugalgpt: How to use large language models while reducing cost325

and improving performance, 2023b.326

W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E.327

Gonzalez, I. Stoica, and E. P. Xing. Vicuna: An open-source chatbot impressing GPT-4 with 90%*328

ChatGPT quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.329

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,330

C. Sutton, S. Gehrmann, et al. PaLM: Scaling language modeling with pathways. arXiv preprint331

arXiv:2204.02311, 2022.332

10

https://huggingface.co/blog/stackllama
https://lmsys.org/blog/2023-03-30-vicuna/

J. Du, M. Ott, H. Li, X. Zhou, and V. Stoyanov. General purpose text embeddings from pre-trained333

language models for scalable inference, 2020.334

F. Z. Faizal, P. Singh, N. Karamchandani, and S. Moharir. Regret-optimal online caching for335

adversarial and stochastic arrivals. In Performance Evaluation Methodologies and Tools: 15th336

EAI International Conference, VALUETOOLS 2022, Virtual Event, November 2022, Proceedings,337

pages 147–163. Springer, 2023.338

W. Fedus, J. Dean, and B. Zoph. A review of sparse expert models in deep learning. arXiv preprint339

arXiv:2209.01667, 2022.340

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. Gptq: Accurate post-training quantization for341

generative pre-trained transformers, 2023.342

A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey of quantization343

methods for efficient neural network inference, 2021.344

Google. PaLM-2 technical report. 2023.345

Y. He, Z. Zhang, F. R. Yu, N. Zhao, H. Yin, V. C. Leung, and Y. Zhang. Deep-reinforcement-learning-346

based optimization for cache-enabled opportunistic interference alignment wireless networks.347

IEEE Transactions on Vehicular Technology, 66(11):10433–10445, 2017.348

W. Jiang, G. Feng, S. Qin, T. S. P. Yum, and G. Cao. Multi-agent reinforcement learning for efficient349

content caching in mobile d2d networks. IEEE Transactions on Wireless Communications, 18(3):350

1610–1622, 2019.351

S. Jin and A. Bestavros. Popularity-aware greedy dual-size web proxy caching algorithms. In352

Proceedings 20th IEEE International Conference on Distributed Computing Systems, pages 254–353

261. IEEE, 2000.354

Y. Jin, Z. Yang, and Z. Wang. Is pessimism provably efficient for offline RL? In International355

Conference on Machine Learning, pages 5084–5096. PMLR, 2021.356

E. Kamalloo, X. Zhang, O. Ogundepo, N. Thakur, D. Alfonso-Hermelo, M. Rezagholizadeh, and357

J. Lin. Evaluating embedding apis for information retrieval, 2023.358

S. Kim, K. Mangalam, J. Malik, M. W. Mahoney, A. Gholami, and K. Keutzer. Big little transformer359

decoder, 2023.360

A. Köpf, Y. Kilcher, D. von Rütte, S. Anagnostidis, Z.-R. Tam, K. Stevens, A. Barhoum, N. M. Duc,361

O. Stanley, R. Nagyfi, et al. Openassistant conversations–democratizing large language model362

alignment. arXiv preprint arXiv:2304.07327, 2023.363

S. Kumar and P. Singh. An overview of modern cache memory and performance analysis of364

replacement policies. In 2016 IEEE International Conference on Engineering and Technology365

(ICETECH), pages 210–214. IEEE, 2016.366

D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim. Lrfu: A spectrum of policies367

that subsumes the least recently used and least frequently used policies. IEEE transactions on368

Computers, 50(12):1352–1361, 2001.369

Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transformers via speculative decoding.370

arXiv preprint arXiv:2211.17192, 2022.371

S. Mukhopadhyay and A. Sinha. Online caching with optimal switching regret. In 2021 IEEE372

International Symposium on Information Theory (ISIT), pages 1546–1551. IEEE, 2021.373

H. Nori, N. King, S. M. McKinney, D. Carignan, and E. Horvitz. Capabilities of gpt-4 on medical374

challenge problems. arXiv preprint arXiv:2303.13375, 2023.375

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.376

11

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,377

K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.378

arXiv preprint arXiv:2203.02155, 2022.379

D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni, G. Boleda,380

and R. Fernández. The lambada dataset: Word prediction requiring a broad discourse context.381

arXiv preprint arXiv:1606.06031, 2016.382

D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild, D. So, M. Texier, and383

J. Dean. Carbon emissions and large neural network training. arXiv preprint arXiv:2104.10350,384

2021.385

P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, and S. Russell. Bridging offline reinforcement learning and386

imitation learning: A tale of pessimism. Advances in Neural Information Processing Systems, 34:387

11702–11716, 2021.388

P. Rigollet and J.-C. Hütter. High dimensional statistics. Lecture notes for course 18S997, 813(814):389

46, 2015.390

J. Saad-Falcon, A. Singh, L. Soldaini, M. D’Arcy, A. Cohan, and D. Downey. Embedding recycling391

for language models, 2023.392

T. Schuster, A. Fisch, J. Gupta, M. Dehghani, D. Bahri, V. Q. Tran, Y. Tay, and D. Metzler. Confident393

adaptive language modeling, 2022.394

O. Sharir, B. Peleg, and Y. Shoham. The cost of training NLP models: A concise overview. arXiv395

preprint arXiv:2004.08900, 2020.396

J. Shuja, K. Bilal, W. Alasmary, H. Sinky, and E. Alanazi. Applying machine learning techniques397

for caching in next-generation edge networks: A comprehensive survey. Journal of Network and398

Computer Applications, 181:103005, 2021.399

A. J. Smith. Cache memories. ACM Computing Surveys (CSUR), 14(3):473–530, 1982.400

W. Stallings and G. K. Paul. Operating systems: internals and design principles, volume 9. Pearson401

New York, 2012.402

J. Wang. A survey of web caching schemes for the internet. ACM SIGCOMM Computer403

Communication Review, 29(5):36–46, 1999.404

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou,405

D. Metzler, et al. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682,406

2022a.407

T. Wei, J. Qi, and S. He. A flexible multi-task model for bert serving, 2022b.408

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V. Lin,409

et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.410

C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q. Yan, L. He, H. Peng, J. Li, J. Wu,411

