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3D Gaussian Editing With A Single Image
Anonymous Author(s)

2D	Editing	to	3D

2D
Editing

2D	Editing	to	3D 2D	Editing	to	3D

Figure 1: 3D scene editing with a single image. Given a 3D scene represented by 3D Gaussians and an image edited with
2D editing tools such as PhotoShop, our method can align the underlying scene with the reference image from the specific
viewpoint for scene editing, realizing “what you see is what you get”, while maintaining overall structural stability.

ABSTRACT
The modeling and manipulation of 3D scenes captured from the
real world are pivotal in various applications, attracting growing
research interest. While previous works on editing have achieved
interesting results through manipulating 3D meshes, they often
require accurately reconstructed meshes to perform editing, which
limits their application in 3D content generation. To address this
gap, we introduce a novel single-image-driven 3D scene editing
approach based on 3D Gaussian Splatting, enabling intuitive ma-
nipulation via directly editing the content on a 2D image plane. Our
method learns to optimize the 3D Gaussians to align with an edited
version of the image rendered from a user-specified viewpoint
of the original scene. To capture long-range object deformation,
we introduce positional loss into the optimization process of 3D
Gaussian Splatting and enable gradient propagation through repa-
rameterization. To handle occluded 3D Gaussians when rendering
from the specified viewpoint, we build an anchor-based structure
and employ a coarse-to-fine optimization strategy capable of han-
dling long-range deformation while maintaining structural stability.
Furthermore, we design a novel masking strategy that adaptively
identifies non-rigid deformation regions for fine-scale modeling.
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Extensive experiments show the effectiveness of our method in
handling geometric details, long-range, and non-rigid deformation,
demonstrating superior editing flexibility and quality compared to
previous approaches.

CCS CONCEPTS
• Computing methodologies → Point-based models; Render-
ing.

KEYWORDS
3D Gaussian Splatting, Scene Editing

1 INTRODUCTION
3D scene modeling and editing emerge as crucial tools across
diverse applications such as film production, gaming, and aug-
mented/virtual reality, offering exceptional advantages. They en-
able efficient iteration and rapid prototyping, serving as a canvas for
creative expression and effective problem-solving. Due to the high
laborious cost of traditional mesh-based scene modeling, implicit
neural representations, such as neural radiance fields (NeRF), have
recently received increasing attention for their lower cost. Although
considerable efforts have been made to address the challenge of
establishing interpretable connections between visual effects and
implicit representations [8, 37, 51, 53, 55], NeRF-based methods still
face practical limitations in various applications due to their implicit
representation’s inability to facilitate explicit manipulation. To sig-
nificantly enhance the efficiency and quality of 3D scene editing,
we represent and edit 3D scenes using the emerging 3D Gaussian
Splatting (3DGS) method [22], given its explicit representation and
promising reconstruction quality.
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Prior neural scene editing methods focus on directly manipu-
lating geometry [51, 53, 55] with the assistance of 3D software,
such as Blender. These methods follow a pipeline that extracts
meshes from the learned radiance fields and utilizes the geometric
structure to guide the deformation of the 3D scene. Due to the im-
perfect reconstructed geometry, these methods struggle to handle
non-rigid deformation and fine-grained editing. Other attempts
leverage text-to-image models [2, 18] to edit both the geometry and
the texture with text prompts, which are extended to support the
manipulation of 3DGS scenes [10, 13]. However, they have a clear
limitation: users cannot control the details of the objects in the
scene. Unlike previous efforts, our approach is inspired by the way
humans observe and perceive the 3D world through 2D images. We
introduce a single-image-driven approach to editing the 3D scene,
aligning with the philosophy of “what you see is what you get.”

In a single-image-driven editing task, the user needs to provide
an edited image based on a rendering from a specified viewpoint for
the 3D scene. In our work, the 3D scene is reconstructed using 3D
Gaussian Splatting [22], and is therefore represented by a set of 3D
Gaussian functions. The edited image serves as the target to guide
the alignment andmanipulation of the 3D content. This processmay
imply long-range and non-rigid deformation and texture change of
3D objects. We formulate the editing problem as a gradient-based
optimization process utilizing 3D Gaussian representation. One
trivial solution is to employ photometric losses used in 3DGS [22]
to adjust the 3D Gaussians to minimize the difference between the
rendered image and the target image. However, these loss functions
can only produce intrinsically local derivatives, making them inad-
equate for handling long-range deformations. Drawing inspiration
from DROT [50], we introduce optimal transport into 3D Gaussian
optimization to model long-range correspondence explicitly. We
propose a positional loss to drive long-range motions and make the
overall process differentiable by reparameterization. To ensure the
geometric consistency of the objects after editing, we adopt a novel
as-rigid-as-possible (ARAP) regularization scheme that operates
on a few anchor points to capture the 3D deformation field in a
more efficient way. We also design a coarse-to-fine optimization
strategy to enhance the fidelity of the edited results. Furthermore,
motivated by the observation that objects in the same scene may
have different levels of rigidity, we introduce a novel masking strat-
egy to adaptively identify non-rigid deformation parts and release
ARAP regularization, enabling more precise modeling of geometric
details for real-world scene editing. The contributions of this paper
are summarized as follows:

• We propose the first single-image-driven 3DGaussian scene
editing method, realizing “what you see is what you get”.

