
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials: 3D Gaussian Editing With A Single
Image

Anonymous Author(s)

CCS CONCEPTS
• Computing methodologies → Point-based models; Render-
ing.

1 IMPLEMENTATION DETAILS
All experiments are performed on a PC with an NVIDIA RTX 3090
GPU with 24GB memory. We leverage Adam optimizer [8] using
default parameters of 𝛼 = 0.02, 𝛽1 = 0.9 and 𝛽2 = 0.999 and use
the same learning rate as the original 3DGS [7] for the Gaussian
parameters, with a cosine scheduler to interpolate the learning
rate of means. We set the same learning rate and scheduler for the
anchor point as the means of 3D Gaussians and a constant learning
rate of 0.001 for all learnable masks.

1.1 Anchor Initialization
The number of anchor points has a great impact on the optimiza-
tion process. Too few anchor points limit the freedom of defor-
mation, thus hindering the alignment with the reference image.
Too many anchor points restrain the gradient from effective propa-
gation through the occluded object parts, thus slowing down the
convergence. Therefore, we choose to select a different number of
anchor points based on the geometric complexity of the scene. For
all characters in the 3DBiCar [11], we sample 800 anchor points.
For the NS dataset [12] and Mip-NeRF 360 dataset[2], we sample
different numbers according to editing operations, such as 3000
anchor points for Lego deformation and 800 anchor points for Chair
stretching. To explore the influence of the number of anchor points,
we compare the optimization results of the coarse stage under dif-
ferent numbers of anchor points in Fig. 1. Noticeably, as the number
of anchor points increases, the rendered image aligns better with
the reference image, while too many anchors lead to structural
instability.

1.2 Linear Blend Skinning
We employ an anchor-based hierarchical structure to model long-
range object motions. To be more specific, we derive the defor-
mation field of Gaussians using linear blend skinning (LBS) [14]
by locally interpolating the transformations of their neighboring
anchor points, expressed as

𝜇𝑖 =
∑︁
𝑗∈N𝑖

𝑤𝑖 𝑗 (𝑅𝑎𝑗 (𝜇𝑖 − 𝑎 𝑗 ) + 𝑎 𝑗 ) (1)

𝑞𝑖 = (
∑︁
𝑗∈N𝑖

𝑤𝑖 𝑗𝑟
𝑎
𝑗 ) ⊗ 𝑞𝑖 (2)

Here, 𝑎 𝑗 is the initial position of anchor point 𝑗 , 𝑎 𝑗 denotes the
current position, and ⊗ is the production of quaternions. For each
Gaussian 𝑖 , we use KNN search to obtain its K nearest anchor points,
denoted byN𝑖 . We compute the interpolation weight𝑤𝑖 𝑗 between a
Gaussian𝐺𝑖 and an anchor point𝐴 𝑗 with RBF [3, 13]. Consequently,

1000 3000 10000Reference

Figure 1: Non-rigid deformation results of the coarse stage
under different numbers of anchor points.

we can compute the derivatives with respect to the positions and
quaternions of anchor points.

1.3 Rigidity Mask
We regularize the overall structural stability with adaptive rigidity
constraints. All the regularization terms are defined using the Radial
Basis Function(RBF) [3, 13], where the hyper-parameter 𝛾 for RBF
is set to be 5. We periodically reset the weight mask by taking the
maximum value between the weight and a hyper-parameter 𝜂

𝑚𝑖 𝑗 = 𝜎−1 (max(𝜎 (𝑚𝑖 𝑗 ), 𝜂)) (3)

where 𝜂 is set to be 0.99. We initialize all the rigid masks to be
𝜎−1 (0.99) and reset them every 3000 iterations.

1.4 Loss Function
In our experiments, we set 𝜆1 = 3.2, 𝜆SSIM = 0.8, 𝜆ARAP = 600,
𝜆Rotation = 600, 𝜆Distance = 30 and 𝜆Mask = 0.005 in the coarse stage
and adopt 𝜆1 = 0.8, 𝜆SSIM = 0.2, 𝜆ARAP = 300, 𝜆Rotation = 30, and
𝜆Distance = 30 in the fine stage. Additionally, we add 𝜆scale = 300
and 𝜆color = 1.0 in the fine stage for geometry editing and texture
editing, respectively.