Z. Liu, P. Xie, C. Xiong, J. Pei, P. S. Yu, and L. Sun. A comprehensive survey on pretrained412

foundation models: A history from bert to chatgpt, 2023.413

D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving.414

Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593, 2019.415

12

Appendix416

A Discussions on the Choice of Output, Model and Cost417

The proposed framework is flexible in the choice of outputs, models and costs. Below we discuss418

several possible choices and combinations of output, models and costs that are most practically419

relevant.420

Per-token Output and Per-sentence Output. We have two design choices of the desired output in421

each round, namely per-token output and per-sentence output.422

For per-token output, we aim at generating one token at each round as a response of the queries. In423

this case, we only cache the next token for a given query and estimate the cost for generating next424

token. We also have the flexibility of choosing different models to generate each token in each round.425

For per-sentence output, we aim at generating a complete response at each round. In this case, we426

cache the whole responses for a given query, and estimate the cost for generating the whole responses.427

This may introduce more variance in the cost due to the variation and randomness in the length of the428

generated responses.429

Choices of Costs The cost can be chosen as FLOPS, latency of the model, the price for API calls,430

user satisfaction of the results, or a combination of all the four factors.431

Model selection A common choice of model ensembles is a pair of small and large models. The432

cost for small model Cs(q) can be written as Cs(q) = Cs,0(q) + Y (q)Cs,1(q). Here Y (q) is a433

binary random variable, indicating whether the small model outputs satisfying results (Y (q) = 0)434

or not (Y (q) = 1). In the case when the small model outputs a satisfying response, the incurred435

cost is Cs,0(q). In the case when the small model outputs a bad response, the incurred cost is436

Cs,0(q) + Cs,1(q). We discuss two possible choices of Y (q), Cs,0(q) and Cs,1(q) based on two437

different evaluation pipeline as below.438

• One-time evaluation pipeline. For the one-time evaluation pipeline, we can only call one439

of the models once and the generated content cannot be changed. In this case, Cs,0(q) can440

be set as the cost for running the small model to generate responses, Y (q) is set to be 1 if441

the user is not satisfied with the response, and Cs,1(q) is the incurred cost for unsatisfactory442

of the user. One can similarly set the same cost for the large model.443

• Correction-based evaluation pipeline. For correction-based evaluation, we may re-444

generate the content with a different model if it is unsatisfying, and get an extra cost for445

fixing the content. Such evaluation can be easily combined with LLM Cascade (Frantar et al.,446

2023) or the idea from Big Little Transformer Decoder (Kim et al., 2023) and Spectulative447

sampling (Chen et al., 2023a). For example, after running the small model, we run the large448

model once to infer all the log probabilities of the small model output in parallel, and reject449

its output if the log probabilities are low. If the small model output is rejected, we will set450

Y (q) = 1 and run large model to re-generate the responses. In this case, Cs,0(q) is the cost451

of running the small model for generating responses, and running the large model once for452

checking the probability. And Cs,1(q) is the cost of running the large model to generate the453

response.454

We also remark here that in the special case when the cost for the small model is much smaller than455

that of the large model under the correction-based evaluation pipeline, the cascade selector which456

always runs the small model first may give better performance than model selector if the accuracy of457

the model selector is low, since running small model does not introduce too much cost compared to458

running large model. In this situation, the cascade selector can also be combined with LEC caching459

to further improve the performance.460

On the other hand, we may also choose among models with similar size but different expertise,461

including coding, summarization and chat etc. In this case, we also expect to see different qualities462

and cost of responses for specific queries.463

13

B Generalization to Variable Size Cache464

For the variable-size caching problem, assume that the cache size of q is a deterministic scalar,465

denoted as S(q). In the population case we design the cache as follows:466

L⋆ = argmin
L:

∑
q∈L S(q)≤L

∑
q∈Q

P (q)1(q ̸∈ L)min (c⋆s(q), c
⋆
l (q)) .

In the case when all S, P, c⋆s, c
⋆
l are known, one may solve the above constrained optimization problem467

for the optimal caching. When S(q) ≪ L, a good cache replacement algorithm is GDSF itself, which468

replaces the query with the smallest expected cost per-size P (q)min (c⋆s(q), c
⋆
l (q)) /S(q) rather than469

expected cost per-query.470

A more practical setting is the case when the cache size for each query S(q) is a random variable.471

Due to the randomness in the generation procedure, we expect to see responses of different lengths472

even when we use the same model to process the same query. In each round, we will have a generated473

response with size s(q) that is sampled from the random variable S(qt). We conjecture that the474

optimal cache replacement algorithm is to replace the query with the smallest expected cost per-size475

P (q)min (c⋆s(q), c
⋆
l (q)) /s(q) as well, where s(q) is the size of the cached queries and responses.476

C Generalization to Selection from Multiple Models477

The proposed algorithm can be generalized to model selection with multiple models. Assume that we478

have K models, and each model has a random cost function Ck(q) with expectation c⋆k(q). In this479

case, the optimal population algorithm is480

π⋆(q) = argmin
k∈[K]

c⋆k(q),

L⋆ = argmin
L:|L|≤L

∑
q∈Q

P (q)1(q ̸∈ L) min
k∈[K]

c⋆k(q).

And the finite sample algorithm is natural to follow. In practice, one may train a neural network with481

K dimensional output to predict the cost for each of the models.482

D Differences between the optimal policy and the baseline483

Consider the population setting in Section 3, where we optimize caching without model selection.484

We show via a simple example below that without considering the cost for individual query, LFU can485

be highly sub-optimal compared to the optimal caching strategy in the population. The ratio486

Proposition 1. For any fixed cost function c⋆l , one can design some distribution of queries P such487

that for any ϵ > 0,488

cost(LLFU)

cost(LLEC)
≥ maxq∈Q c⋆l (q)

minq∈Q c⋆l (q)
− ϵ.

The construction can be seen from a two-query example. Let c⋆l (q1) = c1, c⋆l (q2) = c2 with c1 < c2.489

Let P (q1) =, P (q2) = This shows that when the individual cost varies drastically for different490

queries, the total expected cost for LFU can be highly sub-optimal compared with the cost-aware491

caching strategy.492

To compare the performance of the model selection in Section 4, we take the cache size L = 0. We493

have the following proposition for the performance improvement of the model selector.494

Proposition 2. Let L = 0. The difference in cost between the baseline and the model selector can be495

written as496

cost(L⋆, πs)− cost(L⋆, π⋆) =
∑
q∈Q

P (q)max(0, c⋆s(q)− c⋆l (q)),

cost(L⋆, πl)− cost(L⋆, π⋆) =
∑
q∈Q

P (q)max(0, c⋆l (q)− c⋆s(q)).

