
[Appendix materials]
xTrimoGene: An Efficient and Scalable

Representation Learner for Single-Cell RNA-Seq Data

Jing Gong1∗ Minsheng Hao12∗ Xingyi Cheng1† Xin Zeng1

Chiming Liu1 JianZhu Ma2 Xuegong Zhang2 Taifeng Wang1 Le Song13†
1 BioMap Research, California, USA
2 Tsinghua University, Beijing, China

3 Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE
{gongjing, minsheng_2022, xingyi, zengxin, chiming, taifeng, songle}@biomap.com,

{zhangxg, majianzhu}@tsinghua.edu.cn

1 scRNA-seq data collection and processing

Recently, scRNA-seq data is rapidly accumulated and mostly has been uploaded to the Gene Expres-
sion Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/geo/). We collected data from GEO
and processed data with a unified pipeline.

Downloading data and preparing raw count matrix. We first search scRNA-seq-related data sets
in GEO with multiple keywords, including "scRNA-seq", "single-cell RNA-seq", and "single-cell
RNA-seq sequencing". The search processes return a list of GSE ID from different studies. After
removing the duplicated GSE ID, we downloaded the particular expression or count matrix. Most
of the samples provide a raw count matrix. For samples with normalized expression matrices, we
converted the matrix back to a count matrix. The conversion strategy is as follows: the minimal
non-zero value in the whole normalized matrix is thought to have raw count 1, then all the other
normalized values can be converted by scaling to this minimum value.

Matrix mapping to the reference gene list. After preparing all the count matrices, we mapped the ma-
trix to our reference gene list. We downloaded the human protein-coding gene list (about 19,000) from
the HUGO Gene Nomenclature Committee (HGNC, https://www.genenames.org/download/archive/),
plus common mitochondrial genes, jointly constitute our full reference list (n = 19,264). For each
count matrix, values of those genes not mapped in the reference list are filled with zero.

Quality control. To filter low-quality samples, we only keep samples with over 200 genes expressed
(i.e., expression vector with non-zero value count > 200) for subsequent training and analysis.

Normalization. We followed the standard process in Scanpy (https://scanpy-
tutorials.readthedocs.io/en/latest/pbmc3k.html) [7] to obtain the normalized expression value. There
are two steps: (1) for each sample normalize the library size to 10,000. (2) scale the values into a log
space.

In summary, all the scRNA-seq data are collected from the Gene Expression Omnibus (GEO)
repository with a keyword searching and data retrieval process. Then the downloaded count matrices
are processed with a unified pipeline, including reference gene list mapping, quality control and
normalization. In total, we curated about 5 million scRNA-seq data for training. The full data set is
randomly split into train, validation and test sets with a ratio of 96:2:2.

∗Equal contribution. Mingsheng Hao conducted this work during his internship at BioMap.
†Correspondence to: xingyi@biomap.com, songle@biomap.com.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



2 Algorithm workflow

We take the below example to demonstrate the processing flow.

Assume the normalized expression value matrix has 2 cells (with 10 genes) as below:

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
C1 0.3 2.1 0 4.5 0 7.3 8.9 0 3.4 2.5
C2 1.1 0 0 3.4 2.3 0.7 0 0 2.9 0

First, we masked a portion of values (including zero and non-zero) and the generated matrix is as:

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
C1 [M] 2.1 0 4.5 [M] 7.3 8.9 [M] 3.4 2.5
C2 1.1 [M] [M] 3.4 2.3 [M] [M] 0 2.9 0

Then, we filter both the [M] token and zero token for each sample. The resulting matrix is as:

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
C1 2.1 4.5 7.3 8.9 3.4 2.5
C2 1.1 3.4 2.3 2.9

Next, we concatenate the rest tokens sequentially and add the [PAD] tokens to match a max-length
sample. In this step, some tokens only appear in one cell, introducing the gene inconsistency between
the two samples. The generated matrix is as:

Column1 Column2 Column3 Column4 Column5 Column6
C1 2.1(G2) 4.5(G4) 7.3(G6) 8.9(G7) 3.4(G9) 2.5(G10)
C2 1.1(G1) 3.4(G4) 2.3(G5) 2.9(G9) [PAD] [PAD]

2



3 Auto-discretization strategy evaluation

To validate the effectiveness of the expression value projection, we conducted an analysis of viewing
the weight distribution pattern for continuous values. For each value, the auto-discretization block
retrieves bucket embeddings (num=100) and combines them in a weighted manner to represent a
targeting value. Different values correspond to a particular weight vector once finished training.
Theoretically, close values have a similar weight vector distribution and distant values differ. The
results showed that the normalized weight distribution of the close values exhibited smooth transitions
and that of the distant values being clearly distinguishable (Figure 1). This supports the conclusion
that the auto-discretization strategy effectively represents continuous values with high resolution
while preserving relatively rich meaning.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0

Expression value

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
t o

f e
ac

h 
bi

n 
(n

um
=1

00
)

Figure 1: Weight distribution across bins for various expression values. The auto-discretization
strategy was applied to each expression value in the range from 0 to 10, producing a corresponding
weight vector with a length equal to the number of bins (100 in this case). The weight vectors were
normalized to sum to 1 and visualized as stacked plots.

