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A ADDITIONAL NOTATIONS

We introduce a few notations that are used in the main text as well as some proof. When V f is

p—aVf(q)

L-Lipschitz, the drift term [—fyp — Vg

Lemma[D.3] where

)] in HFHR dynamics is also L’-Lipschitz, as proved in

L’—\/imax{ 1+a2max{\2,L},\/1+'y?}.

We show in Lemma [D.5] that a linear-transformed HFHR dynamics satisfies the nice contraction
property, the linear transformation P we use is defined as

p_ ~I I
10 1+ anl

Denote the largest and the smallest singular value of P by

:| c RQdXQd

L,
2 2

a 2 a?y? — 2073 + day +y1 44
O'max:\/,y“v‘fy‘f'\/ 7 i 7 i +

+1

2
|y ~2 \/a272 — 2073 +4ay +*t+4
omin =\l Ty T 5

and its condition number by

2 22 2073 +day+yi+4
ay o \/@ 2l oy YTy
K,_Umax_ 5 + 5+ 5 +1
Omin ay 42 \/a272—2(y'y3+4o<—y+'y4+4
7ty - 5 +1

The rate \’ of exponential convergence of transformed HFHR dynamics is characterized in Lemma

and is defined as
2T,
N = min T+am,7
Y v

given that 72 > L.
B PROOFS FOR THE CONTINUOUS DYNAMICS
Notations and definitions can be found in Sec[3]

B.1 PROOF OF THEOREM [4.1]

Proof. The Fokker-Plank equation of HFHR is given by
dppr = —Va - ({Vl}(q)] pt> +a (Vg (VI(@pe) +Dgpe) +7 (Vp - (ppe) + Dppr)
where Vg = (Vgq, Vp). For m e~ 1 @=3lPI* we have

Ve ({Vl}(fn] W) - <{V1}(Q)} Vem) =0,

Agm=—Vgq- (7Vf(q)
Apm ==V - (7p)

Therefore J;7w = 0 and hence 7 is the invariant distribution of HFHR. L]
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B.2 PROOF OF THEOREM [5.1]

Proof. Consider two copies of HFHR that are driven by the same Brownian motion

dg, = (p, — aV f(q,))dt + V20dB; dg, = (p, — oV f(q,))dt + V2adB;
dp, = (—yp, — Vf(q,))dt + \/ﬂdBtZ ’ dp, = (=P, — Vf(q,))dt + \/ﬂalBt2 ’

where we set (g, Do) ~ 7, Py = Do and g, such that
W (o 2) = E [llag — @3], a0 ~ so

Denote [it} =P [gt B gt} where P is defined in Appendix By Lemmaand the assumption
t + — Dy

on a, 7y, we have

2 2

¢t:| —2(Z+ma)t |:¢0:|
<e v .
H th - )y
Therefore we obtain
Wi (e, p) =  inf  Elg, —q,|
2(pop) = il — @il
2
< inf E [qt N gt}
(qta[]t)"‘n(l‘tv#)v(ptvi’t)NH(Vth) pt - pt
é 2
<E P71 2 t
= A ‘
2
<E[| P~ e 5 Fmet mﬁ]
~ 2
S(K1)2€72(%+ma)t |:QO - g0:|
Do — Po

=(r')?e 25O (g, 1)

Taking square root yields the desired result.

C ARBITRARY LONG TIME DISCRETIZATION ERROR OF ALGORITHM (1

Theorem C.1. Under Conditions Al|and further assume the function VA f grows at most linearly,

ie, [|[VAf(g)] < Gy/1 +|lq|1>, Vg € R® Also suppose ~ in HFHR dynamics satisfy v* > L.
Then there exist C, hg > 0, such that for 0 < h < hg, we have

1

(]E||a:k - ik”?)E < Ch

where Xy, is the k-th iterate of Algorithm|l|with step size h starting from x, Ty is the solution of
HFHR dynamics at time kh, starting from xy. This result holds uniformly for all k > 0 and k can

go to cc. In particular, C = O(\/d) and if v — LJFT’” > ma, then there exists b > 0, independent of
o and is of order O(\/d), such that

@-2 1) (11)

Proof. Denote t;, = kh, the solution of the HFHR dynamics at time ¢ by @ 4, (t), the k-th iterates
of the Strang’s splitting method of HFHR dynamics by & »,(kh). Both @ 4, (t) and Zo z, (kh)
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start from the same initial value x. The linear transformation P defined in Appendix [A] transforms
the solution of HFHR dynamics into y pg, (t) = PTo,x,(t) and the Strang’s splitting discretization

of HFHR into 4 pg, (t) = PZo z, (t).

For the ease of notation, we write y,, (tx) as y;, and ¥, , (k) as yj,. We have the following
identity

2
Yoy, (1) = Uiy, (1)

Ellyis — G| =E]

2
|41, 4, (0) = Y, 5, (1) + 1, g, (0) = By, ()

2 2
— |41, 5, () = Y15, 0|+ B[00, () = 91,5, )|

@ ©)

F2E (Y1, 5, (B) = Y1, 5, (1) Wey 5, (B) = Bty 5, (1))

®

By Lemma when 0 < h < ﬁ, term @ can be upper bounded as

2 oy .2
B[y, 5, (1) = 1, 5, ()| <2 Ellyy — wi
< (1-2Vh+2(V)%2) Ellys - 9l
< (1= Xh) Elly, - 5

. . . 2
where the second inequality is due toe™ <1 —x + %, Vo > 0.

For term @, we have by Lemma that

2
B [t10.5, (1) = By, (1) < 02 Bty 0 () — 1,0, () < 02 OB

where o,y is the largest singular value of matrix P.

For term @, we have by Lemma that

2 (Y1, 5, (1) = 1,9, (1) Uty 5, (1) = Ty 5, (1)
=2E (y, = B+ 2. Y1, 5, (0) — Uy, (1) )

= 2B (yy. — Ui Y, 5, () = ey, (1)) + 2B (2,03, 5, () = B, 5, (B))
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For term , by the tower property of conditional expectation, we have

21K <yk - gkvytk,yk (h) - th,yk (h)> =2E [E [<yk - yk,ytk,'yk (h) - @tk,yk(h)> ‘]:k]

=2E( y, — Ui, E lytk,ﬂk(h) = Yi,.3, (h)‘fk] >

2

Yir,, (h) - th,@k (h)

;

<2\/E|y, — 9,/ |E[E
2
<2

EHyk - ngQ UIQIlaXE E lxtk;mk (h’) - jtk@k (h)‘]:k‘|

<2\/Elly, — 47 \/r2 C200

§2Jmaxcl E”yk - yk”2h2

For term , when 0 < h < ﬁwe have by Lemma and Lemma

2E (2,9, 5, (1) = 1, 5,(1)) szx/E||z||2\/nz\]ytk,gk () ~ Tty ()]
=2y/E|)z|* |E EU\ngh)—ytk,gk(h)jf fk.]