14

The proof is a direct result of plugging in the cost definition. We see that the gap between πs and the497

optimal model selector becomes larger when a large fraction of the queries have smaller cost when498

processed by the large models, and vice versa.499

E Proof of Theorem 1500

Proof. We first prove the following lemma on the lower bound of P (q) for any q ∈ L⋆.501

Lemma 1. For any q ∈ L⋆, we have P (q) ≥ B1/(B2|Q|).502

Proof. From the fact that
∑

q∈Q P (q) = 1 and for any q ∈ L⋆ and any q′ ̸∈ L⋆, P (q) ≥503

P (q′)c⋆l (q
′)/c⋆l (q) ≥ P (q′)B1/B2, we know that for any q ∈ L⋆, P (q) ≥ B1/(B2|Q|).504

We define the following three events:505

E1 =

{
∀q ∈ Q, |P̂ (q)− P (q)| ≤

√
2 log(6/δ)

N

}
,

E2 =

{
∀q ∈ Q, |ĉl(q)− c⋆l (q)| ≤ (B2 −B1)

√
log(6|Q|/δ)

2
∑N

n=1 1(qn = q)

}
,

E3 =

{
∀q ∈ L⋆,

N∑
n=1

1(qn = q) ≥ B1N

2B2|Q|

}
.

We know that the first two events hold simutaneously with probability at least 1−2δ/3 from Lemma 3.506

For the third event, from the Chernoff bound, we know that for any q ∈ Q, we have507

P

(
N∑

n=1

1(qn = q) ≥ NP (q)/2

)
≥ 1− exp(−NP (q)/8).

From Lemma 1 we know that for any q ∈ L⋆, P (q) ≥ B1/(B2|Q|). Thus the above inequality508

further implies509

P

(
N∑

n=1

1(qn = q) ≥ B1N

2B2|Q|

)
≥ 1− exp

(
− B1N

8B2|Q|

)
≥ 1− δ

3L
.

The last inequality is due to our assumption that N ≥ 8B2|Q| log(3L/δ)
B1

.510

We condition on the three events from now on. The last two events imply that for any q ∈ L⋆,511

|ĉl(q)− c⋆l (q)| ≤ (B2 −B1)

√
B2|Q| log(6|Q|/δ)

NB1
.

We have512

cost(L̂)− cost(L⋆) =
∑
q∈Q

P (q)
(
1(q ̸∈ L̂)− 1(q ̸∈ L⋆)

)
c⋆l (q)

=
∑
q∈Q

P (q)
(
1(q ∈ L⋆)− 1(q ∈ L̂)

)
c⋆l (q).

Let ĉl,pes(q) = ĉl(q)− (B2 −B1)
√

log(6|Q|/δ)
2
∑N

n=1 1(qn=q)
. Note that for any q ∈ L⋆, we know that513

P̂ (q)ĉl,pes(q) ≥ max

(
P (q)−

√
2 log(6/δ)

N
, 0

)c⋆l (q)− 2(B2 −B1)

√
B2|Q| log(6|Q|/δ)

NB1


≥ P (q)c⋆l (q)− C(B2 −B1) ·

√
B2|Q| log(6|Q|/δ)

NB1
.

15

And similarly, for any q ̸∈ L⋆, we know that514

P̂ (q)ĉl,pes(q) ≤

(
P (q) +

√
2 log(6/δ)

N

)
c⋆l (q) ≤ P (q)c⋆l (q) +B2

√
2 log(6/δ)

N
.

Now consider any q ∈ L̂ but q ̸∈ L⋆, and any other q′ ∈ L⋆ but q′ ̸∈ L̂. We have515

P (q′)c⋆l (q
′)− P (q)c⋆l (q)

≤P̂ (q′)ĉl,pes(q
′)− P̂ (q)ĉl,pes(q) + C(B2 −B1) ·

√
B2|Q| log(6|Q|/δ)

NB1

≤C(B2 −B1) ·

√
B2|Q| log(6|Q|/δ)

NB1
.

Overall, we know that conditioned on E1 ∩ E2 ∩ E3, we have516

cost(L̂)− cost(L⋆) ≤C(B2 −B1)L ·

√
B2|Q| log(6|Q|/δ)

NB1
.

And this implies that517

E[cost(L̂)− cost(L⋆)] ≤ C(B2 −B1)L ·

√
B2|Q| log(6|Q|/δ)

NB1
+ δB2.

Taking δ = 1/N finishes the proof.518

F Proof of Theorem 2519

Proof. Upper Bound. We start with the upper bound by the following lemma.520

Lemma 2. In each round t ∈ [T], we always have521

Lt+1 ∈ argmin
L

∑
q∈Q

P̂t(q)1(q ̸∈ L)ĉl,t(q).

Proof. We prove this lemma by induction. First, consider the case when |Lt+1| < L. In this scenario,522

we always put the query into the cache. And Lt+1 contains all queries with non-zero P̂t. Thus such523

Lt+1 is always one of the minimizers.524

Now consider the case when |Lt+1| = L. Assume that the conclusion holds for time step t. Now525

consider the case of t+ 2. When the new query is in the cache qt+1 ∈ Lt+1, the cache will remain526

unchanged Lt+2 = Lt+1. In this case, the estimated probability for qt+1 is increased, while the527

others are decreased, and ĉl,t+1 is not changed for any query. Thus Lt+2 is still the minimizer. When528

the new query does not hit the cache, the estimated probability times costs for all other queries529

except for qt+1 are decreased proportionally since P̂t+1 is decreased proportionally while ĉl,t+1 is530

not changed for all other queries. Thus the only potential change in the relative order of costs is that531

of qt+1. Since we can add qt+1 at the end of query, we know that after this round Lt+2 is still the532

minimizer.533

Let gk(q) be the length of the interval between the k-th and k+1-th arrival of query q in the sequence534

of received queries (we set gk(q) = 0 if k exceeds the total number of times q is queried.). Define the535

following three events:536

E1,t =

{
∀q ∈ Q, |P̂t−1(q)− P (q)| ≤ min

(
1,

√
2 log(6T/δ)

t− 1

)}
,

E2,t =

{
∀q ∈ Q, ĉl,t−1(q)− c⋆l (q) ∈

[
−2(B2 −B1)min

(
1,

√
log(6T |Q|/δ)

2
∑t−1

i=1 1(ci ̸= ×, qi = q)

)
, 0

]}
,

E3 =

{
∀q ∈ L⋆, k ≤ T, gk(q) ≤

B2|Q| log(3TL/δ)
B1

}
.

We prove that the three events hold simultaneously with probability at least 1− δ:537

16

Lemma 3. We have

P

((
T⋂

t=T 2/3

E1,t ∩ E2,t

)
∩ E3

)
≥ 1− δ.