3



4 Clustering task evaluation and data sets

Cell clustering is an essential task for single-cell research, reflecting the ability of cell embeddings
to remove noise and preserve biological signals. In the ablation experiments, we benchmarked the
models’ clustering performance on two cell-type annotated datasets.

PBMC This dataset is processed by Scanpy python library [7] and contains 2,638 cells. The cell
types are annotated by the human with known markers and cover the major immune cells including B
cells, CD4 &CD8 T cells, Monocytes, Dendritic cells, Megakaryocytes and NK cells.

Experiments and Evaluation Metric. For every single cell, the expression values are fed into
the model and the max pooling layer is applied across all genes’ output embedding to get a cell
embedding. We then perform the usual single-cell clustering analysis step on these embeddings: 1)
build the neighboring graph based on these embeddings and 2) use the Leiden algorithm to cluster the
cell into groups. Since the Leiden algorithm requires resolution rather than the number of clusters,
we used a dichotomy method to find an optimal resolution reaching the number of cell types given in
the dataset.

Several evaluation metrics are applied to access the performance of the clustering results in different
aspects, including Adjusted Rand index (ARI), Normalized Mutual Information (NMI), Homogene-
ity(HOMO), Completeness (CP), and Silhouette Coefficient (SIL). All these metrics are the higher
the better. ARI and NMI measure the similarity of the clustering results from the statistics and
information entropy theory view, respectively. HOMO and CP are intuitive metrics using conditional
entropy analysis. HOMO measures how much the sample in a cluster are similar, and CP measures
how much similar samples are put together. SIL measures the similarity of the embeddings to its
cluster member compared to other clusters.

4



5 Acceleration strategy

The attention mechanism in masked language modeling is computationally expensive for long
sequences, as time and space complexity grow quadratically along with sequence length. Though
multiple attention architectures have been proposed to reduce the complexity to near linear, it’s still
slow to train large models with billions of data. We have adopted multiple techniques to boost the
training speed as follows.

Since FP16 or BFLOAT16 Tensor Core has twice the computational throughput compared to TF32 on
NVIDIA Ampere GPU, and, additionally, FP16 training also reduces residual memory consumption,
xTrimoGene was conducted mainly with mixed-precision training strategy to optimize computational
efficiency.

Distributed Data Parallelism is another training strategy used in our work, which handles large corpus
on HPC clusters. In our setting, one single Ampere GPU provides sufficient amounts of memory for
one model replica of billions of parameters performing forward and backward passes, and gradient
accumulation is used to raise effective batch size to enhance large model training.

To scale up the model size, ZeRO-DP stage two [3] and checkpointing [1] techniques are experimen-
tally tested in our setting. The results verified that both strategies reduce the model and residual state
memory without expanding training time too much.

For the pre-trained xTrimoGene models, the memory consumption for inference with a sample of
approximately 2000 non-zero expressed genes is approximately 50GB for the xTrimoGene-100M
model and around 18GB for the xTrimoGene-10M model. It’s worth noting that, in line with
our pre-training settings, we conducted our tests using bf16 mode on an Nvidia A100 80G GPU.
xTrimoGene-100M was trained on 5 million data points across 5 epochs using 64 A100 80G GPUs,
with each epoch taking 12 hours.

5



6 Masking strategy

Table 1: Masking strategy for gene expression matrix. The gene expression matrix is masked by
selecting a predetermined number of positions for prediction. ∼ 1,100 positions, including ∼600
non-zero and ∼540 zero expressions, are masked in a matrix with ∼20,000 genes. The performance
of the model is evaluated using Mean Squared Error (MSE) loss on these masked positions.

Value Masked Unmasked Total

̸= 0 600 1,400 2,000
= 0 540 17,460 18,000

sum 1,140 18,860 20,000
(5.7%) (94.3%) (100%)

ARI NMI HOMO CP SIL
Metric

0.0

0.2

0.4

0.6

0.8

Va
lu

e

With 0 Without 0

Figure 2: Cell clustering performance for xTrimoGene model considering masking zero (With 0)
values or not (Without 0).