2 EXPERIMENT DETAILS
2.1 Data Preparation
For the NeRF Synthetic dataset [12] and Mip-NeRF 360 dataset [1],
we use the original train split to fit the 3D Gaussian model. We
select an image from the test split to edit through the 2D imaging
tool PhotoShop, including changing the shape of the garden table,
bending the microphone and drum stand, stretching the material
ball and hot dog, etc. For the 3DBiCar dataset [11], we use the same
perspective as in NS to render 50 images of the T-pose mesh. We
render 8 images of the posed mesh, including one front view, one
back view, two side views, and four surround views diagonally
above, as shown in Fig. 2. For the Panoptic Studio dataset [6], we
initialize the scene from the pre-trained model from [10] and then
select one video to track the subsequent frames.

2.2 Baseline
We use vanilla 3DGS [7], DROT [16], and Deforming-NeRF [17]
as baselines. DROT utilizes mesh as 3D representation and opti-
mizes the mesh vertices. For the NS dataset, we obtain the mesh
and the corresponding UV map through NeRF2Mesh[15]. For the

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Lego Drums Hotdog

Figure 2: Test views of the posed meshes in the 3DBiCar
dataset

Lego Drums Hotdog
Figure 3: Illustration of the extracted cages of Deforming-
NeRF on the NS dataset.

Left	View Canonical	View Right	View

Fr
am

e	1
20

1000 300
0

10000Reference

Fr
am

e	6
0

Figure 4: The rendered results of the 3D scene from different
frames and different views.

3DBiCar dataset, we directly use the ground truth of the T-pose
mesh. Deforming-NeRF fits a NeRF(Plenoxels [4]) with multi-view
images, extracts the mesh through the Marching Cubes[9] algo-
rithm, and simplifies it into a cage. Then the user can deform the
NeRF by manually adjusting the deformable cage through edit-
ing software like Blender. We illustrate the cages extracted from
Deforming-NeRF in Fig. 3.

3 APPLICATION
We can use image-to-video models, AnimateAnyone [5] to generate
a video of cartoon characters from a fixed perspective. We then use
the video to drive the 3D model frame by frame, thereby generating
a dynamic 3D scene. We show results from different frames and
different perspectives in Fig. 4.

REFERENCES
[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo

Martin-Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: AMultiscale Represen-
tation for Anti-Aliasing Neural Radiance Fields. In 2021 IEEE/CVF International

Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17,
2021. IEEE, 5835–5844. https://doi.org/10.1109/ICCV48922.2021.00580

[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter
Hedman. 2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022. IEEE, 5460–5469. https://doi.org/10.
1109/CVPR52688.2022.00539

[3] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip L. Davidson, Sean Ryan
Fanello, Adarsh Kowdle, Sergio Orts-Escolano, Christoph Rhemann, David Kim,
Jonathan Taylor, Pushmeet Kohli, Vladimir Tankovich, and Shahram Izadi. 2016.
Fusion4D: real-time performance capture of challenging scenes. ACM Trans.
Graph. 35, 4 (2016), 114:1–114:13. https://doi.org/10.1145/2897824.2925969

[4] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields without Neural Net-
works. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. IEEE, 5491–5500. https:
//doi.org/10.1109/CVPR52688.2022.00542

[5] Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, and Liefeng Bo. 2023. Animate
Anyone: Consistent and Controllable Image-to-Video Synthesis for Character
Animation. CoRR abs/2311.17117 (2023). https://doi.org/10.48550/ARXIV.2311.
17117 arXiv:2311.17117

[6] Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart C. Nabbe, Iain A. Matthews, Takeo
Kanade, Shohei Nobuhara, and Yaser Sheikh. 2015. Panoptic Studio: A Massively
Multiview System for Social Motion Capture. In 2015 IEEE International Confer-
ence on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015. IEEE
Computer Society, 3334–3342. https://doi.org/10.1109/ICCV.2015.381

[7] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
2023. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Trans.
Graph. 42, 4 (2023), 139:1–139:14. https://doi.org/10.1145/3592433

[8] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[9] William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high res-
olution 3D surface construction algorithm. In Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987,
Anaheim, California, USA, July 27-31, 1987, Maureen C. Stone (Ed.). ACM, 163–169.
https://doi.org/10.1145/37401.37422

[10] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. 2023.
Dynamic 3d gaussians: Tracking by persistent dynamic view synthesis. arXiv
preprint arXiv:2308.09713 (2023).