Proof. From Dvoretzky-Kiefer-Wolfowitz inequality, we have538

P(max
q∈Q

|P̂t(q)− P (q)| > ϵ) ≤ 2 exp(−ϵ2t/2).

By taking ϵ =
√

2 log(6T/δ)
t , we see that maxq∈Q |P̂t(q) − P (q)| ≤ ϵ holds with probability at539

least 1− δ/(3T) for any fixed t ∈ [T]. Now by taking union bound over all t ∈ [T], we know that540 ⋂T
t=1 E1,t holds with probability at least 1− δ/3.541

For the second event, from Hoeffding’s inequality, we have for any q ∈ Q,

P

(
|ĉl,t(q)− c⋆l (q)| ≤ (B2 −B1)min

(
1,

√
log(6T |Q|/δ)

2
∑t−1

s=1 1(cs ̸= ×, qs = q)

))
≥ 1− δ

3T |Q|
.

Now taking union bound over t ∈ [T] and q ∈ Q gives that
⋂T

t=1 E2,t holds with probability at least542

1− δ/3.543

For the third event, we know that the interval gk(q) satisfies a geometric distribution with success544

probability P (q). For any q ∈ L⋆, we have545

P (gk(q) ≥ s) ≤ (1− P (q))s ≤ (1− B1

|Q|B2
)s.

By taking s = B2|Q| log(TL/δ)
B1

, we know that546

P
(
gk(q) ≥

B2|Q| log(3TL/δ)
B1

)
≤ (1− B1

|Q|B2
)s ≤ δ

3TL
.

By taking union bounds over all q ∈ L⋆ and k we get the result.547

Let Et =
⋂t

s=1 E1,s ∩ E2,s. We can write the regret as follows.548

Regret(T) ≤
T∑

t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)] + E[cost(qt,Lt)− cost(qt,L⋆)1(Ēt)]

≤
T∑

t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)] + CδTB2

= CδTB2 +

T∑
t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)].

Note that the sampling distribution of qt is independent of Et. Thus we can write the expectation as549

T∑
t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)] ≤
T∑

t=1

∑
q∈Q

E[P (q) (1(q ̸∈ Lt)− 1(q ̸∈ L⋆)) c⋆l (q) | Et]

Let Tt(q) =
∑t−1

i=1 1(qi ̸∈ Li, qi = q). Note that the event ci = × is equivalent to that qi ∈ Li. Now550

at each round t, conditioned on event Et, we know that for any q ∈ L⋆,551

P̂t−1(q)ĉl,t−1(q) ≥ max

(
P (q)−min

(
1,

√
2 log(6T/δ)

t− 1

)
, 0

)(
c⋆l (q)− 2(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

))

≥ P (q)c⋆l (q)− C(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

)
.

17

And similarly, for any q ̸∈ L⋆, we know that552

P̂t(q)ĉl,t−1(q) ≤

(
P (q) + min

(
1,

√
2 log(8T/δ)

t− 1

))
c⋆l (q) ≤ P (q)c⋆l (q) +B2 min

(
1,

√
2 log(8T/δ)

t− 1

)
.

Now consider any q ∈ Lt but q ̸∈ L⋆, and any other q′ ∈ L⋆ but q′ ̸∈ Lt. We have553

P (q′)c⋆l (q
′)− P (q)c⋆l (q)

≤P̂ (q′)ĉl,t−1(q
′)− P̂ (q)ĉl,t−1(q) + C(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

)
+B2 min

(
1,

√
2 log(6T/δ)

t− 1

)

≤C(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

)
+B2 min

(
1,

√
2 log(8T/δ)

t− 1

)
.

Thus we know that554

T∑
t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)]

≤C

T∑
t=1

E

∑
q∈L⋆

1(q ̸∈ Lt)(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

)
+B2 min

(
1,

√
2 log(6T/δ)

t− 1

)
| Et

 .

Thus we have555

T∑
t=1

E[cost(qt,Lt)− cost(qt,L⋆)1(Et)]

≤B2Tδ + C

T∑
t=1

E

[∑
q∈L⋆

1(q ̸∈ Lt)(B2 −B1) ·min

(
1,

√
log(6T |Q|/δ)

Tt(q)

)

+B2 min

(
1,

√
2 log(6T/δ)

t− 1

)
| Et ∩ E3

]

≤C ·

(
B2Tδ + LB2

√
2T log(6T/δ)

+ (B2 −B1) log(6T |Q|/δ) ·
∑
q∈L⋆

T∑
t=1

E

[
1(q ̸∈ Lt) ·min

(
1,

√
1

Tt(q)

)
| Et ∩ E3

])
.

Now for each q ∈ L⋆, we look at the term
∑T

t=1 E
[
1(q ̸∈ Lt) ·min

(
1,
√

1
Tt(q)

)
| Et ∩ E3

]
. We556

prove the following lemma:557

Lemma 4. We have558

T∑
t=1

E

[
1(q ̸∈ Lt) ·min

(
1,

√
1

Tt(q)

)
| Et ∩ E3

]
≤ CB2|Q| log(3TL/δ)

√
T

B1
+ δ.

18

Proof. Let tk(q) =
∑k−1

l=1 gl(q) be the step that the k-th query of q arrives. And let E = (
⋂T

t=1 Et)∩559

E3. The summation can be written as560

T∑
t=1

E

[
1(q ̸∈ Lt) ·

√
1

Tt(q)
| Et ∩ E3

]

≤
T∑

t=1

E

[
1(q ̸∈ Lt) ·

√
1

Tt(q)
| E

]
+ δ

=

T∑
k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Lt) ·

√
1

Tt(q)
| E


≤

T∑
k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Ltk+1(q)) ·
√

1

Ttk(q)+1(q)
| E

 .

The last inequality is due to (a). Tt(q) does not change if at round t the query is not q; (b). if561

q ∈ Ltk+1(q), we will have q ∈ Lt for any t ∈ [tk(q)+ 1, tk+1(q)] since q never arrives in the middle562

and must remain in the cache set until tk+1(q). Now from event E3, we know that563

T∑
k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Ltk+1(q)) ·
√

1

Ttk(q)+1(q)
| E


≤

T∑
k=0

E

[
1(q ̸∈ Ltk+1(q)) · gk(q) ·

√
1

Ttk(q)+1(q)
| E

]

≤B2|Q| log(3TL/δ)
B1

·
T∑

k=0

E

[
1(q ̸∈ Ltk+1(q)) ·

√
1

Ttk(q)+1(q)
| E

]
We know that Ttk+1(q)+1(q) = Ttk+1(q)(q) + 1 = Ttk(q)+1(q) + 1 if q ̸∈ Ltk+1(q) since the564

query q missing the cache will be sent to the model. Thus overall, we know that we have either565

Ttk+1(q)+1(q) = Ttk(q)+1(q) + 1, or 1(q ̸∈ Ltk+1(q)) ·
√

1
Ttk(q)+1(q)

= 0 and Ttk+1(q)+1(q) =566

Ttk(q)+1(q). Thus overall, we have567

T∑
k=0

E

[
1(q ̸∈ Ltk+1(q)) ·

√
1

Ttk(q)+1(q)
| E

]
≤

T∑
k=1

1√
k
≤ C

√
T .