10% 20% 30% 40% 50% 60% 70% 80% 90%
Non-zero value masking ratio

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lu

e

ARI
NMI

HOMO
CP

SIL

Figure 3: Model performance under different mask ratios of non-zero values. The cell clustering task
is evaluated.

6



Figure 4: Cell clustering performance for xTrimoGene model with different masking zero, non-zero
value ratio.

ARI NMI HOMO CP SIL
Metric

0.2

0.0

0.2

0.4

0.6

Va
lu

e

80%,10%,10%
80%,0%,20%
80%,20%,0%

100%,0%,0%
0%,0%,100%

Figure 5: Comparison of performance for xTrimoGene model trained with different masking strategy.
percentage1, percentage2, percentage3 denote corresponding replacing probability for three types of
tokens: percentage1 for [MASK] token, percentage2 for random expression token and percentage for
original token.

7



7 Scalability

Table 2: Size and hyper-parameters of the pre-trained models. All models are set to train on 5 million
data sets and for 5 epochs.

Model name Parameter Encoder Decoder
(M) depth heads dim depth heads dim

xTrimoGene-3M 3 4 2 128 2 2 128
xTrimoGene-10M 10 4 8 256 2 4 256
xTrimoGene-100M 100 12 12 768 6 8 512

datasize: 5 million datasize: 0.5 million datasize: 1 million

Figure 6: The learning curve of pre-trained xTrimoGene models with different parameter scale. The
loss curve measures MSE for masked positions during the pre-training stage, and only the validation
set is displayed.

8



8 Evaluation on downstream tasks

8.1 Cell type annotation task

We downloaded the Zheng68K expression matrix dataset from [8] and the Segerstolpe dataset from
[5] and mapped the matrix to our reference gene list. Then, the dataset is split into training, validation
and test sets with a ratio of 8:1:1. All the methods are trained on the training set and the best model is
selected according to the performance on the validation set. Evaluation metrics (macro F1-score and
Marco precision) are calculated for individual testing sets.

In the training process, the expression matrix is fed into the encoder of the xTrimoGene model and
the gene embedding is obtained. Then we used a max-pooling layer to aggregate all gene embeddings
into one cell embedding, and used a single linear layer to predict cell types from the embeddings.

Figure 7: UMAP visualization of different models on the cell type annotation task (Zheng68K
dataset). The dot in each panel denotes a cell that is colored by cell type. The two rows denote the
ground truth and predicted cell type label, respectively.

8.2 Perturbation effect prediction

The Norman dataset is downloaded from a previous study [4]. The expression matrix data is mapped
to our reference gene list. We reproduced the results of GEARS with original codes and settings
(https://github.com/snap-stanford/GEARS). All the data processing is the same as GEARS, including
data split, pre-post sample pairing strategy and evaluation metrics calculation.

While training GEARS with xTrimoGene, the expression matrix is fed into xTrimoGene and interme-
diate context embedding is obtained. The context embedding is then input to the co-expression graph
network branch, all the other parts remain unchanged.

Table 3: The MSE of the top 20 deferentially expressed (DE) genes given by different pre-trained
models on perturbation response prediction.

Pre-trained model Total 1-gene 2-gene(seen0) 2-gene(seen1) 2-gene(seen2)

xTrimoGene 0.1983 0.1930 0.2385 0.2100 0.1286
scBERT 0.2231 0.2116 0.2581 0.2386 0.1522

8.3 Drug combination prediction

To test how xTrimoGene adapted to DeepDDS [6] for synergistic drug combination prediction, we first
reproduced the DeepDDS algorithm. Both data and original codes are downloaded from Github repos-
itory (https://github.com/Sinwang404/DeepDDs/tree/master). We use data in "new_labels_0.csv" file
for training and "independent_set" for testing. The genomic expression data are all mapped to our
reference gene list. Models are trained 5 times and evaluated on the testing set. For all metrics, the
averaged value and the standard deviation are reported. We keep the overall framework of DeepDDS

9



while testing xTrimoGene. The genomic expression matrix is fed to xTrimoGene and the intermediate
context embedding is obtained. The embedding replaces raw expression profile for MLP branch
input.

8.4 Rare cell detection

We also investigate how xTrimoGene behaves on these unseen data, we conduct the following
evaluation analysis.