=24/ IE||Z||2\ o2 |E l”f'?tk,mk(h) - itk,m(h)||2

<20\ CElly;, — 952 h2/C313
SQUmaxC2\/5 EHyk - kath

8

where C' = 2 (L”)2 = 2(K")? (L’)2 is from Lemmaand Lemma

Recall both C and C5 depend on||x|| and we would like to upper bound this term. To this end, con-
sider Z(t), a solution of HFHR dynamics with initial value & that follows the invariant distribution

&o ~ 7 and realizes Wy (o, 7), i.e., E|| &g — o||* = W2(mo, 7).
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[ME

Denote &), = &(kh) and e, = (EHyk - fngZ) , we then have

_ 2
El| ||

ZEHCL'k + T — :ck||2
<2E||zy||* + 2E| 21 — @]
<AE||Zk||* + 4E||Zk — @i]|* + 2| 24 — 1]
2 2
—4E||&5|% + 41EHP*1P@,C - a:k)H + 21EHP*1P(5ck - mk)H
9 4 N 2 2 _ 2
<4 lqll” dp+d ) + TEHP(wk - wk)” + —=—Elly, — yill
R O min O min
(1) 4 o)/ - 2 2
<4 (/ Hq||2 dp + d> + ¢ 22 khIEHP(a:O — :co)” + Tei
R4 O min O min

2
<a ([ lal du-+ ) + 4 WG m) + et
Rd

min

APl + G

where (i) is due to Lemma|D.5] Recall from Lemma|[D.8] we have

i

Cs

where

< AWE|Z||? + By < AyVFey, + (A1VG + By) 2 Urep + V4
< Agn/ ]EH.’EkHZ + By < AQ\/Fek; + (AQ\/E"‘ Bg) £ User + Vo

Ay =(L + G)max{a+ 1.25,v+ 1}(1.74 + 0.71)
By =(L + G)max{a + 1.25,7 + 1} |0.5a + (1.26 /o + 1.14av/a + 2.32\/’7)\/hd}

Ay =Lmax{a +1.25,7 + 1}(1.92 + 2.30aL)Vh
By =Lmax{a + 1.25,v + 1}(2.60y/a + 3.34,/7h)Vd
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Combine the above and bounds for terms @, @, and , we then obtain

€2, <(1— Nh)e2 + 02, C2h + 20maxCrexh? + 20mn CaV Cerhs
<(1— Nh)e? + 02, 2(U262 + V)3 + 20max(Urer + Vi )erh? + 20max(User + Vo)V Cexh’
= (1 — Nh 4202 Ush® + 200 Urh? + 20maUs \/5h3> er
+ (QUmale + 20max Va C‘h) exh? + 202 VZh3
= pY
< <1 — N+ 202, Uzh? + 200 Urh? + 20 maxUs ﬁ}h) er + §h6§

— 2
2 (2amaxv1 4 2000 VoV Ch)
h3 + 202

)\/ max

‘/22 h3

7 =
= (1 = N+ 200, USH® + 2012 + 20maXU2\/5h3) e

2 (20Vi + 20 VaV/ )

+ )\/ + 20‘1’%13)(‘/22 h3
= 2
o 1, [2Cmei 2o aVer) )
(1= SN h)er + v +202,VE | h

Il

1 [
1— =Nh)e2 + Kh3
9 k

where (4) is due to h < min{hq, ha, h3} and

hy = VA
YT 42k Dmax{o + 1.25, v + 1}(1.92 + 2.30aL)’
)\/
hy = :
> T16v2+/ (L + G) max{a + 125, + 1}(1.74 + 0.71a)
)\/
hs

~ 8w/ Lmax{a + 1.25,7 + 1}(1.92 + 2.30aL)

Unfolding the above inequality, we arrive at

PR N N (
ep < (12h) ed + <1+(12h)+~.+(12h)’“> Kh3

(i) ad No\¢
Kh? 1-=
< hg( 2h>
2K

2
)\’h

where (4) is due to e, = 0. Therefore

2\ ? . N 1 2K
(1o -aul)’ = (P w-w0] ) < a< A

. . /
Umm Jmm >\
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Collecting all the constants and we have

1 2K 8K/
o <2 (L4 G)max{a + 1.25,v + 1}(1.74 + 0.71a) / gl dp + d + &' Wa(mo, )
Omin VN~ N Rd

4K’
+ 5 (L4 Gy ma{a +1.25,7 + 1} (0.50 + (126va + 1L14ava +2.32,/7)Vd)

8k’ [ VKL 2 /
+W (\W + 1) Lmax{a+1.25,v+ 1}(1.92 + 2.30aL) /]Rqu” dp + d + ' Wy(mg, )

4’ (VKT
+ﬁ (W + 1) Lmax{a+1.25,v + 1}(2,60\/a + 3-34ﬁ)\/;i
20

It is clear that in terms of the dependence on dimension d, we have C' = O(v/d). In the regime
where % > ™ L ma, then N = % + ma. Recall the definition of s and there exist A’, B’ > 0
such that k" < A’\/a + B’. Tt follows that

a103 + aga® + aza® + agat + asa + agat + ar o+ 714 o’ + 713 b

1
<b =b = —(042—904—1——2)

C<
- N N % +ma  m vy

for some positive constants a1, as, as, aq, a5, ag, a7, b > 0 and independent of «, in particular, we

have b = O(V/d). O

C.1 PROOF OF THEOREM[3.2]

Proof. Denote the k-th iterate of the Strang’s splitting method of HFHR by &, with time step h, the

901 Also denote

0

solution of HFHR dynamics at time hk by xj. Both Z; and x, start from oy =

the solution of HFHR dynamics starting from & at time kh by &j where &y, = {ZO] , (@9, Dg) ~ 7
0
2

P — P = WZ(mo, 7). Since 7 is the invariant distribution of HFHR dynamics, it
o~ Po

follows that x;, ~ .

By Lemma|D.5]and Theorem [C.T} we have

and E [qo n ?0}

2 _ 2
W2 (/jfkv /1’) - §El_11(r,tfk,u) E(?17Q2)N§||q1 - QQH

< inf [E el — @ 2
S et Bies) ¢l — 2|

<E|| @ — &
<202R% + ZEHP*P(wk - gzk)Hz
<202h? + 2| P |3E|| P(ak — &) ||”
<2C2h% 4 2| P~V |2e P FE|| Pz — &0)||
<202h% + 2(k')2e" N MW (g, 7)
Take square root on both sides and apply v/a2 + b2 < a + b, we obtain
Wa (i, 1) < V2Ch + V26 e N "Wy (o, 7).
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C.2 PROOF OF COROLLARY

Proof. By Theorem|[5.2] we have

Wa(pis 1) < V2Ch + V2k e N Wy (g, ).

Given any target accuracy € > 0 if we run the Strang’s splitting method of HFHR with h* =

2\50} log 2+/2r" Wy (o m) , we have
€ €

min{hy, 2\/0} then after £* = 57 max{h )

W (i 1) < V2Ch + V26" e N W (g, 1) < = +

6_
2—6.