568

By taking δ = 1/T , we know the final regret can be bounded by569

Regret(T) ≤ CL(B2 −B1)B2|Q|L log2(T |Q|)
B1

·
√
T .

Lower bound. Now we turn to the lower bound. We apply Le Cam’s two point lemma for the regret.570

Consider any family of algorithm {Lt}Tt=1, where Lt can be dependent on observations prior to time571

step t. We aim to design two instances with the same P (q) and different random variable Cl(q) such572

that for any algorithm, the incurred cost for one of the instance is at least Ω(
√
T). Consider the573

case when we only have two candidate queries Q = {q1, q2}. Set P (q1) = P (q2) = 1/2 for both574

instances and the cache size L = 1. For instance one, we let C(1)
l (q1) ∼ Bern(1/2), C(1)

l (q2) ∼575

Bern(1/2 + ∆). For instance two, we let C(2)
l (q1) ∼ Bern(1/2), C(2)

l (q2) ∼ Bern(1/2−∆). We576

have577

inf
{Lt}T

t=1

sup
P,Cl

Regret(T) ≥ inf
{Lt}T

t=1

sup
Cl∈{C(1)

l ,C
(2)
l }

Regret(T)

= inf
{Lt}T

t=1

sup
Cl∈{C(1)

l ,C
(2)
l }

T∑
t=1

E

[
1

2

2∑
i=1

1(qi ̸∈ Lt)c
⋆
l (qi)−

1

2

2∑
i=1

1(qi ̸∈ L⋆)c⋆l (qi)

]
.

19

Let Regret(1)(T) be the total regret when Cl = C
(1)
l , and Regret(2)(T) be the total regret when578

Cl = C
(2)
l . Then we can verify that for any sequence of Lt,579

Regret(1)(T) + Regret(2)(T) ≥ ∆T

2
.

Thus from Le Cam’s Lemma, we have580

inf
{Lt}T

t=1

sup
P,Cl

Regret(T) ≥ ∆T

4
· (1− TV(P

c
(1)
l

,P
c
(2)
l

))

≥ ∆T

8
· exp(−DKL(Pc

(1)
l

,P
c
(2)
l

))

≥ ∆T

8
· exp(−2∆2E1[T2]).

Here E1[T2] is the expected times of observing the cost of q2 under instance one. Taking ∆ = T−1/2581

and minimizing the above equation with E1[T2] gives the desired bound.582

G Proof of Theorem 3583

Proof. We define the following four events:584

E1 =

{
∀q ∈ Q, |P̂ (q)− P (q)| ≤

√
2 log(8/δ)

N

}
,

E2 =

{
∀q ∈ Q, |ĉl(q)− c⋆l (q)| ≤ (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

}
,

E3 =

{
∀q ∈ Q, |ĉs(q)− c⋆s(q)| ≤ (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

}
,

E4 =

{
∀q ∈ L⋆,

N∑
n=1

1(qn = q) ≥ N · P (q)/2

}
.

We know that the above events hold simultaneously with probability at least 1− δ from Lemma 3.585

We condition on the four events from now on. We first decompose the cost difference as586

cost(L̂, π̂)− cost(L⋆, π⋆) = cost(L̂, π̂)− cost(L̂, π⋆) + cost(L̂, π⋆)− cost(L⋆, π⋆).

The first difference can be further written as587

cost(L̂, π̂)− cost(L̂, π⋆) =
∑
q∈Q

P (q)1(q ̸∈ L̂)(c⋆s(q)π̂(q) + c⋆l (q)(1− π̂(q))− c⋆s(q)π
⋆(q)− c⋆l (q)(1− π⋆(q)))

=
∑
q∈Q

P (q)1(q ̸∈ L̂)(c⋆s(q)π̂(q) + c⋆l (q)(1− π̂(q))−min(c⋆s(q), c
⋆
l (q)))

≤
∑
q∈Q

P (q)(c⋆s(q)π̂(q) + c⋆l (q)(1− π̂(q))−min(c⋆s(q), c
⋆
l (q)))

=
∑
q∈Q

P (q) (c⋆s(q)1(ĉs(q) ≤ ĉl(q)) + c⋆l (q)1(ĉs(q) > ĉl(q))−min(c⋆s(q), c
⋆
l (q))) .

Note that if ĉs(q) − ĉl(q) has the same sign as c⋆s(q) − c⋆l (q), the difference c⋆s(q)1(ĉs(q) ≤588

ĉl(q)) + c⋆l (q)1(ĉs(q) > ĉl(q)) −min(c⋆s(q), c
⋆
l (q)) becomes 0. Otherwise, if c⋆s(q) − c⋆l (q) > 0,589

we know that590

c⋆s(q)− c⋆l (q) ≤ ĉs(q)− ĉl(q) + |ĉs(q)− c⋆s(q)|+ |ĉl(q)− c⋆l (q)| ≤ |ĉs(q)− c⋆s(q)|+ |ĉl(q)− c⋆l (q)|.

20

And similarly if c⋆s(q)− c⋆l (q) ≤ 0, we know that c⋆l (q)− c⋆s(q) ≤ |ĉs(q)− c⋆s(q)|+ |ĉl(q)− c⋆l (q)|.591

Overall, we have592

E[cost(L̂, π̂)− cost(L̂, π⋆)] ≤ E

∑
q∈Q

P (q)|ĉs(q)− c⋆s(q)|+ |ĉl(q)− c⋆l (q)|


(i)

≤ E

√∑
q∈Q

P (q)(ĉs(q)− c⋆s(q))
2 +

√∑
q∈Q

P (q)(ĉl(q)− c⋆l (q))
2


(ii)

≤

√√√√√E

∑
q∈Q

P (q)(ĉs(q)− c⋆s(q))
2

+

√√√√√E

∑
q∈Q

P (q)(ĉl(q)− c⋆l (q))
2


(iii)

≤ C(B2 −B1)

√
|Q| log(N)

N
.