• We introduce positional derivatives into 3DGS to capture
long-range deformation and enable gradient propagation
through reparameterization.

• We propose an anchor-based as-rigid-as-possible regular-
ization method and a coarse-to-fine optimization strategy
to maintain object-level geometry consistency.

• We introduce an adaptive masking strategy to identify non-
rigid deformation parts during optimization to ensure more
precise modeling.

2 RELATEDWORK
2.1 Differentiable Rendering
Differentiable rendering aims to develop differentiable rendering
methods, allowing the computation of derivatives with respect to
scene parameters for 3D reconstruction. However, the discontinu-
ities around the object silhouettes pose a significant challenge. To
address this issue, [27] introduces an edge sampling method han-
dling Dirac delta functions. SoftRas [29] blurs triangle edges with
a signed distance field, aiding gradient back-propagation. [1, 31]
approximates boundary terms via reparameterized integrals. The
most relevant work to our method is DROT [50], which integrates
Optimal Transport into differentiable rendering, explicitly model-
ing 3D motions through pixel-level correspondence in screen space.
Leveraging the correspondence, DROT extends RGB losses with po-
sitional loss, ensuring robust convergence in global and long-range
object motions.

2.2 NeRF and 3D Gaussian Editing
NeRF [34] and its variants [3–7, 15, 35, 47], and 3DGS [22] have
gained increasing attention due to their superior view synthesis
quality. There is a growing demand for human-friendly editing tools
to interact with this representation. [28, 53, 55] proposes to extract
meshes from a pre-trained NeRF and edit the 3D scene by manipu-
lating the mesh vertices. [20, 26, 37, 51] simplify the geometry struc-
ture by cages and employ a cage-based deformation pipeline for 3D
editing. [53] proposes to encode the neural implicit field with dis-
entangled geometry and texture codes on mesh vertices. However,
these methods are limited by the quality of the reconstructed geom-
etry and struggle to model non-rigid deformation. [8] mitigates this
issue by manipulating feature points, but it is laborious to deal with
a large number of feature points. On the other hand, [16, 24, 25]
decouple color bases and modify them to achieve texture change,
while failing to provide fine-grained editing guidance. [48] adopts
a teacher-student knowledge distillation scheme to achieve multi-
view appearance consistency. It only supports rigid transformations
like rotation and scaling. With the advancement of text-to-image
models [38–41], some works [2, 9, 12, 17–19, 33, 42, 43, 46] propose
to edit both the geometry and the texture by incorporating CLIP
or Diffusion Models to fine-tune NeRF with text instructions. [56]
leverages attention maps to locate editing regions. Subsequently,
[10, 13, 36, 49] extend semantic editing on NeRFs to 3D Gaussians.
However, these methods cannot perform detailed geometry and
texture editing. Other works on 3D Gaussian editing [30, 54, 57]
involve binding Gaussians to the mesh surface and using the mesh
to drive the 3D Gaussians, which are still limited by the quality of
the reconstructed meshes. [52] proposes to disentangle geometry
and texture for highly efficient texture editing.

3 PRELIMINARIES
3D Gaussian Splatting (3DGS) [22] is a recent innovation in neural
scene representation, which achieves real-time rendering via splat-
ting 3D Gaussians instead of volumetric rendering. Specifically, it
represents the scene as a set of 3D anisotropic Gaussians {𝐺𝑖 }𝑁𝑖=1,
each of which is defined by its center position 𝜇𝑖 ∈ R3, 3D covari-
ance matrix Σ𝑖 ∈ R3×3 defined in world space, opacity 𝑜𝑖 ∈ R1
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Figure 2: An overview of our method. We address the single-image-driven editing task by an iterative gradient descent process
that optimizes the 3D Gaussians to align with the reference image. To model long-range object deformation, we introduce
the positional loss. To preserve the geometric consistency of the objects, we propose an anchor-based as-rigid-as-possible
regularization scheme, a coarse-to-fine optimization strategy, and an adaptive masking strategy to identify the non-rigid
deformation parts.

and RGB color 𝑐𝑖 ∈ R3 as spherical harmonics (SH). An anisotropic
Gaussian filter 𝐺𝑖 (𝑥) can be written as

𝐺𝑖 (𝑥) = 𝑒−
1
2 (𝑥−𝜇𝑖 )

𝑇 Σ−1
𝑖 (𝑥−𝜇𝑖 ) (1)

To ensure that Σ𝑖 is always a positive semi-definite matrix dur-
ing optimization, 3DGS formulates the covariance matrix as Σ𝑖 =
𝑅𝑖𝑆𝑖𝑆

𝑇
𝑖
𝑅𝑇
𝑖
, with a 3D rotation matrix 𝑅𝑖 ∈ R3×3 represented by a

quaternion 𝑞𝑖 ∈ R4 and a scaling matrix 𝑆𝑖 represented by a 3D
vector 𝑠𝑖 ∈ R3.