[N e

Recall C = O(v/d), when high accuracy is needed, e.g. ¢ < 2v2Chy, the itera-
tion complexity to reach e-accuracy under 2-Wasserstein distance is k* = O(@log%) =

Zﬂgilogw = (7)(@) Recall from Theorem C < 2(a? - S+ 7%), we
have

C _bo’—2+
PR
m? 5 + «
a?—a
Denote g(a) = -’ — =, simple calculation shows that a* = argmin, g g(a) = \/i’l =
1 Y
O(;). O
D TECHNICAL/AUXILIARY LEMMAS AND THEIR PROOFS
D.1 DEPENDENCE OF ERROR OF SDE ON INITIAL VALUES
Lemma D.1. Consider the following two SDE with different initial condition
dzy = a(xy)dt + odW, dy, = a(y,)dt + cdW,
x(0) = xo y(0) =y,
where a(u) € R is L-Lipschitz, and o € R™ " is a constant matrix. For 0 < h < 4L, we have

the following representation
Th —Yp =To — Yo+ 2
with

2 2
Bllz]” < 2L7|lzo — yoll” 2?

Proof. Letz = (xp, —y;,) — (o — yo) = foh a(xs) — a(y,)ds. Ito’s lemma readily implies that

h
2 2
Ellen —ypl” =llzo — yol™ + 2E/ (s -y, a(s) —aly,))ds
0
2 " 2
<llzo~ wol* +2L | Bl -y, ds
0
By Gronwall’s inequality, it follows that

1
Ellzy — yy|* <[lzo — yoll* " < 2lazo — go||”, for0 < h <
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and
2

h h 2
/0 a(ws)—a(ys)dS] s(/ \\E[a(ws>—a<ys>]Hds>
h h 2
g/o 12ds/0 HE [a(ws)—a(ys)]H ds

§h/0 EHa(a:S) —a(yS)H2ds

2
Efz]]” =|E

h
gL?h/ E|z, — y, | ds
0

<2L%|lao — gy, 1

D.2 GROWTH BOUND OF SDE WITH ADDITIVE NOISE

Lemma D.2. Consider the following SDE with constant diffusion

dxy = a(xy)dt + odW,
z(0) = xg

where a(x) € R? is L-smooth, i.e., |a(y) — a(z)| < Lly
constant matrix independent of time t and x;. Then for 0 < h <

1

1> we have

Ellzn - wol” < 257 (ol + 202 |2oll*) A
Proof. We have

h
E|lxp, 7m0|| a(x; dt+/ odW,

h
/ ()t [ oaw:
0
h
/ ala,)dt +2/ ||t
2
<2E (/ ||a(z |dt> + 2h||o||%
2
<2E (/ |la(z:) — a(zo)| dt+/ |a(xo Hdt) + 2h||o||%

2
<2E ( /||mt7m0Hdt+h||a o H> + 2h||o||%

2

<2E +2E

—2E

2
<4E |L? ( / ||f0t$0||dt> + h2[|a(zo)|*| +2nller |}

(44) h
Lanllor |3 + 40| (o) + 4L2h/ Bz — ao? dt
0

22

,a(0) =0and o € R jsa
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where (%) is due to Ito’s isometry, (i) is due to Cauchy-Schwarz inequality and ||o||  is the Frobe-
nius norm of o. By Gronwall’s inequality, we obtain

2
El|z), — | < (2h||a||% + 42| a(zo) ) exp {4L2h2} .

Since||a(xo)|| =||a(zo) — a(0)|| < L||xo||, when 0 < h < 7, we finally reach at

4L’

Ellwn — ao|* < 2 (lol} + 2hL2|@o]*) e < 257 (|||} + 20 L2 o |*) b

D.3 LIPSCHITZ CONTINUITY OF THE DRIFT OF HFHR DYNAMICS

Lemma D.3. Assume V f is L-Lipschitz, i.e. |V f(z) — Vf(y)|| < L|lz -y
of HFHR dynamics

{fw_o gVVfJS 8)}

is L'-Lipschitz, where L' £ /2max{/1+ a2 max{%, L}, /14 ~2}. Let P be defined in Ap-

pendixHand {i} =P [;ﬂ, then {g] satisfies the following SDE

o] =P [P S e [T ] )

and the drift term

—vp(é,¥) — Vf(a(e,¥))

is L"-Lipschitz, where L' = 'L’ and K’ is the condition number of P.

Proof. By direct computation and Cauchy-Schwarz inequality, we have

Z\A‘—a (Vf(‘h) — Vf((h)) + (p1 —PQ)H +H— (Vf(ql) — Vf(qQ)) —v(p, —p2)H2
<\/202|V£(a,) - V(@s)]| +2lps — pull* + 2|V F(a1) — VF(g)]| + 2+7Ilpy — poll®

<\/2a2L2 + 202)lq, — gu| + 2+ 292)llpy — ol

<V2max{L\/1+ a2, y/1+~2} [ P, p2H
, LY, /14 ~2}

{pl —aVf(q,) ] {Pz —aVf( Q2
—vp1 — Vf(qy) Py — Vf( q2

<V2max{\/1 + a2

q, — 49>
Py — D2

By Ito’s lemma, we have

i =1

e

1
max{— 7

ar
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Using the Lipschitz constant obtained for the drift of HFHR, we further have

P[ Py, %) —aVf(g (¢17¢’1)))}_P[P(ﬁbzﬂ/’z)_avf(Q(szﬂ/’z))}H

vp(b1,%1) — V(g(pq, v —p(ba, ¥3) — Vf(q(Py,13))
< [pl —aVf( q1 } [pz —aVf(g,) }
= maxll | —yp; — V£(qy) —vp2 — Vf(g2)
<ol {‘h - ‘b}

P1 — P2

/ — ¢ *(]5
el (o2

/ 1 ¢ - ¢
e
_ | —@
S [ ‘

where Oy, omin and &’ are the largest, smallest singular values and the condition number (Ww.r.t.
2-norm) of matrix P. O

Remark D.4. The following inequalities associated with L' will turn out to be useful in many proofs

L'>1,L'>V2y,L' >V2a,L>v2Land L' > V2aL.

D.4 CONTRACTION OF (TRANSFORMED) HFHR DYNAMICS

Lemma D.5. Suppose f is L-smooth, m-strongly convex and v*> > L. Consider two copies of
HFHR dynamics 9 , i (driven by the same Brownian motion) with initialization 9o , o

Pi| |P: Po| |Po
respectively, then we have

’
Se*)\t

P |:q0 - (?O:|
Do — Po

P q: — gt
Py — P
I I Cm 2_
where P = [70 WI} and X' = min{ 2 + am, 1 L},

Proof. Consider two copies of HFHR that are driven by the same Brownian motion

dq; = (p, — aV f(q,))dt + \/ﬂdBtl dq, = (p, — aV f(q,))dt + \/ﬂdBtl
dp, = (—yp, — Vf(q,))dt + \/ﬂdB? 7 dp, = (—yp, — Vf(q,))dt + \/ﬂdB?