Here (i) is due to Cauchy-Schwarz, and (ii) is from Jensen’s inequality, and (iii) is the standard rate593

of the least squared estimator (Rigollet and Hütter, 2015).594

For the second difference, we have595

cost(L̂, π⋆)− cost(L⋆, π⋆) =
∑
q∈Q

P (q)
(
1(q ̸∈ L̂)− 1(q ̸∈ L⋆)

)
min(c⋆s(q), c

⋆
l (q))

=
∑
q∈Q

P (q)
(
1(q ∈ L⋆)− 1(q ∈ L̂)

)
min(c⋆s(q), c

⋆
l (q)).

Note that for any q ∈ L⋆, we know that596

P̂ (q)

(
min (ĉs(q), ĉl(q))− (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

)

≥max

(
P (q)−

√
2 log(8/δ)

N
, 0

)
·

(
min (c⋆s(q), c

⋆
l (q))− 2(B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

)

≥P (q)min (c⋆s(q), c
⋆
l (q))− C(B2 −B1) ·

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

≥P (q)min (c⋆s(q), c
⋆
l (q))− C(B2 −B1) ·

√
B2|Q| log(8|Q|/δ)

B1N
.

The last inequality uses event E3 and Lemma 1. And similarly, for any q ̸∈ L⋆, we know that597

P̂ (q)

(
min (ĉs(q), ĉl(q))− (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

)
≤

(
P (q) +

√
2 log(8/δ)

N

)
min (c⋆s(q), c

⋆
l (q))

≤ P (q)min (c⋆s(q), c
⋆
l (q)) +B2

√
2 log(8/δ)

N
.

Now consider any q ∈ Lt but q ̸∈ L⋆, and any other q′ ∈ L⋆ but q′ ̸∈ Lt. We have598

P (q′)min (c⋆s(q
′), c⋆l (q

′))− P (q)min (c⋆s(q), c
⋆
l (q))

≤P̂ (q′)

(
min (ĉs(q

′), ĉl(q
′))− (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q′)

)

− P̂ (q)

(
min (ĉs(q), ĉl(q))− (B2 −B1)

√
log(8|Q|/δ)

2
∑N

n=1 1(qn = q)

)
+ C(B2 −B1) ·

√
B2|Q| log(8|Q|/δ)

B1N

≤C(B2 −B1) ·

√
B2|Q| log(8|Q|/δ)

B1N
.

21

Here the last inequality uses the fact that q is inside Lt and thus the difference between the first two599

terms are upper bounded by 0. Finally, we know that conditioned on E1 ∩ E2 ∩ E3 ∩ E4, we have600

cost(L̂, π⋆)− cost(L⋆, π⋆) ≤CL(B2 −B1) ·

√
B2|Q| log(8|Q|/δ)

B1N
.

Overall, we know that601

E[cost(L̂, π̂)− cost(L̂, π⋆)] ≤ B2δ + CL(B2 −B1) ·

√
B2|Q| log(8|Q|/δ)

B1N
.

Taking δ = 1/N finishes the proof.602

H Proof of Theorem 4603

Proof. Let gk(q) be the length of the interval between the k-th and (k+1)-th arrival of query q in the604

sequence of received queries (we set gk(q) = 0 if k exceeds the total number of times q is queried.).605

Define the following four events:606

E1,t =

{
∀q ∈ Q, |P̂t−1(q)− P (q)| ≤ min

(
1,

√
2 log(8T/δ)

t− 1

)}
,

E2,t =

{
∀q ∈ Q, ĉl,t−1(q) ∈

[
c⋆l (q)− 2(B2 −B1)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

)
, c⋆l (q)

]}
,

E3,t =

{
∀q ∈ Q, ĉs,t−1(q) ∈

[
c⋆s(q)− 2(B2 −B1)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

)
, c⋆s(q)

]}
,

E4 =

{
∀q ∈ L⋆, k ≤ T, gk(q) ≤

B2|Q| log(4TL/δ)
B1

}
.

From the same analysis as Lemma 3, we know that the four events hold simultaneously with607

probability at least 1− δ.608

Let Et =
⋂t

s=1 E1,s ∩ E2,s ∩ E3,s. The regret can be decomposed as follows.609

Regret(T)

=

T∑
t=1

E[cost(qt,Lt, πt)− cost(qt,L⋆, π⋆)]

≤
T∑

t=1

E[cost(qt,Lt, πt)− cost(qt,L⋆, π⋆)1(Et)] + E[cost(qt,Lt, πt)− cost(qt,L⋆, π⋆)1(Ēt)]

≤
T∑

t=1

E[cost(qt,Lt, πt)− cost(qt,L⋆, π⋆)1(Et)] + δTB2

=

T∑
t=1

E[(cost(qt,Lt, πt)− cost(qt,Lt, π
⋆) + cost(qt,Lt, π

⋆)− cost(qt,L⋆, π⋆))1(Et)] + δTB2.

The first difference can be further written as610

E[cost(qt,Lt, πt)− cost(qt,Lt, π
⋆) | Et]

=E[1(qt ̸∈ Lt)(c
⋆
s(qt)πt(qt) + c⋆l (qt)(1− πt(qt))− c⋆s(qt)π

⋆(qt)− c⋆l (qt)(1− π⋆(qt))) | Et]

=E[1(qt ̸∈ Lt)(c
⋆
s(qt)πt(qt) + c⋆l (qt)(1− πt(qt))−min(c⋆s(qt), c

⋆
l (qt))) | Et]

≤E[c⋆s(qt)πt(qt) + c⋆l (qt)(1− πt(qt))−min(c⋆s(qt), c
⋆
l (qt)) | Et]

=E[c⋆s(qt)1(ĉs,t(qt) ≤ ĉl,t(qt)) + c⋆l (qt)1(ĉs,t(qt) > ĉl,t(qt))−min(c⋆s(qt), c
⋆
l (qt)) | Et].

22

Note that if ĉs,t(qt)− ĉl,t(qt) has the same sign as c⋆s(qt)− c⋆l (qt), the difference c⋆s(qt)1(ĉs,t(qt) ≤611

ĉl,t(qt)) + c⋆l (qt)1(ĉs,t(qt) > ĉl,t(qt)) − min(c⋆s(qt), c
⋆
l (qt)) becomes 0. Otherwise, if c⋆s(qt) −612

c⋆l (qt) > 0 and ĉs,t(qt)− ĉl,t(qt) ≤ 0, we know that st = 1 and613

c⋆s(q)− c⋆l (q) ≤ĉs,t(q)− ĉl,t(q) + 2(B2 −B1)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

)

≤2(B2 −B1)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

)
.