When rendering an image of a specific view, 3DGS employs
the EWA splatting method [58] to splat 3D Gaussians 𝐺𝑖 (𝑥) to 2D
Gaussians𝐺 ′

𝑖
(𝑥) = exp

(
− 1
2 (𝑥 − 𝜇′

𝑖
)𝑇 Σ′−1

𝑖
(𝑥 − 𝜇′

𝑖
)
)
onto the image

plane. 𝜇′
𝑖
is the center projection on the image plane and the 2D

covariance matrix Σ′
𝑖
of the splatted 2D Gaussian is given by

Σ′𝑖 = 𝐽𝑊 Σ𝑖𝑊
𝑇 𝐽𝑇 (2)

Here, 𝐽 ∈ R2×3 is the Jacobian of the affine approximation of
the perspective transformation.𝑊 ∈ R3×3 represents the viewing
transformation. Subsequently, 3DGS employs the alpha-blending
method to aggregate the colors of Gaussians that cover the same
pixel 𝑢

𝑐 =

𝑁𝑢∑︁
𝑖=1

©«
𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 )ª®¬𝛼𝑖𝑐𝑖 (3)

where 𝑁𝑢 is the number of overlapping Gaussians, and the alpha
value 𝛼𝑖 is formulated as 𝛼𝑖 = 𝑜𝑖 ·𝐺 ′

𝑖
(𝑢).

4 METHOD
Given the 3D Gaussian-based representation of a static scene and
an edited image from a given viewpoint as the reference, the ob-
jective is to obtain the optimal 3D Gaussian parameters to align
with the reference image. The involved editing operations may
include translation, rotation, non-rigid geometric deformation, and
texture change. A trivial approach is to use the gradient descent
method to optimize the scene parameters, where the derivative of
the pixel colors with respect to the 3D Gaussian parameters is given
by the pixel-wise 𝐿1 loss and the structure similarity (SSIM) loss
as in the original 3DGS method [22]. However, these losses only
generate intrinsically local derivatives, thus becoming less effective
for optimizing long-range object translation and deformation and
constraining the editing capability.

We draw inspiration from the success of DROT [50] in inverse
rendering and introduce positional derivatives into the 3D Gaussian
editing problem to capture long-range object motion. Leveraging
the results of optimal transport (OT), we design a positional loss
to explicitly capture long-range motions and guide 3D Gaussians
movements. We back-propagate the positional derivatives to scene
parameters via reparameterization, as detailed in Section 4.1. Some
3D Gaussians may be occluded when rendering the scene from the
given viewpoint. To regularize the geometry of those occluded parts,
we propose an anchor-based as-rigid-as-possible (ARAP) regular-
ization method and adopt a coarse-to-fine optimization strategy for
better convergence in Sec. 4.2. Furthermore, we design a novel adap-
tive masking scheme to identify and model non-rigid deformation
parts in Sec. 4.3, thereby enabling better modeling of fine-grained
details. We summarize the loss functions in Sec. 4.4. Fig. 2 illustrates
the overview of our method.

4.1 Positional Derivative
To address potential long-range object translation and deformation,
our key idea involves capturing the inherent 3D deformation field
of the scene during editing. Therefore, we can explicitly guide the
deformation and translation of 3D Gaussians during the optimiza-
tion process. However, the 3D dense correspondence between the
initial scene and those of the edited scene is unknown, and thus we
cannot directly acquire the motion vector of a 3D point 𝑝 . Inspired
by DROT [50], we project the 3D field onto the image plane and
leverage optimal transport to estimate 2D motion vectors.