[11] Zhongjin Luo, Shengcai Cai, Jinguo Dong, Ruibo Ming, Liangdong Qiu, Xiaohang
Zhan, and XiaoguangHan. 2023. RaBit: ParametricModeling of 3D Biped Cartoon
Characters with a Topological-Consistent Dataset. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June
17-24, 2023. IEEE, 12825–12835. https://doi.org/10.1109/CVPR52729.2023.01233

[12] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 12346), Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm (Eds.). Springer, 405–421. https://doi.org/10.1007/978-3-030-
58452-8_24

[13] Richard A. Newcombe, Dieter Fox, and Steven M. Seitz. 2015. DynamicFusion:
Reconstruction and tracking of non-rigid scenes in real-time. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June
7-12, 2015. IEEE Computer Society, 343–352. https://doi.org/10.1109/CVPR.2015.
7298631

[14] Robert W. Sumner, Johannes Schmid, and Mark Pauly. 2007. Embedded defor-
mation for shape manipulation. ACM Trans. Graph. 26, 3 (2007), 80. https:
//doi.org/10.1145/1276377.1276478

[15] Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Errui Ding, Jingdong
Wang, and Gang Zeng. 2023. Delicate Textured Mesh Recovery from NeRF via
Adaptive Surface Refinement. In IEEE/CVF International Conference on Computer
Vision, ICCV 2023, Paris, France, October 1-6, 2023. IEEE, 17693–17703. https:
//doi.org/10.1109/ICCV51070.2023.01626

[16] Jiankai Xing, Fujun Luan, Ling-Qi Yan, XuejunHu, HoudeQian, and KunXu. 2022.
Differentiable Rendering Using RGBXY Derivatives and Optimal Transport. ACM
Trans. Graph. 41, 6 (2022), 189:1–189:13. https://doi.org/10.1145/3550454.3555479

[17] Tianhan Xu and Tatsuya Harada. 2022. Deforming Radiance Fields with Cages.
In Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel,
October 23-27, 2022, Proceedings, Part XXXIII (Lecture Notes in Computer Science,
Vol. 13693), Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner (Eds.). Springer, 159–175. https://doi.org/10.1007/978-
3-031-19827-4_10

2

https://doi.org/10.1109/ICCV48922.2021.00580
https://doi.org/10.1109/CVPR52688.2022.00539
https://doi.org/10.1109/CVPR52688.2022.00539
https://doi.org/10.1145/2897824.2925969
https://doi.org/10.1109/CVPR52688.2022.00542
https://doi.org/10.1109/CVPR52688.2022.00542
https://doi.org/10.48550/ARXIV.2311.17117
https://doi.org/10.48550/ARXIV.2311.17117
https://arxiv.org/abs/2311.17117
https://doi.org/10.1109/ICCV.2015.381
https://doi.org/10.1145/3592433
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/37401.37422
https://doi.org/10.1109/CVPR52729.2023.01233
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1109/CVPR.2015.7298631
https://doi.org/10.1109/CVPR.2015.7298631
https://doi.org/10.1145/1276377.1276478
https://doi.org/10.1145/1276377.1276478
https://doi.org/10.1109/ICCV51070.2023.01626
https://doi.org/10.1109/ICCV51070.2023.01626
https://doi.org/10.1145/3550454.3555479
https://doi.org/10.1007/978-3-031-19827-4_10
https://doi.org/10.1007/978-3-031-19827-4_10

	1 Implementation Details
	1.1 Anchor Initialization
	1.2 Linear Blend Skinning
	1.3 Rigidity Mask
	1.4 Loss Function

	2 Experiment Details
	2.1 Data Preparation
	2.2 Baseline

	3 Application
	References