And similarly if c⋆s(q) − c⋆l (q) ≤ 0 and ĉs,t(qt) − ĉl,t(qt) > 0, we know that st = 0 and c⋆l (q) −614

c⋆s(q) ≤ 2(B2 −B1)min
(
1,
√

log(8T |Q|/δ)
2
∑t−1

i=1 1(si=0,qi=q)

)
. Overall, we have615

T∑
t=1

E[(cost(qt,Lt, πt)− cost(qt,Lt, π
⋆)]

≤2(B2 −B1)

T∑
t=1

∑
q∈Q

E

[
1(st = 1, qt = q)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

)

+ 1(st = 0, qt = q)min

(
1,

√
log(8T |Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

)]
≤2(B2 −B1)

√
|Q|T log(8|Q|T/δ).

Here the last inequality uses the fact that for each q ∈ Q, the summation over time step is upper616

bounded by 2
∑T (q)

i=1

√
log(8T |Q|/δ)/2i ≤ 2

√
log(8T |Q|/δ)T (q), where T (q) is the number of617

steps of receiving query q in total T steps. Optimizing over T (q) gives the final bound.618

For the second difference, we have619

E[cost(Lt, π
⋆)− cost(L⋆, π⋆) | Et] =E

∑
q∈Q

P (q) (1(q ̸∈ Lt)− 1(q ̸∈ L⋆))min(c⋆s(q), c
⋆
l (q)) | Et


=E

∑
q∈Q

P (q) (1(q ∈ L⋆)− 1(q ∈ Lt))min(c⋆s(q), c
⋆
l (q)) | Et

 .

Note that for any q ∈ L⋆, we know that620

P̂t(q)min (ĉs,t(q), ĉl,t(q))

≥max

(
P (q)−

√
2 log(8/δ)

t
, 0

)
· 1(πt(q) = 1)

(
c⋆s(q)− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

))

+ 1(πt(q) = 0)

(
c⋆l (q)− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

))

≥P (q)min (c⋆s(q), c
⋆
l (q))− (B2 −B1)

√
2 log(8/δ)

t
+ P (q) ·

(
1(πt(q) = 1)

·

(
c⋆s(q)− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 1, qi = q)

))

+ 1(πt(q) = 0)

(
c⋆l (q)− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

))
−min(c⋆s(q), c

⋆
l (q))

)

≥P (q)min (c⋆s(q), c
⋆
l (q))− C(B2 −B1) ·min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = πt(q), qi = q)

)
.

23

Below we justify the last inequality. First, note that πt(q) = 1 is equivalent to that ĉs,t(q) ≤ ĉl,t(q).621

Thus if ĉs,t(qt) − ĉl,t(qt) has the same sign as c⋆s(qt) − c⋆l (qt), the above inequality holds. Now622

consider the case when ĉs,t(qt) − ĉl,t(qt) has a different sign as c⋆s(qt) − c⋆l (qt). Assume that623

ĉs,t(qt) > ĉl,t(qt) and c⋆s(qt) < c⋆l (qt). We know that πt(q) = 0, and624

c⋆l (q)− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

)
− c⋆s(q)

>− 2(B2 −B1)min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = 0, qi = q)

)
.

Similarly we can prove that for the reversed case. Now for any q ̸∈ L⋆, we know that625

P̂t(q)min (ĉs,t(q), ĉl,t(q)) ≤

(
P (q) +

√
2 log(8/δ)

t

)
min (c⋆s(q), c

⋆
l (q))

≤ P (q)min (c⋆s(q), c
⋆
l (q)) +B2

√
2 log(8/δ)

t
.

Now consider any q ∈ Lt but q ̸∈ L⋆, and any other q′ ∈ L⋆ but q′ ̸∈ Lt. We have626

P (q′)min (c⋆s(q
′), c⋆l (q

′))− P (q)min (c⋆s(q), c
⋆
l (q))

≤P̂t(q
′)min (ĉs,t(q

′), ĉl,t(q
′))− P̂t(q)min (ĉs,t(q), ĉl,t(q))

+ C(B2 −B1) ·min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = πt(q), qi = q)

)
+B2

√
2 log(8/δ)

t

≤C(B2 −B1) ·min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = πt(q), qi = q)

)
+B2

√
2 log(8/δ)

t
.

Here the last inequality uses the fact that q is inside Lt. Thus we have627

T∑
t=1

E[cost(Lt, π
⋆)− cost(L⋆, π⋆)1(Et)]

≤
T∑

t=1

E[cost(Lt, π
⋆)− cost(L⋆, π⋆)1(Et ∩ E4)] +B2Tδ

≤B2Tδ + C

T∑
t=1

E

[∑
q∈L⋆

1(q ̸∈ Lt)(B2 −B1) ·min

(
1,

√
log(8|Q|/δ)

2
∑t−1

i=1 1(si = πt(q), qi = q)

)

+B2

√
2 log(8/δ)

t
| Et ∩ E4

]

≤C ·

(
B2Tδ + LB2

√
2T log(8/δ) + (B2 −B1) log(8T |Q|/δ)

·
∑
q∈L⋆

T∑
t=1

E

[
1(q ̸∈ Lt) ·

√
1∑t−1

i=1 1(si = πt(q), qi = q)
| Et ∩ E4

])

=C ·

(
B2Tδ + LB2

√
2T log(8/δ) + (B2 −B1) log(8T |Q|/δ)

·
∑
q∈L⋆

∑
π∈{1,2}

T∑
t=1

E

[
1(q ̸∈ Lt, πt(q) = π) ·

√
1∑t−1

i=1 1(si = π, qi = q)
| Et ∩ E4

])
.

Let Tt(q, π) =
∑t−1

i=1 1(si = π, qi = q). Now for each q ∈ L⋆ and π ∈ {1, 2}, we look at the term628 ∑T
t=1 E

[
1(q ̸∈ Lt, πt = π) ·min

(
1,
√

1
Tt(q,π)

)
| Et ∩ E4

]
. We prove the following lemma:629

24

Lemma 5. We have630

T∑
t=1

E

[
1(q ̸∈ Lt, πt(q) = π) ·min

(
1,

√
1

Tt(q, π)

)
| Et ∩ E4

]
≤ CB2|Q| log(3TL/δ)

√
T

B1
+ δ.