Based on Taylor’s expansion, the difference of the two copies is expressed as
i qt_th _ aHy —1 qt_‘zt A9y qt_qj
dt |Pt — Pt Hy AL} [p,— Py e

where H; = fo V2f(q, + s(q — @,))ds. Denote the eigenvalues of H; by n;,1 < i < d, by strong
convexity and smoothness assumption on f, we havem <n; < L, 1 <i <d.
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Denote {zt} =P {gt B gt] and consider £; = [it} , we have
t t t t
ﬁﬁ — _¢t_TPAP71 [¢t:|
dt" K by
__-¢-T1 -1 “INT 4T pTy | P
= _wi 2(PAP + (P )AP)[qu

. -¢t- ’ l [(1 + ay)Hy Odxd } |:¢t:|
v Odxd V2 — Hy| |,

-, 1T
a_ P o)
- Bled 4,
It is easy to see that

2

—L
Amin(B(a)) = {rém {mm{ -t oamy,y — —}} > mm{— +am, L PEN.
i= y

Therefore we have aﬁt < —2A\ninB (a)/it < —2)\'L;. By Gronwall’s inequality, we obtain

2 <l

and the desired inequality follows by taking square root. O

’
< 6—2)\ t

D.5 LOCAL ERROR BETWEEN THE EXACT STRANG’S SPLITTING METHOD AND HFHR
DYNAMICS

Lemma D.6. Assume f is L-smooth and 0 € argmingcpa f(x), i.e. Vf(0) = 0. If0 < h < 11,
then compared with the HFHR dynamics, the exact Strang’s splitting method has local mathematical
expectation of deviation of order p1 = 2 and local mean-squared error of order po = 2, i.e. there

exist constants C1,Co > 0 such that

|Ez(h) — Ea(h)|| < CihP

CECE fc<h>||2})é < Gyl

where x(h) = [Z%] is the solution of the HFHR dynamics with initial value xy = {ZO} and
0

z(h) = [ggzg] is the solution of the implementable Strang’s splitting with initial value xy = {ZO} ,
0

p1 = 2 and ps = 2. More concretely, we have

Cy = Lmax{a +1.25,7 + 1} (1.74\\:c0|| +(1.26v/a + 2.84ﬁ)\/hd) :

Cy = Lmax{a + 1.25,y + 1} (1.92Hw0|| + (1.30v/a + 3.22ﬁ)\/hd) .

Proof. The exact Strang’s splitting integrator with step size h reads as (;5% oyl o gi)% where
b dq = pdt v dg = —aV f(q)dt + v2adW
" dp = —ypdt + /2vdB " ldp=-Vf(qg)dt
The ¢ flow can be explicitly solved and the solution is

{q(t)—qo+ po+rf“ - 10)
p(t) = e~y + VI [ e=1=dB(s)
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The 1) flow can be written as

a(t) = qo — [, aV f(q(s))ds + v2a [ AW (s)
p(t) = po — J, V(a(s))ds

The solution of one-step exact Strang’s splitting integrator with step size h can be written as

a5 = qz(h) + 176 ik +\/7fh Loe 10 g)dB(s)
P3:€_7%P2(h)+\/7f%@ (k= s)dB( )

q5(r) —q1 Jo aVf(ay(s))ds +v2a [{dW(s) (0 <71 <h)
po(r) = fo Vf(gs(s))ds

q,=qy+ 1 WPO"‘\/ifozle: -
pp=c¢ 72P0+\/7fo e 715 =9dB(s)

Therefore, we have g(h) = g5, p(h) = p5 and

dB(s)

h i (h— h h
A 1 — e V(h—s)
q(h) :\/27/ 5 dB(s) + q, —/ aVf(gy(s))ds + \/204/ dW (s)
4 0 0
42(h)
1—e % h
——— |p1— | Vf(ga(s))ds
Y 0
PQ(h)
h 1 _ g=v(h=s) h h 1—e 3 [h
o eidB(s) f/ AV f(gy(s))ds + \/204/ AW (s) — 1€ / Y f(qy(s))ds
0 0 0 Y 0
1—e s 31— e (59 l—e s h 3 h
bag VB [ B e ey By [ e 0d(s)
Y 0 0 Y 0
qq P
1—e l—e s h
=qo+——Po— (a + ) / Vf(gy(s))ds
Y Y 0
1,€vhs 31 e k-9
+1/2 / AW (s) + /2 / L — s)+\/27/ ————dB()
0

1— Y3
’ 3*2 va [ -0y
0

h h
bl = by~ [ Vfas(o)ds| + VB [ 0B
0 3

P2 (h)

n h h
=73 |e Tip, + \/ﬂ/2 e dB(s)| —e 7% / Vf(ga(s))ds + v 2’7/ e 7" 9dB(s)
0 0 2

Dy

:pf/ Vi (as(s) ds+e%f/ WE4B(s) +W/ e dB(s)
0
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It is clear that g(h), p(h) should be compared with the exact solution of HFHR at time &, which can
be written as

1— e (h=s)

1—eh b1 _ g=v(h—s)
q(h)=q0+%po—/ <6W+a>w( ))ds + V2 /dW G /76135
0

h
p(h) = ""py — / VIV f(q(s))ds + /2 / —1(h=9)4B(s)
0

Subtracting g(h), p(h) from g(h), p(h) respectively, we obtain

) — qh) = — [t 2 /th( (5)) — Vf(q(s))ds
q q = ~ o qs q

hif1—evh=s) 1 _ %
— d
+ / ( - ‘ ) V£ (q(s))ds

h h
p(h) — p(h) =~ 74 [ Vi(y(s) - VilatsDds + [ (0 < ) V(g(s)as

0 0

It should be clear now that we will need to bound the term V f(g,) — V f(q) and V f(q). Since

h
_6_72

q(r) =q, + 1# \F/ s) — oz/oer Vf(qs(s))ds + \/ﬂ/or dW (s)

g e s) r
a(r) =g+ 5 py — / (1 + a> Vf(a(s))ds +v2a / AW (s)

21_6 7(2 S)

Y Y

1 — e (r—s)

oV [ an),

we then have

b . Ty )
() — a(r) ST / V£ (as(s)) — V(g(s))ds + / 1qu(s))ds
51— ek S) — (=)
+v/2y / ! -V2y / e T aBs)

By Lemma and when 0 < h < ﬁ, we have the following for the solution of HFHR
dynamics

E| 0., (h) — xo||*] < Coh

where Cy = 5.14 {(a +7)d+h (L’)QH.%OH?} and hence

[/ [V£(a(s))] ds} <E[ / IV £(a ))H2d8+2/OTHVf(q(s))—Vf(q(O))Hst]

<8 227 q0)" + 227 [ ats) - a(0)| ]
<2trlaol + 2278 | [ ) - 9] 3]
0
<2L%r||zo|)* + 2L260/ sds
0

<L?r (2||ar:0||2 + h@g)

<L (2.33||a:0||2 +5.14(a+ v)dh) (12)
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Now E [||q2 — q||2] can be bounded as follow

E [[a.() - a(r)]

T e s ’ 2 '
g5{<7> ool + a%| [ 9 1tas(o)) - V(aten)as

51 _ (k-9 T _ e—v(r—s)

- _

+5 27]E/ ST iB(s) /eidB(s)
0 0

Y
h,2 T r 1— —y(r—s) 2 r
g5{4||:c02+0‘2L2r/0 IEHqQ(s)fq(S)HQdSqL/O <67> ds/o ]EHVf(Q(s))||2dS}

dh 2vd
+5{7+7 }

2

1 _ ,—(r—s)
+E/ LVf(q(s))ds
0

v

)

2 2
} (Cauchy-Schwartz Inequality)

+ 29E

2 3
B2 r WO 3vd
<5{4||w0||2+a2L27" [ Bl - atolf s+ 5w | [ saen ) +Zh3}
0 0
2 T
<5 {ZII%IIQ + 37dh3 L =L (2 33|20 |® + 5. 14(a+7)dh) r+a2L2r/ E||qs(s) — q(s)szs}
0