Specifically, let 𝑢 ∈ R2 denotes the 2D position on the image
plane, and 𝑐 ∈ R3 is its color. The vanilla 3DGS optimizes the
learnable parameters 𝜃 of 3D Gaussians with the photometric loss
L𝑐 , written as

𝜕L
𝜕𝜃

=
𝜕L𝑐

𝜕𝑐

𝜕𝑐

𝜕𝜃
(4)

We extend the photometric lossL𝑐 with a positional lossL𝑢 defined
on the 2D position 𝑢 to capture the motion of its corresponding
local geometry in the inherent 3D space, and reformulate Eq. 4 by

𝜕L
𝜕𝜃

=
𝜕L𝑐

𝜕𝑐

𝜕𝑐

𝜕𝜃
+ 𝜕L𝑢

𝜕𝑢

𝜕𝑢

𝜕𝜃
(5)

Here, L𝑢 is defined as the difference between the 2D position 𝑢

in the original state and its corresponding position in the target
state. Intuitively, −𝜕L𝑢/𝜕𝑢 indicates the movement direction of the
local geometry around the 2D projected position 𝑢 with the goal

3
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of reaching the state that matches the target image, while 𝜕𝑢/𝜕𝜃 ,
which can be further decomposed into 𝜕𝑢/𝜕𝑝 · 𝜕𝑝/𝜕𝜃 , enables the
differentiable optimization of scene parameters.

We treat the pixel centers as samples 𝑢 of the 3D field projected
to the 2D image plane and leverage optimal transport to estimate
the 2D correspondence. Then we define the transportation cost𝑤𝑢,𝑣

from pixel 𝑢 of the rendered image to pixel 𝑣 of the target image as
a weighted sum of their color distance and positional distance.

𝑤 (𝑢, 𝑣) = 𝜆 | |𝑐 (𝑢) − 𝑐 (𝑣) | |22 + (1 − 𝜆) | |𝑢 − 𝑣 | |22 (6)

where 𝜆 is used to balance the two terms. After obtaining the dense
2D correspondences by optimal transport, the positional loss L𝑢

is reformulated as the positional distance between pixel 𝑢 and its
corresponding target 𝑣 . At this point, the derivatives 𝜕L𝑢/𝜕𝑢 can
be directly deduced from the definition of L𝑢 , leaving 𝜕𝑢/𝜕𝑝 and
𝜕𝑝/𝜕𝜃 for us to calculate.

For the first term, according to Eq. 3, the color of pixel 𝑢 is com-
puted by aggregating the colors of multiple Gaussians that cover
the pixel, where the weight coefficient 𝛼𝑖

∏𝑖−1
𝑗=1 (1 − 𝛼 𝑗 ) measures

the contribution of each 2D Gaussian 𝐺 ′
𝑖
on the pixel 𝑢. To reduce

computational costs, we reuse the intersection point 𝑝𝑢,𝑖 of a 2D
Gaussian 𝐺 ′

𝑖
and a pixel 𝑢 as a sampling point when modeling the

motion field of local geometry. We subsequently calculate the effect
of positional derivatives 𝜕L𝑢/𝜕𝑢 on the sampling point 𝑝𝑢,𝑖 by

𝜕𝑢

𝜕𝑝𝑢,𝑖
= 𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) (7)

In the second term, note that the sampling operation that asso-
ciates the intersection point 𝑝𝑢,𝑖 and the properties of 2D Gaussian
𝐺 ′
𝑖
is not differentiable, breaking the back-propagation of gradients.

To back-propagate the gradients, we adopt the reparameterization
method when drawing samples from the Gaussian distributions.
Considering 𝑝𝑢,𝑖 denotes a sample from a 2D Gaussian 𝐺 ′

𝑖
with

its center 𝜇′
𝑖
and covariance matrix Σ′

𝑖
, we can view the sampling

operation as a deterministic transformation of parameters 𝜇′
𝑖
, Σ′

𝑖
and a random variable 𝜖 ∼ N(0, 𝐼 )

𝑝𝑢,𝑖 = 𝜇′𝑖 + Σ
′ 12
𝑖
𝜖 (8)

Hence, the positional derivatives with respect to the center 𝜇′
𝑖
and

covariance matrix Σ′
𝑖
of 2D Gaussian 𝐺 ′

𝑖
can be given by

𝜕𝑝𝑢,𝑖

𝜕𝜇′
𝑖

= 𝐼 ,
𝜕𝑝𝑢,𝑖

𝜕Σ′
𝑖

=
𝜕𝑝𝑢,𝑖

𝜕Σ
′ 12
𝑖

𝜕Σ
′ 12
𝑖

𝜕Σ′
𝑖

(9)

where 𝜕𝑝𝑢,𝑖/𝜕Σ
′ 12
𝑖

can be calculated using the reparameterization

in Eq.8. 𝜕Σ′
1
2

𝑖
/𝜕Σ′

𝑖
can be obtained in closed form.

Inspired by 3DGS, which uses a tile-based rasterizer to achieve
fast rendering, we propose a tile-based optimal transport matching
to achieve high efficiency. Specifically, we split the screen into
16 × 16 tiles, average the colors of pixels within the same tile,
and use Sinkhorn [11] divergence to approximate the positional
derivatives between the downsampled images. Then, we can update
the parameters of Gaussians using Eq. 7 and Eq. 9.

