
Under review as a conference paper at ICLR 2024

A ALGORITHM

Algorithm 1 FLR with HER

1: Sample the batch of transition {(st, at, st+1, sgi)}|B| in replay buffer B
2: Sample an additional goals �(st+F) from current episode with a probability of p
3: sgi �(st+F)
4: if k�(st+1)� sgik < � then
5: rt maxsg:"ksgi�sgk ↵V

l
⇡l
(st+1, sg)

6: else
7: rt �1
8: end if
9: Update Q✓ using the transition (st, at, rt, st+1, sg, sg

0)

Algorithm 2 DHRL (Lee et al., 2022)
1: Input: initial random steps ⌧randomwalk, initial steps without planning ⌧w/o graph, total training

step ⌧total, Env, low-level agent Qlo
critic,✓1 , Q

lo
graph,✓2 and ⇡

lo
�1

, high-level agent Qhi
✓3

and ⇡
hi
�2

2: Dist(s, g) := log� (1 + (1� �)Qlo
graph,✓2

(s,⇡(s, g)|g))
3: for ⌧ = 1 to ⌧total do
4: if Env.done then
5: Env.reset (episode step resets to 0)
6: end if
7: if ⌧ < ⌧randomwalk then
8: at random.uniform(high = action.high, low = action.low) C initial random

rollout
9: else if ⌧ < ⌧w/o graph then

10: at vanillaHRL(sgt = ⇡
hi
�2
(st, g) and ⇡

lo
�1
(st, sgt)) C act without planning

11: else
12: if Graph G is not initialized then
13: Create a graph G(V,E) using FPS algorithm C initialize graph
14: end if
15: if episode step(the step of the environment) % cl = 0 then
16: sgt ⇡

hi
�2
(st, g) C get subgoal

17: {wpt,1, wpt,2, · · ·wpt,k} Dijkstra0salgorithm(st, sgt) C get waypoints
18: current waypoint index n = 1
19: end if
20: if achieved wpt,n or tried more than Dist(wpt,n�1, wpt,n) to achieve wpt,n then
21: current waypoint index += 1
22: end if
23: at ⇡

lo
�1
(st, wpt,n+1) C get low-level ac-

tion
24: end if
25: Env.step(at)
26: Train low-level agent Qlo

critic,✓1 , Qlo
graph,✓2 and ⇡

lo
�1

, high-level agent Qhi
✓3

and ⇡
hi
�2

C FLR is
utilized when training low-level agents.

27: if ⌧ % graph update freq = 0 then
28: Update Graph G(V,E) using farthest point sampling (FPS) (Arthur & Vassilvitskii,

2007) algorithm
29: end if
30: end for

11

Under review as a conference paper at ICLR 2024

Figure 6: Comparision with oracle-based approach

B ADDITIONAL RESULTS

B.1 COMPARED WITH ORACLE

In this section, we compare our FLR+DHRL approach with an Oracle-based DHRL method in
the context of the specific problem domain we address. We introduce two baseline methods for
comparison: ’No rew’ and ’No HER’.

• No rew: This approach assigns a reward of -1 regardless of whether the agent reaches the
goal or not, specifically penalizing the occurrence of falling states. This design allows for
a strong penalty for falling states.

• No HER: The ’No HER’ method does not employ hindsight experience replay for falling
states in the entire trajectory. This strategy ensures that the low-level policy does not learn
trajectories leading to falling states, naturally encouraging the agent to avoid falling.

As shown in Figure 6, our FLR+DHRL approach does not precisely match the performance of the
oracle-based method but demonstrates nearly equivalent performance. We attribute this observation
to the nature of FLR, which penalizes falling states more strongly but does not explicitly incorporate
mechanisms to avoid learning from undesirable transition data, akin to the ’No HER’ method.

This analysis suggests that while imposing penalties for irreversible states is crucial for addressing
our specific problem, avoiding such states altogether may also serve as a viable strategy for problem
resolution. The FLR+DHRL approach strikes a balance between penalizing falling states and en-
couraging the avoidance of undesirable transitions, contributing to its effectiveness in the considered
problem domain.

B.2 HYPERPARAMETERS

We utilized the majority of hyperparameters exactly as employed in the previous baselines. We
experimented with varying the number of landmarks, initial rollout, and the future step in HER, as
detailed in Table 1,2, and 3. We also report our hyperparameters in Table 4

12

Under review as a conference paper at ICLR 2024

Table 1: Common hyperparameters setting of HGRL baselines

PIG DHRL HIGL
RL algorithm DDPG TD3 TD3
high-level ⌧ - 0.005 0.005

⇡h learning rate - 0.0001 0.0001
Q

h
⇡h

lr - 0.001 0.001
�
h - 0.99 0.99

high-level train freq - 10 10
low-level ⌧ 0.01 0.005 0.005

⇡l learning rate 0.0002 0.0001 0.0001
Q

l
⇡l

learning rate 0.0002 0.001 0.001
�
l 0.99 0.99 0.95

hidden layer - (256,256,256) (300,300)
number of landmarks 400 300 20-150

number of novelty landmarks - - 20-50
batch size 128 1024 128

hindsight relabelling ratio 0.8 0.8 -
hindsight future steps 150-200 150 -

Table 2: Hyperparameters for DHRL

DHRL
number of random rollout episodes 100-200

initial episodes without graph planning 75
gradual penalty transition rate 0.2

high-level train freq 10
target update freq 10
actor update freq 2

Table 3: Hyperparameters for PIG

PIG
hidden layer for actors (400,400,400,400)
hidden layer for critics (400,400,400,400,400)

Table 4: Hyperparameters for FLR

FLR
reward scale ↵ 0.1

next subgoal distance " 2
the number of sampling next subgoal 10

13

	Introduction
	Method
	Problem formulation
	Forward-looking Reward Design for Low-level Policy
	HGRL with Forward-Looking Reward

	Experiments
	Experiments Setup
	Performance and Efficiency Analysis
	Ablation study

	Conclusion
	Algorithm
	Additional Results
	Compared With Oracle
	Hyperparameters