1 3vd R r
§5h2{4||a:0||2+ Ch+ =L (2 33|20 > +514(a+7)dh)}+5a2L2h/ E|\gs(s) — q(s)|| ds
0

By Gronwall’s inequality and 0 < h < we have

L/s

E [lax() - a()[] §5h2{i||$0||2+ Dy 112 (233w + 5. 14<a+v>dh)}exp{5a%2h2}

?Wdh—l— e L2 (2 33| + 5. 14(oz—|—7)dh> } e

g

1
<5h? {4“330”2 +

<5.85h% {0.28 o |* + (0.06a + 0.817)hd }

<h? {1.64\\3:0”2 + (0.36a+4.74fy)hd}. (13)
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With bounds in Equation (I2)) and (T3], we are now ready to show p; and p. For py, i.e. the order
of the mathematical expectation of deviation, we have

e | [263] - )

<[ [aw) - a) | +||E [(0) — p(1)] |

1—e 75
<la+—-—
~y

h

/0 "E[V/(g2(s) ~ Vi(a(s))] ds
h
< <a+1+§)L/O Ellas(s) — q(s)]| ds

Tl

)HE v #(a(s))]| s
<L <a+1+g) /OhIE:HqQ(s)_q(S)HdS
' (/()h st) +</oh“ﬁ(h_”—e‘”32ds>é </ [ (v s a )
(o ns ) [ (ool o 2 (5 f ot )

1+7 5 2 3
——h*L (2.33||x + 5.14(c + ~v)dh

<L(a+1.25)h? (1 29||o|| + 1/0.36 + 4.74yV/hd ) (1+7)h%L (0.45Ha:0|| + /0430 + 0‘437\/dh)

<Lh?max{a +1.25,v + 1} (1.74\|a,-0|| +(1.26v/a + 2.84\5)\/hd)

h
/ E [Vf(gs(s) = Vf(q(s))] ds
0 v

hif1—evh=s) 1 _ 7%
+ /O < - )E[Vf(q(S))] ds

H [ (et — e E v staton] o

0

h
+e 72

1— e_W(h_S) 1 — e_ﬁy%

n ’e—m—s) _

Nl=

1—ev(h=s) 1 _¢=7%

g Y

h Es
<L <a +1+ ) h? {1.64Ha:0||2 + (0.36a + 4.747)hd}2 +

The above derivation proves p; = 2 with

Cy = Lmax{a +1.25,y + 1} (1.74\\m0|| +(1.26v/a + 2.84ﬁ)\/hd) .
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We now proceed with ps, i.e. mean-square error

‘?
P

B 2
< —
_2(a+2)

h
/0 VF(as(s)) — V£(a(s))ds

E

h
E / VF(gs(s)) - VF(a(s))ds
0

2

2
+ 2 + 2

/0 ' (e - ) Vf(a(s))ds

2
h h h
<2 ((a + 5)2 + 1> L*E (/ lg,(s) — q(s)|ds> + 2/
0 0
h 2
+ 2/ ‘e*“’(hfs) e
0

h
<2 (G b 1) 22 [ Blaato) - alas + S50 [ B satnpas

1—e(h=s) 1 _ 7% ?

Y v

h
2
ds/o E||Vf(q(s))||" ds

2 N o o
1—eh=s) 1 _ 73
+2E / ( c — c ) V(q(s))ds
0 v gl

2

h
ds /O E||V/(a(s))

||2ds

h 1 2
<2 ((a +3)2+ 1) 12 {1.64]zo|l” + (0.360 + 4.747)hd } 1 + %LQ {233]@ol” +5.14(a + 7)hd} !

<L?max{(a+ 1.25)%, 1 + 42} (3.67||ac0||2 + (168 + 10.347)hd> K
The above derivation implies p, = 2 with

Oy = Lmax{a +1.25,1 +~} (1.92Ha:0|| + (1.30v/a + 3.22ﬁ)\/hd) .

D.6 LOCAL ERROR BETWEEN ALGORITHM [I] AND THE EXACT STRANG’S SPLITTING
METHOD

Lemma D.7. Assume f is L-smooth, 0 € argmingcga f(x), ie. Vf(0) = 0 and the operator

VAf grows at most linearly, i.e. ||VAf H <Gy/1 +||q|| Ifo<h< 4L,, then compared with

the exact Strang’s splitting method of HFHR dynamics, the implementable Strang’s splitting method
has local mathematical expectation of deviation of order p1 = 2 and local mean-squared error of
order py = 1.5, i.e. there exist constants C, Co > 0 such that

|E&(h) — Ez(h)|| < C1h?

(= a0

where &(h) = [‘Z(hﬂ is the solution of the exact Strang’s splitting method for HFHR with initial

|| ]) < Gyl

value xqg = {go} and (h) = BEZ%] is the one-step result of Algorithm |I| with initial value

d0

rog —
Do

, p1 = 2 and ps = 1.5. More concretely, we have

Oy = ala + 1.125)(L + G) [0.5 +0.71][ao | + (1.14v/a0 + 0.21ﬁh)m]

and

Cy = L(a +0.73) (2.30\/EQL\|330|| +(227va+ 0.12ﬁh)\/&) :
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Proof. The solution of one-step exact Strang’s splitting integrator with step size h can be written as

qs = qz(h) + 1_6,; +rfh de(s)
P3:677%P2(h)+\/7fg6 1(h=2)dB(s)

q5(r) = ‘h — Jo aVf(ga(s))ds + V2o [; dW (s) (0<r<h)
po(r) = for Vf(gs(s))ds
CI1_CI0+ 7P0‘|‘\/7f02lejY
pr= e 7ipy + v/ [ e 5-0dB(s)

and the solution of one-step implementable Strang’s splitting integrator with step size h can be
written as

—dB(s)

y(&—s)

a3 = ax(h) + +\Ff021m dB(5 + 5)

Py =e v%m >+ff e G =dB (4 +5)

Z](r): L — Jo aVf(ay)ds +V2a [ dW(s)  (0<r<h)
Do) =Py fo Vf (q1)ds

4 =gy ++ =k p0+\/*f02 L Ty g)dB(s)

pp=¢ 72p0+\/7f0 e (3)dB(s)

Note that in the implementable Strang’s splitting method, ¢ flow can be explicitly integrated and
hence q,, p; are the same as that in the exact Strang’s splitting method.

First, we will bound the deviation of mathematical expectation and mean squared error of q,(h) —
g5 (h) and py(h) — py(h). We have

{‘h(h) —qy(h) = —«a foh Vf(qy(s)) — Vf(q)ds (14)
_ h
pPo(h) —Po(h) = — fo Vf(qs(s)) — Vf(qy)ds

Square both sides of the first equation in (T4) and take expectation, we obtain
2

EH‘D(h) - (_Iz(h)H2 =a’E

h 2
<a’E (/0 ||Vf(‘I2(5)) - Vf(‘h)” d5>

N 2
<a’L’E </0 |a2(s) — a4 | ds)

h
§a2L2h/ EHQQ(S) - ‘I1H2 ds
0
Note that g, is the solution of a rescaled overdamped Langevin dynamics whose drift vector field is
aL-Lipschitz, by conditional expectation version of Lemma L for 0 < h < 777 L, <73 i 7, we have
Ellgy(h) — q, H < Coh with Cy = 5.14 {ad + h(aL)?E|q,|? } and it follows that
_ 2 ~

IEHqQ(h) — q2(h)||2 < a2L?Cyh?