To demonstrate the influence of positional loss on long-range
object deformation, we visualize the derivatives with respect to the

Ours OursL1&SSIM L1&SSIM

L1&SSIMOurs Gradient directions Gradient directionsPut down the shovel

Figure 3: Visualization of the gradients with respect to the
centers of each Gaussian. The position loss can provide con-
sistent and dense gradients to move down the bulldozer’s
shove, while the photometric losses only produce intrinsi-
cally local derivatives for optimization.

centers of Gaussians and show the results in Fig. 3. Compared with
the photometric losses adopted in 3DGS, our method can accurately
determine the gradient descent direction to drive the blade of the
Bulldozer downward.

4.2 Anchor-Based Deformation
In Eq. 7, the positional derivatives vanish as the weight coefficients
go zero, thus failing to regularize occluded Gaussians at the refer-
ence view. As a result, only the visible parts of the involved objects
are affected by the edited image, leading to structural discontinuity
and breakdown. Motivated by the observation that the involved
editing operations for real-world tasks are often sparse, spatially
continuous, and locally rigid, we regularize the motions of 3D
Gaussians with a local as-rigid-as-possible (ARAP) assumption as
follows.

Larap =
1
𝑁

𝑁∑︁
𝑖

∑︁
𝑗∈K𝑖

𝜅𝑖 𝑗 | |𝑅𝑖 (𝜇𝑖 − 𝜇 𝑗 ) − (𝜇𝑖 − 𝜇 𝑗 ) | |22 (10)

Here, 𝜇𝑖 denotes the initial position of Gaussian𝐺𝑖 . 𝜇𝑖 and𝑅𝑖 present
the position and rotation at the current iteration, respectively. K𝑖

represents the K-nearest neighbors (KNN) of𝐺𝑖 and regularization
weight 𝜅𝑖 𝑗 is defined by the relative distance 𝑑𝑖 𝑗 between two Gaus-
sians, 𝐺𝑖 and 𝐺 𝑗 , using Radial Basis Function (RBF), formulated
as

𝜅𝑖 𝑗 =
�̂�𝑖 𝑗∑

𝑗∈N𝑖
�̂�𝑖 𝑗

, where �̂�𝑖 𝑗 = exp(−𝛾𝑑2𝑖 𝑗 ) (11)

where 𝛾 is a hyper-parameter.
However, the ARAP term is defined within a small local region,

generating non-zero gradients only when neighboring Gaussians
undergo rotation or translation. Consequently, a substantial number
of iterations is required to propagate regularization gradients to
all occluded parts according to the movements of the neighboring
visible parts. This can result in undesired deformation and sub-
optimal convergence during optimization. To address this issue,
we propose to derive sparse anchor points from 3D Gaussians and
then leverage them to capture the underlying 3D deformation field,
substantially reducing the number of iterations compared to directly
using 3D Gaussians.

Specifically, we voxelize the 3D scene and then compute the
mass centers of 3D Gaussians in each voxel to extract a dense point
cloud that covers the scene. We apply farthest point sampling (FPS)
on the dense point cloud to downsample 𝑁𝑎 points and treat them
as the initial anchor points {𝑎 𝑗 }𝑁𝑎

𝑗=1, where 𝑎 𝑗 ∈ R3 denotes the
learnable positions of anchor point 𝑗 and𝑁𝑎 is the number of anchor
points. Each anchor point 𝑎 𝑗 is also associated with a learnable
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Figure 4: Adaptive rigidity masks. "Distance Mask" and
"ARAP Mask" denote the learnable masks of the relative
distance regularization term and ARAP regularization term,
respectively.

rotation matrix 𝑅𝑎
𝑗
∈ R3×3 represented by a quaternion 𝑟𝑎

𝑗
∈ R4,

which can be locally interpolated to yield a dense deformation field
of the Gaussians. Instead of directly optimizing the position and
rotation of Gaussians in each iteration, we optimize the parameters
of anchor points to model the deformation field. After obtaining the
anchor points, we can derive the deformation field of the Gaussians
using linear blend skinning (LBS) [44] by locally interpolating the
transformations of their neighboring anchor points. More details
can be found in our supplementary materials.

Leveraging a set of sparse anchor points to model the complex
deformation space may not faithfully align the scene with the target
image. Therefore, we propose a coarse-to-fine optimization strategy
to enhance visual quality. In the coarse stage, we utilize an anchor-
based structure to optimize the position and rotation of anchor
points, effectively capturing long-range changes. Subsequently, in
the fine stage, we discard the anchor points and directly optimize
both geometric and color parameters of each Gaussian. This ap-
proach helps mitigate artifacts such as noise on object boundaries
and enhances the modeling of fine texture details. We employ the
as-rigid-as-possible loss function on the anchor points during the
coarse stage and on the 3D Gaussians during the fine stage.