Proof. Let tk(q) =
∑k−1

l=1 gl(q) be the step that the k-th query of q arrives. And let E = (
⋂T

t=1 Et)∩631

E4. The summation can be written as632

T∑
t=1

E

[
1(q ̸∈ Lt, πt(q) = π) ·

√
1

Tt(q, π)
| Et ∩ E3

]

≤
T∑

t=1

E

[
1(q ̸∈ Lt, πt(q) = π) ·

√
1

Tt(q, π)
| E

]
+ δ

=

T∑
k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Lt, πt(q) = π) ·

√
1

Tt(q, π)
| E


≤

T∑
k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Ltk+1(q), πtk+1
(q) = π) ·

√
1

Ttk(q)+1(q, π)
| E

 .

The last inequality is due to (a). Tt(q, π) does not change if at round t the query is not q; (b). if633

q ∈ Ltk+1(q), we will have q ∈ Lt for any t ∈ [tk(q)+ 1, tk+1(q)] since q never arrives in the middle634

and must remain in the cache set until tk+1(q); (c) For t ∈ [tk(q) + 1, tk+1(q)], πt does not change635

since both the frequency and cost estimator does not change for q. Now from event E4, we know that636

T∑
k=0

E

 tk+1(q)∑
t=tk(q)+1

1(q ̸∈ Ltk+1(q), πtk+1
(q) = π) ·

√
1

Ttk(q)+1(q, π)
| E


≤

T∑
k=0

E

[
gk(q) · 1(q ̸∈ Ltk+1(q), πtk+1

(q) = π) ·
√

1

Ttk(q)+1(q, π)
| E

]

≤B2|Q| log(4TL/δ)
B1

·
T∑

k=0

E

[
1(q ̸∈ Ltk+1(q), πtk+1

(q) = π) ·
√

1

Ttk(q)+1(q, π)
| E

]
We know that Ttk+1(q)+1(q, π) = Ttk+1(q)(q, π) + 1 = Ttk(q)+1(q, π) + 1 if q ̸∈ Ltk+1(q) and637

πtk+1
(q) = π since the query q missing the cache will be sent to one of the models, and only the638

one selected will observe the cost. Thus overall, we know that we have either Ttk+1(q)+1(q, π) =639

Ttk(q)+1(q, π) + 1, or 1(q ̸∈ Ltk+1(q), πtk+1
(q) = π) ·

√
1

Ttk(q)+1(q,π)
= 0 and Ttk+1(q)+1(q, π) =640

Ttk(q)+1(q, π). Thus overall, we have641

T∑
k=0

E

[
1(q ̸∈ Ltk+1(q), πtk+1

(q) = π) ·
√

1

Ttk(q)+1(q, π)
| E

]
≤

T∑
k=1

1√
k
≤ C

√
T .

642

Thus we know that the second difference satisfies643

T∑
t=1

E[cost(Lt, π
⋆)− cost(L⋆, π⋆)1(Et)] ≤C ·

(
B2Tδ + LB2

√
2T log(8/δ)

+
L(B2 −B1)B2|Q|L log2(T |Q|/δ)

B1
·
√
T

)
.

Overall by taking δ = 1/T , we know that644

Regret(T) ≤ CL(B2 −B1)B2|Q|L log2(T |Q|)
B1

·
√
T .

645

25

I Additional Experiments on Synthetic Datasets646

We conduct synthetic online and offline experiments for joint optimization of caching and model647

selection. We use i.i.d. Bernoulli distributions for two models because we want to mimic the model648

ensemble use case and give a large penalty to the wrong output. In Figure 2, we plot the cumulative649

cost and regret in online learning for LFU and LEC caching algorithms. We present more data650

points in Table 3 and Table 4. Similar to the real dataset setting, we compare all combinations of651

caching strategy choices and model selector choices. We consider the frequency distribution as power652

distribution with α = 0.5 and 0.8. The ground truth cost for each query processed by both models is653

set as a sample from r ·X + 1, where r is called as cost ratio and X is a random variable generated654

from a Bernoulli distribution with the parameter 0.5. We consider the model selector accuracy with655

0.8 and 1. We repeat the simulation 100 times and take the mean. Consistent with Figure 2, our656

simulation suggests that LEC with a perfect model selector significantly improves the baselines when657

the cost ratio is large. Simulation 100 times cannot remove all randomness so we can observe some658

fluctuations. Theoretically, the columns of choosing model 1 and the columns of choosing model 2659

should behave similarly.660

α cost ratio selector
accuracy

LFU+
model 1

LFU+
model 2

LFU+
selector

LEC+
model 1

LEC+
model 2

LEC+
selector

0.5 1.5 0.8 6.82 6.54 5.30 5.61 5.64 4.55
0.8 1.5 0.8 8.90 9.63 6.72 7.19 8.09 6.34
0.5 1.5 1 6.08 6.97 4.17 6.08 5.73 3.44
0.8 1.5 1 9.15 8.99 5.61 7.42 7.79 4.53
0.5 100 0.8 188.74 211.91 135.81 76.44 57.52 55.85
0.8 100 0.8 309.82 260.22 185.83 116.49 84.90 75.59
0.5 100 1 187.66 159.15 110.83 76.56 76.64 6.22
0.8 100 1 302.81 252.69 145.61 61.04 137.45 12.26

Table 3: Evaluation of offline algorithms on synthetic datasets. α is the parameter of the power
distribution of the prompts. The table lists cumulative costs (103) for different algorithms. “model 1”
means always choosing model 1, and “model 2” means always choosing model 2.

α cost ratio LFU+
model 1

LFU+
model 2

LFU+
selector

LEC+
model 1

LEC+
model 2

LEC+
selector

0.5 1.5 6.87 6.52 5.18 6.12 6.04 4.86
0.8 1.5 8.82 9.52 7.44 8.07 8.28 6.35
0.5 100 206.29 207.88 87.99 58.44 73.91 10.54
0.8 100 266.98 265.24 115.29 115.80 107.79 7.19

Table 4: Evaluation of online algorithms on synthetic datasets. α is the parameter of the power
distribution of the prompts. The table lists cumulative costs (103) for different algorithms. “model 1”
means always choosing model 1, and “model 2” means always choosing model 2.

26

	Introduction
	Related Work

	Formulation
	Caching without Model Selection
	Caching with Model Selection

	Optimal Caching without Model Selection
	Population Setting
	Finite Sample Setting: Offline Learning
	Finite Sample Setting: Online Learning

	Optimal Caching and Model Selection
	Population Setting
	Finite Sample Setting: Offline Learning
	Finite Sample Setting: Online Learning

	Experiments
	Simulations for Algorithm Analysis
	Experiments on Real Datasets

	Conclusion and Future Work
	Discussions on the Choice of Output, Model and Cost
	Generalization to Variable Size Cache
	Generalization to Selection from Multiple Models
	Differences between the optimal policy and the baseline
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Additional Experiments on Synthetic Datasets