Esz(h) —fJQ(h)H < L2Coh3.
Now consider py, i.e., the deviation of mathematical expectation. By Ito’s lemma, we have

q>(h) —q,(h)

= ,a/ Vf(aa(s)) — Vfiq,)ds

h
/0 Vf(aa()) — V/(gy)ds

_a / [ | eV @) asar +o [ VAfas)r o] dsas)

0
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where p is a stochastic integral term. Take expectation and norm for Equation (T3), we have
[ fax() - @um)] |

| [ =[P ranvsair - [ varae] i

h . )
Sa2/0 E[/O HVQf(fIQ(?”))H2HVf(q2(r))Hdr—|—/o HVAf(Ch(T))Hdr] ds

<a2/0hE [L/OSHqZ(r)Hdr—k/OSG(l +||q2(7")||)dr} ds
:aQ(L—s—G)/Oh/OSEHqQ(r)Hdr+a2Gh2

h s h2
<a(L+6) [ [ Elayr) — ]| + Elasldr + 0?6

<a( L+G/ / VE|aa(r) q1| +Euq1||dr+a20
h

=

h? h?
o*(L+G) Coh (L +G)— E||q1||+a
{\/co +Euq1||(L+G) 2}h2

(L +G) {VCoh +Ellqy]| +1} 2

Similarly, we haveHIE [py(h) — py(h)] H < ia(L+G) {m—&- Ellq,| + 1} h?

For po, i.e., mean-square error, we have
N 2
_ 2
EHQz(h) - (I2(h)H <a’E {/0 va((h(s)) - Vf(‘h)“ ds}

h h 9

<a’E {/0 1ds | [V f(g2(s)) = V(g dS}
h

SazL?h/ Ellgy(s) - a, | ds
0

042L2éo
<

3
<= h

Similarly we obtain E||p,(h) — p,(h) ||2 < %hg. Recall

G5 — @3 = @2(h) — @o(h) + ==L (p, (h) — by (1))
P3s — D3 = eivg(Pz(h) —po(h))

and it follows that when 0 < h < <1

4L’

E{ggjgi] <afa+1+ D) (L+G) VCoh “E”quH 2 (16)
_ 2 1 h2
q3 — g3 2 A 2 3
E (|| <, R WA S 1
[pgps} = C°<O‘+2+4>h 17
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Finally we need to bound E||q, ||* by E||z ||, to this end, we have

51 _e(s-9) ?

qo+— po+\ﬁ/ —,4B)

2
B2 h2 5 (1 _es-9
<1+ Il + (1 + Bl +20d [ (T ds
0

2
Ellq,[|” =E

y

~yd

h2
§(1+Z)E\|:B0H2+ B3 (18)

~yd

h? 9 3
:(1+Z)||330|| + h (19)

Collecting all pieces together, including (1), (T7), (T9), the definition of Cp and 0 < h <
not difficult to obtain the following

4L,, itis

E |:q3 - q3:| §01h2
P3 — D3
1
_ 2 2
E |:q3 - q3:| < 72h%
D3 — P3
with
Oy = ala + 1.125)(L + G) [0.5 0710 + (1.14v/a + 0.21ﬁh)\/hd}
and

Ca = L{a+0.73) (230VhaL ol + (2:27v/a + 0.127h)Vd)

D.7 LOCAL ERROR BETWEEN ALGORITHM[I]AND HFHR DYNAMICS

Lemma D.8. Assume f is L-smooth, 0 € argmin cpa f(x), i.e. Vf(0) = 0 and the operator

VAf grows at most linearly, i.e. ||VAf H < Gy/1 +||q|| Ifo<h< 4L,, then compared with

the HFHR dynamics, the implementable Strang’s splitting method has local weak error of order
p1 = 2 and local mean-squared error of order ps = 1.5, i.e. there exist constants C,Co > 0 such
that

|Ex(h) — E2(h)| < C1h"

(5 o —s0]F]) = car

where x(h) = {gggﬂ is the solution of HFHR with initial value xy = [Zﬂ and T(h) = [ggzg]
is the solution of the implementable Strang’s splitting with initial value xy = go ,p1 = 2 and
0

p2 = 1.5. More concretely, we have
C1 = (L4+G) max{a+1.25,y+1} [0.5a + (L1744 0.710) || + (1.26v/a + 1.140v/a + 2.32,/7) \/hd}

and

Ca = Lmax{a +1.25,7 + 1} [(1.92 + 2.30aL)Vhllao | + (2.60v/a + 3.347h) V]
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Proof. Denote by &(h) = [ggzg} the solution of the exact Strang’s splitting method with initial
value xo = {ZO] . By triangle inequality and Minkowski’s inequality, we have
0
|Ex(h) — Ez(h)| <|[Ex(h) — E&(h)|| +||E2(h) — Ez(h)]|,
1 1
_ 2\ 2 . 2\ 2 . _ 2
(]EHw(h) —z(h)|| ) < (EHm(h) —a(h)| ) n (E 2(h) — a(h)| )

By Lemma|D.6|and[D.7] we have
|Ez(h) —E&(h)|| < Cih?, |[E&(h) — E&(h)| < C1h?

(IEH:c(h) )| ) < Cont (]E ﬁ:(h)—:i(h)Hz)% < Cont
and hence
||]E:c(h)—]E:c )| <(Cy + Co)h?
(Bll=(h) - 2(h)| ) <(Cy + Co)h?
with
Cy+C <0y

A(L + G)max{a+1.25,v + 1} [0.5a + (1.74 4 0.71a) | o | + (1.26v/a + 1.14av/a + 2.32,/7) \/hd]

Co+ Cy <Cy 2 Lmax{a +1.25,7 + 1} [ (192 + 230aL)Vhl|o | + (2.60v/a + 3.34y/7h)Vd|

O

E o DOES CREATE ACCELERATION EVEN AFTER DISCRETIZATION: AN
ANALYTICAL DEMONSTRATION

If o — oo while  remains fixed, then dg = —aV f(q) + v2adW is the dominant part of the
dynamics, and in this case the role of « could be intuitively understood as to simply rescale the time
of gradient flow, which does not create any algorithmic advantage, as the timestep of discretization
has to scale like 1/« in this case. However, finite o no longer corresponds to solely a time-scaling,
but closely couples with the dynamics and creates acceleration. This is true even after the continuous
dynamics is discretized by an algorithm .

We will analytically illustrate this point by considering quadratic f. In this case, the diffusion
process remains Gaussian, and it suffices to quantify the convergence of its mean and covariance. In
fact, it can be shown that both have the same speed of convergence, and therefore for simplicity we
will only consider the mean process. Two demonstrations (with different focuses) will be provided.