4.3 Adaptive Rigidity Masking
In Eq. 10, ARAP assumes equal rigidity among the neighboring
Gaussians of each Gaussian. However, in the real world, different
parts of the 3D scene typically exhibit varying degrees of rigidity.
Consider a T-pose human model: if we treat the rigidity of its joints
and bones equally, undesired bending of bones may occur during
deformation. Based on this observation, we incorporate an adaptive
rigidity masking mechanism to help identify the extent of non-rigid
deformation and mitigate the effects of rigid regularization.

Formally, we introduce a learnable mask𝑚𝑖 𝑗 ∈ R to each regu-
larization weight 𝜅𝑖 𝑗 ∈ R and rewrite Eq. 11 as

𝜅𝑚𝑖 𝑗 =
�̂�𝑖 𝑗∑

𝑗∈N𝑖
�̂�𝑖 𝑗

· 𝜎 (𝑚𝑖 𝑗 ) (12)

where 𝜎 is the sigmoid function. Notably, the ARAP loss combines
both relative rotation and relative distance regularization between
Gaussians or anchor points. However, real-world object changes
sometimes involve only one of these aspects. For instance, when
we lower the blade of a Lego bulldozer, there is a relative rotation
between Gaussians near the joint, while their relative geodesic dis-
tance remains unchanged. Therefore, we propose a rotation loss and
a distance loss to provide explicit supervision on the rotations and

positions of Gaussians, respectively. We employ adaptive weights
on the regularization terms in non-rigid regions, formulated as:

Lrot =
1
𝑁

𝑁∑︁
𝑖

∑︁
𝑗∈K𝑖

𝜅𝑚
𝑟

𝑖 𝑗 | |𝑞𝑖 − 𝑞 𝑗 | |22 (13)

Ldist =
1
𝑁

𝑁∑︁
𝑖

∑︁
𝑗∈K𝑖

𝜅𝑚
𝑑

𝑖 𝑗

���|𝜇𝑖 − 𝜇 𝑗 |22 − |𝜇𝑖 − 𝜇 𝑗 |22
��� (14)

Here, 𝑚𝑑
𝑖 𝑗

∈ R and 𝑚𝑟
𝑖 𝑗

∈ R denote the learnable weight mask
applied on the Gaussians for rotation and distance regularization,
respectively.

Notably, the optimization process may fall into a trivial solution
when the rigidity mask𝑚𝑖 𝑗 ,𝑚

𝑑
𝑖 𝑗
,𝑚𝑟

𝑖 𝑗
approaches negative infinity.

Thus, we periodically reset the weight masks𝑚𝑖 𝑗 ,𝑚
𝑑
𝑖 𝑗
,𝑚𝑟

𝑖 𝑗
by taking

the maximum value between the weight and a hyper-parameter 𝜂.

𝑚𝑖 𝑗 = 𝜎−1 (max(𝜎 (𝑚𝑖 𝑗 ), 𝜂)) (15)

We visualize the learnable rigidity masks in Fig. 4, the masks of
distance regularization term for the stretched material balls, and
the masks of ARAP for the joint of microphone adaptively approach
zero after optimization, illustrating the non-rigid deformation part
in the scene.

4.4 Loss Function
In addition to the positional loss L𝑝 described in Sec. 4.1, we also
employ the photometric losses in 3DGS [22] to define the matching
loss Lmatch. We use Lmatch to generate gradients from the differ-
ences between the rendered image and the target image, written
as

Lmatch = Lp (I, Iref) + 𝜆 | |I − Iref | |1 + 𝜆SSIMLSSIM (I, Iref) (16)

For the learnable masks that adaptively identify the extent of the
non-rigid deformation of each part, we apply an L1 regularization
term to prevent degradation to zero.

Lmask =
∑︁
𝑖

∑︁
𝑗∈N𝑖

|𝜎 (𝑚𝑖 𝑗 ) − 1| (17)

The final loss of the coarse stage can be written as

L =Lmatch + 𝜆arapLarap (18)
+ 𝜆rotLrot + 𝜆distLdist + 𝜆maskLmask (19)

For the fine stage, we additionally regularize the scales of each
Gaussian in geometric editing and the colors of each Gaussian in
texture editing, written by

Lscale =
∑︁
𝑖

����exp(𝑠𝑖 )exp(𝑠𝑖 )
− 1

���� , Lcolor =
∑︁
𝑖

����𝜎 (𝑐𝑖 )𝜎 (𝑐𝑖 )
− 1

���� (20)

5 EXPERIMENT
Due to the lack of publicly available benchmarks, we conducted
quantitative experiments on the NeRF Synthetic (NS) Dataset [34]
and the 3D Biped Cartoon Dataset [32], both of which contain
the ground truth meshes of the reconstructed scenes. Specifically,
we chose a viewpoint as the reference view to render an image
for each scene in the NS dataset and the MipNeRF360 dataset. We
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Figure 5: Illustration of the optimization process for long-
range rigid transformation. Compared with 3DGS supervised
by the photometric losses, ourmethod can handle long-range
object movement well.

