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Supplementary Materials: 3D Gaussian Editing With A Single
Image
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CCS CONCEPTS
• Computing methodologies → Point-based models; Render-
ing.

1 IMPLEMENTATION DETAILS
All experiments are performed on a PC with an NVIDIA RTX 3090
GPU with 24GB memory. We leverage Adam optimizer [8] using
default parameters of 𝛼 = 0.02, 𝛽1 = 0.9 and 𝛽2 = 0.999 and use
the same learning rate as the original 3DGS [7] for the Gaussian
parameters, with a cosine scheduler to interpolate the learning
rate of means. We set the same learning rate and scheduler for the
anchor point as the means of 3D Gaussians and a constant learning
rate of 0.001 for all learnable masks.

1.1 Anchor Initialization
The number of anchor points has a great impact on the optimiza-
tion process. Too few anchor points limit the freedom of defor-
mation, thus hindering the alignment with the reference image.
Too many anchor points restrain the gradient from effective propa-
gation through the occluded object parts, thus slowing down the
convergence. Therefore, we choose to select a different number of
anchor points based on the geometric complexity of the scene. For
all characters in the 3DBiCar [11], we sample 800 anchor points.
For the NS dataset [12] and Mip-NeRF 360 dataset[2], we sample
different numbers according to editing operations, such as 3000
anchor points for Lego deformation and 800 anchor points for Chair
stretching. To explore the influence of the number of anchor points,
we compare the optimization results of the coarse stage under dif-
ferent numbers of anchor points in Fig. 1. Noticeably, as the number
of anchor points increases, the rendered image aligns better with
the reference image, while too many anchors lead to structural
instability.

1.2 Linear Blend Skinning
We employ an anchor-based hierarchical structure to model long-
range object motions. To be more specific, we derive the defor-
mation field of Gaussians using linear blend skinning (LBS) [14]
by locally interpolating the transformations of their neighboring
anchor points, expressed as

𝜇𝑖 =
∑︁
𝑗∈N𝑖

𝑤𝑖 𝑗 (𝑅𝑎𝑗 (𝜇𝑖 − 𝑎 𝑗 ) + 𝑎 𝑗 ) (1)

𝑞𝑖 = (
∑︁
𝑗∈N𝑖

𝑤𝑖 𝑗𝑟
𝑎
𝑗 ) ⊗ 𝑞𝑖 (2)

Here, 𝑎 𝑗 is the initial position of anchor point 𝑗 , 𝑎 𝑗 denotes the
current position, and ⊗ is the production of quaternions. For each
Gaussian 𝑖 , we use KNN search to obtain its K nearest anchor points,
denoted byN𝑖 . We compute the interpolation weight𝑤𝑖 𝑗 between a
Gaussian𝐺𝑖 and an anchor point𝐴 𝑗 with RBF [3, 13]. Consequently,

1000 3000 10000Reference

Figure 1: Non-rigid deformation results of the coarse stage
under different numbers of anchor points.

we can compute the derivatives with respect to the positions and
quaternions of anchor points.

1.3 Rigidity Mask
We regularize the overall structural stability with adaptive rigidity
constraints. All the regularization terms are defined using the Radial
Basis Function(RBF) [3, 13], where the hyper-parameter 𝛾 for RBF
is set to be 5. We periodically reset the weight mask by taking the
maximum value between the weight and a hyper-parameter 𝜂

𝑚𝑖 𝑗 = 𝜎−1 (max(𝜎 (𝑚𝑖 𝑗 ), 𝜂)) (3)

where 𝜂 is set to be 0.99. We initialize all the rigid masks to be
𝜎−1 (0.99) and reset them every 3000 iterations.

1.4 Loss Function
In our experiments, we set 𝜆1 = 3.2, 𝜆SSIM = 0.8, 𝜆ARAP = 600,
𝜆Rotation = 600, 𝜆Distance = 30 and 𝜆Mask = 0.005 in the coarse stage
and adopt 𝜆1 = 0.8, 𝜆SSIM = 0.2, 𝜆ARAP = 300, 𝜆Rotation = 30, and
𝜆Distance = 30 in the fine stage. Additionally, we add 𝜆scale = 300
and 𝜆color = 1.0 in the fine stage for geometry editing and texture
editing, respectively.

2 EXPERIMENT DETAILS
2.1 Data Preparation
For the NeRF Synthetic dataset [12] and Mip-NeRF 360 dataset [1],
we use the original train split to fit the 3D Gaussian model. We
select an image from the test split to edit through the 2D imaging
tool PhotoShop, including changing the shape of the garden table,
bending the microphone and drum stand, stretching the material
ball and hot dog, etc. For the 3DBiCar dataset [11], we use the same
perspective as in NS to render 50 images of the T-pose mesh. We
render 8 images of the posed mesh, including one front view, one
back view, two side views, and four surround views diagonally
above, as shown in Fig. 2. For the Panoptic Studio dataset [6], we
initialize the scene from the pre-trained model from [10] and then
select one video to track the subsequent frames.

2.2 Baseline
We use vanilla 3DGS [7], DROT [16], and Deforming-NeRF [17]
as baselines. DROT utilizes mesh as 3D representation and opti-
mizes the mesh vertices. For the NS dataset, we obtain the mesh
and the corresponding UV map through NeRF2Mesh[15]. For the
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Lego Drums Hotdog

Figure 2: Test views of the posed meshes in the 3DBiCar
dataset

Lego Drums Hotdog
Figure 3: Illustration of the extracted cages of Deforming-
NeRF on the NS dataset.
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Figure 4: The rendered results of the 3D scene from different
frames and different views.

3DBiCar dataset, we directly use the ground truth of the T-pose
mesh. Deforming-NeRF fits a NeRF(Plenoxels [4]) with multi-view
images, extracts the mesh through the Marching Cubes[9] algo-
rithm, and simplifies it into a cage. Then the user can deform the
NeRF by manually adjusting the deformable cage through edit-
ing software like Blender. We illustrate the cages extracted from
Deforming-NeRF in Fig. 3.

3 APPLICATION
We can use image-to-video models, AnimateAnyone [5] to generate
a video of cartoon characters from a fixed perspective. We then use
the video to drive the 3D model frame by frame, thereby generating
a dynamic 3D scene. We show results from different frames and
different perspectives in Fig. 4.
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