We first collected the scRNA-seq data from a previous study [2], which profiles human skin squamous
cell carcinoma landscape with scRNA-seq and spatial transcriptomics technology simultaneously.
The scRNA-seq data is not present during the xTrimoGene training process. Notably, the authors
found that clustering the scRNA-seq data Figure (8, left) yields a novel cell subgroup named TSK
(Tumor-Specific Keratinocyte), which is clearly in the tumor sample but not the normal sample.

We employed the tumor scRNA-seq data to explore whether xTrimoGene is robust to distinguish
the cell subpopulations from others. The expression matrix is fed into xTrimoGene and the dumped
context embedding is used for subsequent UMAP visualization. The results show that the TSK
subgroup is clearly separated in Figure (8, right). More importantly, the two TSK subgroups are
merged with xTrimoGene, demonstrating its generalization ability to generate good cell-specific
embeddings for unseen data.

Raw gene expression xTrimoGene context embedding

Figure 8: UMAP visualization of tumor scRNA-seq data with a novel TSK subpopulation [2]. The
left panel denotes dimension reduction with raw normalized gene expression values, while the right
panel with xTrimoGene dumped context embedding.

10



9 Website deployment of xTrimoGene model

xTrimoGene has been proven advantageous in gene representation and cell context embedding
extraction. To facilitate its wide application for single-cell RNA-seq data analysis, we deployed the
xTrimoGene model within the BioMap corporation. On the website, the xTrimoGene is implemented
as a standard operator and serves multiple downstream tasks, including cell clustering, dimension
reduction and batch removal Figure (9). The interactive page is user-friendly and feasible to evaluate
performance with rich visualizations.

Figure 9: The deployment of xTrimoGene on a website is depicted in this figure. Figure A shows the
overall pipeline, which includes the following steps: (1) User-uploaded raw input undergoes prepro-
cessing and filtration through (2) quality control, (3) feeding the processed data into xTrimoGene for
(4) context embedding extraction. The model supports multiple downstream applications such as (5)
cell clustering, dimension reduction, and batch removal. The extracted expression profile can also be
directly utilized by other algorithms. Figure B provides a snapshot of a clustering task in action using
xTrimoGene’s context embeddings.

11



References
[1] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear

memory cost. CoRR, abs/1604.06174, 2016.

[2] Andrew L. Ji, Adam J. Rubin, Kim Thrane, Sizun Jiang, David L. Reynolds, Robin M. Meyers,
Margaret G. Guo, Benson M. George, Annelie Mollbrink, Joseph Bergenstråhle, Ludvig Larsson,
Yunhao Bai, Bokai Zhu, Aparna Bhaduri, Jordan M. Meyers, Xavier Rovira-Clavé, S. Tyler
Hollmig, Sumaira Z. Aasi, Garry P. Nolan, Joakim Lundeberg, and Paul A. Khavari. Multimodal
analysis of composition and spatial architecture in human squamous cell carcinoma. Cell,
182(2):497–514.e22, 2020.

[3] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. ArXiv, May 2020.

[4] Yusuf Roohani, Kexin Huang, and Jure Leskovec. Gears: Predicting transcriptional outcomes of
novel multi-gene perturbations. BioRxiv, pages 2022–07, 2022.

[5] Åsa Segerstolpe, Athanasia Palasantza, Pernilla Eliasson, Eva-Marie Andersson, Anne-Christine
Andréasson, Xiaoyan Sun, Simone Picelli, Alan Sabirsh, Maryam Clausen, Magnus K Bjursell,
David M Smith, Maria Kasper, Carina Ämmälä, and Rickard Sandberg. Single-cell transcriptome
profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab., 24(4):593–607,
October 2016.

[6] Jinxian Wang, Xuejun Liu, Siyuan Shen, Lei Deng, and Hui Liu. Deepdds: deep graph neu-
ral network with attention mechanism to predict synergistic drug combinations. Briefings in
Bioinformatics, 23(1):bbab390, 2022.

[7] F Alexander Wolf, Philipp Angerer, and Fabian J Theis. Scanpy: large-scale single-cell gene
expression data analysis. Genome biology, 19:1–5, 2018.

[8] Grace XY Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan
Wilson, Solongo B Ziraldo, Tobias D Wheeler, Geoff P McDermott, Junjie Zhu, et al. Massively
parallel digital transcriptional profiling of single cells. Nature communications, 8(1):14049,
2017.

12


	scRNA-seq data collection and processing
	Algorithm workflow
	Auto-discretization strategy evaluation
	Clustering task evaluation and data sets
	Acceleration strategy
	Masking strategy
	Scalability
	Evaluation on downstream tasks
	Cell type annotation task
	Perturbation effect prediction
	Drug combination prediction
	Rare cell detection

	Website deployment of xTrimoGene model