Edit 3DGS+ARAP Novel	view Novel	viewOurs
Figure 6: Geometric editing under different scales. Our
method achieves a consistently better editing performance,
especially on large-scale deformation.

edited them using Adobe Photoshop to construct a reproducible
benchmark for reference view alignment evaluation. The 3DBiCar
dataset contains 1,500 3D Biped Cartoon Characters, each of which
has a T-pose mesh and a posed mesh. We selected 52 characters for
evaluation and generated 50 random views of the T-pose mesh for
training 3DGS. For testing, we rendered eight surrounding images
of the posed mesh, reserving one image for editing, while the others
were utilized for novel view synthetic evaluation. We used Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM), and Learned Perceptual Image Patch Similarity (LPIPS) as
the metrics. To demonstrate the effectiveness of our method on real-
world data, we also evaluated it on 5 scenes from the Mip-NeRF 360
Dataset [4] and the Tanks & Temples Dataset [23] for qualitative
experiments. We performed single-view video tracking on 2 scenes
from the Panoptic Studio Dataset [21], given that our method can
drive the inherent 3D world to temporally consistently align with
the frame image once the initial 3D Gaussians model is provided.

5.1 Long-range Deformation
We conducted two toy experiments to demonstrate the effective-
ness and necessity of positional derivatives in handling long-range
editing operations. We initialized the first scene containing 3 ob-
jects and adjusted the content to align with the reference image.
We used the original 3DGS with the ARAP term as the baseline,
where the ARAP term maintains the structural stability. The opti-
mization process is shown in Fig.5. Leveraging the positional loss,
our method can drive objects to their target positions even if there
is no overlap between their initial states and target states, such as

Method NeRF Synthetic 3DBiCar
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS+ARAP 26.20 0.943 0.084 21.09 0.936 0.083
DROT+ARAP 20.70 0.834 0.169 15.59 0.901 0.135

Ours 35.00 0.970 0.042 24.62 0.955 0.053

Table 1: Comparisons with other methods on geometric edit-
ing. We show the average PSNR/SSIM/LPIPS for reference
view alignment on theNS dataset and novel view synthesis on
the 3DBiCar dataset. ARAP denotes the as-rigid-as-possible
regularization.

the microphone and the toy tiger. In contrast, the baseline moves
the microphone outside the screen, leading to sub-optimal conver-
gence. We also tested the robustness of our method to non-rigid
deformation under different scales. As shown in Fig.6, for short-
range deformation, both 3DGS and our method can recover the
deformation correctly. However, only our method can capture large
deformations well.

5.2 Geometry Editing
We compared our method with DROT [50], which optimizes the
position of mesh vertices obtained from NeRF2Mesh [45], and
Deforming-NeRF [51], which models deformation by manually ad-
justing the deformable cage extracted fromNeRF. As shown in Fig. 7,
our method achieves precise alignment with the reference image,
maintaining 3D consistency through the anchor-based structure
and the two-stage optimization strategy. However, for DROT, the
occluded parts require more iterations to back-propagate gradients
from visible parts, leading to structural instability and undesired de-
formation, such as in the back of the drums. Deforming-NeRF faces
limitations due to the resolution of deformable cages, particularly
struggling with tasks like stretching objects such as hot dogs.

We also demonstrate the results of scene-level editing in Fig. 8.
For scene-level editing, we first select a region of interest and render
the image from a specific perspective. Then we can apply various
2D edits and back-propagate to the underlying 3D to align with
these edits.

Since Deforming-NeRF requires manual adjustment of the cage,
which is impractical to test on a large dataset, we quantitatively
compare our method with vanilla 3DGS and DROT, and provide
the results of reference view alignment and novel view synthesis
in Tab. 1. Our method outperforms other methods in both tasks,
exhibiting a consistent and significant improvement in metrics.

5.3 Hybrid Editing
Fig. 9 illustrates hybrid editing cases where we move the black pillar
of the LEGO forward, elongate the cockpit, draw an MM logo on
the side, stretch the chair horizontally, and draw an ACM logo on
the back of it. We optimize the position and rotation of the anchors
in the coarse stage to model long-range deformation, while in the
fine stage, we refine the parameters of each Gaussian, including
both geometry and color parameters. It can be observed that even
for complex editing scenarios, our method consistently delivers
promising results, demonstrating its robustness.
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Figure 7: Geometric editing on NS dataset. Green indicates the reference view of the edited image, and blue indicates novel
views. Our method better aligns with the reference image while maintaining 3D consistency and structural stability.