Demonstration 1 (1D, v given; infinite acceleration). Consider f(z) = 22 /2, v fixed. The mean

process is
q =p—aq
p =-q-=p

Consider, for simplicity, an Euler-Maruyama discretization of the HFHR dynamics, which
coressponds to a Forward Euler discretization of the mean process (other numerical methods can
be analyzed analogously):

Qes1| _ 4 |Gk _|1—ah h
[PHJ =4 L?k] ’ A= { —h 1- Vh} ’

We will show that, unless v = 2, an appropriately chosen « will converge infinitely faster than the
case with a = 0, if both cases use the optimal h.
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To do so, let us compute A’s eigenvalues, which are

2 (2 (athEhyTTF @)

Consider the case where |« — | < 2, then the eigenvalues are a pair of complex conjugates. Their
modulus determines the speed of convergence, and it can be computed to be

VE @A RE A A (@77 = VI~ (@t )kt (LT )i

Minimizing the quadratic function gives the optimal h that ensures the fastest speed of convergence,
and the optimal h is
_a+ty
2(1+ ay)
and the optimal spectral radius is

(o +7)?
41+ ay)’

When one uses low-resolution ODE, in which o« = 0, the optimal rate is 1 — 72 /4 (note it is not
surprising that the critically damped case, i.e., 7 = 2, will give the fastest convergence).

If v # 2, the additional introduction of « can accelerate the convergence by reducing the spectral
radius. For instance, if « = 7 + 2, upon choosing the optimal h = ﬁ the optimal spectral radius
is 0 (note in this case A actually has Jordan canonical form of [8 é] and thus the discretization

converges in 2 steps instead of 1, irrespective of the initial condition).

Demonstration 2 (multi-dim, v, o and & all to be chosen; acceleration quantified in terms
of condition number). Consider quadratic f with positive definite Hessian, whose eigenvalues
arel = \; < --- < A\, = ¢ ! forsome 0 < ¢ < 1. Assume without loss of generality that
f = q¢?/2 + ¢ '¢2/2. Similar to Demonstration 1, the forward Euler discretization of the mean
process is

q1,k+1 q1,k
pPigsi| _ [A1 0] [pk a1 —ah h A — 1—ae1h h
Gri1| |0 Az |qr|’ TP | -h  1—qh|’ 27| —e'h 1-—~h
P2,k+1 P2k

(20)

We will (i) find h and ~ that lead to fastest convergence of the ULD discretization, i.e. the above
iteration with o = 0, and then (ii) constructively show the existence of h, v and « that lead to
faster convergence than the optimal one in (i) — note these may not even be the optimal choices for
HFHR, but they already lead to significant acceleration. More specifically,

(i) In a ULD setup, « = 0. It can be computed that the eigenvalues of A; and A, are respectively

1 1
5(2—hvih\/—4+72) and 5(2—h'y:|:h\/—46*1+’y2)

We now seek v > 0,h > 0 to minimize the maximum of their norms for obtaining the optimal
convergence rate. This is done in cases.

Case (i1) When v < 2, both A; and A, eigenvalues are complex conjugate pairs. To minimize the
maximum of their norms, let’s first see if their norms could be made equal.

A; eigenvalue’s norm squared x4 is
(2= h)* = W34 +7%) = 4(h = ~/2)" +4 -7 @D
Ag eigenvalue’s norm squared x4 is

(2—hy)? —h*(—4e P +92) =4 H(h—ev/2)* +4—ey? (22)
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It can be seen that for (Z1) is always strictly smaller than (22) for any ~ > 0. Therefore, the max of
the two is minimized when h = €7/2, and the corresponding max value is 4 — ey2. ~ that minimizes
this max value is v = 2. Corresponding rate of convergence is

Vv1—e.

Case (i2) When v > 2¢=1/2 poth Ay and As eigenvalues are real. Since e < 1, we can order
themx 2 as

2—hy—hy/—4+ 2 < 2—hy—hy/—4e 1 + 42 < 2—hy+h/—4de 1 + 42 < 2—hy+h\/ -4+ 7% < 2.

To minimize the max of their norms, consider cases in which the smallest of four is negative, in
which case at optimum one should have

—2-hy—hy—44+72)=2—hy+h\/—-4+~2

This gives h = 2/~ (which does verify the assumption that the smallest of four is negative). Corre-

sponding max of their norms is thus /1 — 4/42. ~ that minimizes this max value is v = 2 1/2,
which gives rate of convergence of
Vv1—e

Case (i3) When 2 < v < 2¢~1/2, A, eigenvalues are real and A, eigenvalues are complex conju-
gates. Again, the max of their norms is minimized if the norms can be made all equal.

Note A; eigenvalues cannot be of the same sign, because otherwise 2 — hy — hy/—4 + 72 =

2 — hy+ hy/—4 + ~2, which means either h = 0 or v = 2, but if v = 2 then 2 — hy + hy/—4 + 72
being equal to 2*norm of A, eigenvalue, which is /46~ 1(h — €7/2)2 + 4 — €2, leads to h = 0
again.

Therefore, the equality of norms of A, As eigenvalues means
—(2=hy—h/=4+2) =2 —hy+hy/—4+72 = Va1 (h—ey/2)2 + 4 — 72,

The first equality gives hy = 2, which, together with the second equality, gives h = +

2e
1+€”

Selecting the positive value of optimal h, we also obtain optimal v = +/2(1 + €)e~ /2, which
is < 2¢~1/2 and thus satisfying our assumption (2 < v < 2e~'/2). The corresponding rate of

convergence is thus
1 1—
3 (2—h’y+h\/—4+72> =4/ 1+€.
€

Summary of (i) Since %—;Z < /1 —¢, the ULD Euler-Maruyama discretization converges the
fastest when
2
h = lf ) v =21 +e)e V2,
€

and the corresponding discount factor of convergence (i.e. base of exponential convergence) is

1—
1/ g 6, where ¢ = 1/ with x being Hessian’s condition number. (23)
€

(ii) Now consider the HFHR setup. Let’s first state a result: when

VA2 + 823 + 422 + 2 — 2+ 1+€+3 -
’y:

0 24
2c€? + 2ce ’ @4
A2t 823 + 422 + €2 — % +1+3c+1
o= Vac2et + 8c2e3 + 4c2e? + ¢ €+ 1+ 5e+ >0, b= ce 25)
2ce? + 2ce
for any ¢ > 0 independent of e, the iteration converges with discount factor
et
—— /(1 —c¢ (1—€—|— 4c%et 4 8c%e® + (42 + 1 62—26-‘,-1). (26)
V2(1 +e) ) v )
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While the exact expression is lengthy, it can proved that the HFHR non-optimal discount factor (26)
is strictly smaller than the ULD optimal discount factor for not only small but also large €’s.

For some quantitative intuition, discount factors respectively have the following Taylor expansions
in e

2
HFHR non-optimal: 1— 2+ (Z + 2) e +0 <e3) (27)

2
ULD optimal: [ % o (63) (28)

acceleration enabled by HFHR

0.8r
S
o
S 0.6+
€
=1
04t
£
©
0.2 .
——HFHR non-optimal hyper-parameters
——ULD optimal hyper-parameters
0 \ \ \ \
0 0.2 0.4 0.6 0.8 1

€

Figure 4: Acceleration of HFHR algorithm over ULD algorithm (despite of an additional constraint
« may place on h) for multi-dimensional quadratic objectives. 1/e is the condition number.