Figure 8: Geometric editing on Mip-NeRF 360 Dataset. We wavy the edges of the table in the garden and slope the planks of the
truck. Our method aligns well with the reference image while maintaining 3D consistency and structural stability.

Figure 9: Hybrid geometry and texture editing. Our method
enables simultaneous editing of geometry and textures in a
single optimization process.

5.4 Single-View Video Tracking
Given the initial 3D Gaussian scene reconstructed from multi-view
images, our method enables us to use a single-view video to track
the underlying dynamic 3D scene by aligning the rendered image
with the subsequent video frames. We only use the coarse stage
and optimize the position and rotation of the anchors for fast con-
vergence. We show the reference video frame and two novel views
in Fig. 10. Our method can capture the long-range object motion
and maintain both spatial and temporal consistency, producing
promising novel view synthesis results.

5.5 Ablation Study
We conducted ablation studies on positional loss, two-stage opti-
mization, adaptive rigidity masking, and explicit supervision of
relative rotation (Eq. 13) and distance (Eq. 14). The results are sum-
marized in Table 2, providing quantitative insights into the effec-
tiveness of each component. Apart from the explicit regularization
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Figure 10: Single view video tracking. Given the initial 3D scenes reconstructed from multi-view images, our method can
capture the dynamic 3D scene using single-view video and produce consistent novel view synthesis results.

Coarse Fine Coarse Fine

Stretch the balls Distance Mask Bend the Mic ARAP Mask

Figure 11: Comparison of the optimized results after coarse
stage and fine stage. The coarse stage mainly captures long-
range translation and deformation, while the fine stage
achieves fine-grained texture and geometry reconstruction.

w/ R&D terms w/o R&D terms w/ R&D terms w/o R&D terms

Figure 12: Ablation study of the relative rotation and distance
(R&D) regularization terms.

Method NeRF Synthetic 3DBiCar
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS+ARAP 26.20 0.943 0.084 21.09 0.936 0.083
+ Position 30.99 0.953 0.064 23.42 0.946 0.065
+ Anchor 34.92 0.974 0.035 24.01 0.952 0.057
+ Mask 36.20 0.977 0.032 24.33 0.951 0.058

+ R&D(Full) 35.00 0.970 0.042 24.62 0.955 0.053

Table 2: Ablation studies of different components. "Position"
denotes the position loss computed by Optimal Transport.
"Anchor" denotes the anchor-based deformation and two-
stage optimization. "Mask" and "R&D" are the learnable rigid-
ity mask of ARAP loss and explicit regularization of relative
rotations and distances, respectively.
of relative rotations and distances, the addition of any other com-
ponents consistently leads to noticeable improvements in target
view alignment and novel view synthesis. Moreover, explicit regu-
larization helps maintain structural stability, prevents overfitting to
the reference view, and enhances the rendering quality from other
perspectives.

Fig. 11 presents the optimization results of the coarse stage and
fine stage to provide a better understanding of anchor-based defor-
mation and coarse-to-fine optimization. The coarse stage captures
long-range deformation during editing and aligns the 3D scene
roughly with the reference image, while the fine stage reduces
artifacts on the object boundaries and models fine texture details,
thereby achieving better alignment.

Additionally, we offer a visual comparison of ablating the ex-
plicit regularization term of the positions and rotations in Fig. 12.
Notably, explicitly regularizing the relative rotation and position
between two neighboring Gaussians can effectively address needle-
like problems and reduce structural errors from a new perspective.

6 CONCLUSION AND LIMITATION
We present a single-image-driven 3D scene editing approach that
enables intuitive and detailed manipulation of 3D scenes. We ad-
dress the problem through an iterative optimization process based
on 3D Gaussian Splatting. To handle long-range object translation
and deformation, we introduce positional loss into 3D Gaussian
scene editing and differentiate the process through reparameteri-
zation on 2D Gaussians. To maintain the geometric consistency of
the occluded Gaussians in the edited image, we propose an anchor-
based As-Rigid-As-Possible (ARAP) regularization and a coarse-to-
fine optimization strategy. Additionally, we design a novel rigidity
masking strategy to achieve precise modeling of fine-grained de-
tails. Experiments demonstrate our superior editing flexibility and
quality compared to previous approaches.

Our method has the following limitations. Since our method
leverages optimal transport to calculate the positional loss, it is
limited by the accuracy of pixel matching. In areas with weak tex-
ture information, where most of the rendered pixels are similar, the
Sinkhorn divergence[14] may fail to provide a correct match, thus
affecting the optimization of the underlying 3D scene. Additionally,
since our method prefers driving 3D Gaussians rather than growing
and pruning, it limits the resolution in texture editing. Disentan-
gling geometry and texture, as proposed in [52], may improve the
quality of texture editing.
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