The exact expressions of discount factors are also plotted in Fig](c = 1 was arbitrarily chosen) and
one can see acceleration for any (not necessarily small) e.

(i details) How were values in (23)) chosen? Following the idea detailed in (i), we consider a case
where A; eigenvalues are both real, As eigenvalues are complex conjugates, and all their norms are
equal. Note there are 3 more cases, namely real/real, complex/real, and complex/complex, but we
do not optimize over all cases for simplicity — the real/complex case is enough for outperforming
the optimal ULD.

This case leads to at least the following equations

tI'Al =0
2
{det A +detds =0 (29

One can solve this system of equations to obtain « and  as functions of h. Following the idea of
choosing h small enough to resolve the stiffness of the ODE

Ga =p2—ac g
{152 =—¢ g2 —p2’
pick h = ce. Then (29) gives
B VAc2et + 823 + 422+ €2 —2e+1+€e+3
L 2ce? + 2ce
B —VA2et + 823 + 422 + €2 — 2+ 1+ 3e+1
B 2ce2 + 2ce

[e%

or

VARt + 823 + 4?2 + 2 —2e+ 1+€e+3
B 2ce? + 2ce
B VA2t 8263 + 422 + €2 —2e+1+3e+1
N 2ce? + 2ce

(67
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The former is our choice (23) because it can be checked that the latter leads to det A; > 0 which
violates the assumption of a pair of plus and minus real eigenvalues.

It is possible to find optimal «, 7y, h for HFHR for the Gaussian cases. One has to minimize det Ao
under the constraint det Ao > 0 in addition to (Z9). And then do similar calculations for the other 3
cases, and then finally the best among the 4 cases. Doing so however does not give enough insights
to determine optimal hyperparameters for sampling general distributions.

F RANDOMIZED MIDPOINT DISCRETIZATION OF HFHR

F.1 THE ALGORITHM

HFHR is based on a continuous dynamics that adds HFHR corrections to the Underdamped
Langevin Dynamics (ULD). It can be turned into a sampling algorithm via either a low-order time
discretization (e.g., HFHR Algorithm [T)) or a more accurate one. To complement the main text, this
section demonstrates the latter, based on a powerful recent progress in discretizing ULD, known
as Randomized Midpoint Algorithm (RMA) (Shen & Leel 2019), and shows that the acceleration
created by the HFHR correction terms persists.

More specifically, RMA is a high-order discretization scheme for ULD that achieved a better (’)(d%)
dimension dependence of mixing time than first-order discretization of ULD, e.g., 1st-order KLMC
(Dalalyan & Riou-Durand, 2020). Although RMA is originally designed specifically for ULD only,
it is a general idea and already adapted to overdamped Langevin (He et al.,[2020). Here we show it
can be easily adapted to HFHR as well, as illustrated by the following Algorithm 2] Red highlights
algorithmic changes we made to account for the HFHR corrections of ULD.

Algorithm 2 Randomized Midpoint Algorithm from |Shen & Lee|(2019)), adapted for HFHR

1: Input: potential function f and its gradient V f, damping coefficients « and ~y, step size h,
initial condition (g, p)
procedure RMA-HFHR(f, Vf, a,v, h, gy, Do)
90
0
while not converged do
Generate an independent uniform random variable 65, ~ U (0, 1)

Generate Gaussian random vectors (W,lC 1 w3 15 w3 +1) € R3? as in (Shen & Lee,
2019, Appendix A)

k = 0 and initialize

AN AN SR A

7: Generate Gaussian random vectors B}, 1, B ; +1 € R as described by BT)
8: Qery = @ + 51— e )p — %(ekh— (1 —e_wkh)) V@) + Wi
—abyhV f(q;) + V2B,
9: dy+1 = qy + %(1 — 67Vh)pk — %h(l — er(h*G’“h))Vf(qk_,_%) + Wi_,_l —
”fhvf(Qk+§) + \/%(Ble+1 + Bf:+1)
10: Pry1 = pre " — he—W(h_gkh)Vf(qH%) +2WiL,
11: k+—k+1

12: end while
13: end procedure

The red parts basically correspond to two Euler-Maruyama time-steppings of an auxiliary dynamics
that contains only the HFHR correction terms

dg = —aV f(q)dt + V20d B, (30)

first over a 0 h timestep, and then over an h timestep. These two steps originate from an operator
splitting treatment of the full HFHR dynamics (eq[6), which is split into ULD and (30). Therefore,
it is natural to see that

h(k+6y) h(k+1)
Bl]%—&-l = / dBt, B]2€+1 :/ dBt,
hk h(k+6x)
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and therefore B,ﬁ 11 and B,i 41 are, when conditioned on 6y, centered Gaussian vectors independent
from each other and the W’s, each being d-dimensional with i.i.d. entries, and they can be generated

via
Biyy = V0khér,  Bijy = Vh—0h&i . 31)

where &}, 41 and & 41 are i.i.d. standard d-dimensional Gaussian vectors.

Remark F.1. In the original RMA (Shen & Lee, 2019, Algorithm 1), the uniform random variable
for the midpoint’s proportional location was denoted by o. However,; since we have already used this
letter for the HFHR correction coefficient, we use instead 0 to denote this uniform random variable.

Remark F.2. From the red text, it is easy to see that if « = 0, Algorithm 2| degenerates to RMA for
ULD. Nevertheless, Algorithm[2]is again just one RMA discretization of HFHR but not the only one.

F.2 NUMERICAL RESULTS: HFHR AGAIN ACCELERATES

To numerically compare the RMA discretization of HFHR dynamics and ULD dynamics
(note we don’t compare 1st-order HFHR Algorithm (1| with RMA-ULD as we’d like to com-
pare apple with apple), we conduct an experiment very similar to that in Secl6.I} with the
same nonlinear potential function. We run both RMA for ULD and RMA for HFHR with
dimension d = 10, initial value (100 x 14,04), h = 1 (chosen to be near the stabil-
ity limit of RMA-ULD), a family of v € {0.1,0.2,0.5,1,2,5,10,20,50,100} and « €
{0,0.001,0.002, 0.005, 0.01, 0.02,0.05,0.1,0.2,0.5,0.55, 0.6, 0.65,0.7,0.75,0.8,0.85,0.9,0.95, 1,
2,5,10, 20, 50,100}. For each algorithm and each set of parameter values, we run 1,000 indepen-
dent realizations to compute statistics and estimate the mean time of reaching ¢ = 0.1 neighborhood
of the target distribution. Then, for each « (including o = 0, which is the original RMA), we
optimize over v choices to get the best results. To further reduce variance, we also repeat the
experiment with 100 different random seeds.

Too large a values with which Algorithm [2] fails to reach e-neighborhood are not plotted and the
final results are shown in Figure [5] It clearly suggests that with appropriated chosen o (ov = 0.5 in
our case), RMA discretized HFHR dynamics requires fewer iterations than RMA discretized ULD,
which suggests a better iteration complexity.

e RMA
" HFHR RMA

# of iters to reach &-closeness

0 107 107 107 10°

a

Figure 5: Improvement of RMA for HFHR (Algorithm [2)) over the original RMA (for ULD) in
iteration complexity. (vertical bar = 1 std.)
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