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A CODE REPOSITORY AND LICENSING

The code developed for this work is available at https://anonymous.4open.science/r/
norms—5F23,

B LIST OF OUR THEORETICAL RESULTS WITH THE CORRESPONDING PROOFS

Proposition 1. Given a hyperplane H := {x € R" : x"w = ~} and a point a € R", the function
T

dy(a, H) = lw_a=v] yypere % + L =1, is a nonconvex function of (w,~) for every p € NU {oc}.

llwll,r P

Proof. By definition, I“ﬁ;‘ﬁ_f’l is a convex function of (w,~) if and only if the following holds for
P

every (w1,71) and (wa,v2) € R" 1 and A € [0, 1]:
[wi @ — ] szTa—72|
[lwa | l[wa [
[(Awr + (1 = Nws) "a — (M1 + (1= A)ya))|
[Awy + (1 = Awallp '
Let a = (0,0) and consider two hyperplanes of parameters w; := (1, —
(—%, 1),772 = 1. Lety := 71 = 2. Letting A = %, Inequality (5) reads:
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Taking both sides to the p/-th power, we have 2 (2)” > 1+ (1)”. After moving 1 to the left-
hand side and multiplying both sides by 5”/, we deduce 2-2°" — 1 > 51"/, which, if valid, implies
2.2 >2.2¢ —1>5" As (3)” > 2holds for every p’ € NU {oo} (as one can see by setting

p’ to its smallest value, i.e., setting p’ := 1), Inequality (6) is proven not to hold for any choice of
p € NU {oo}. O

A + (1=

(&)

%),71 = 1 and wy =

; (6)

or, equivalently:

Lemma 1. k-HC (3 1) and k-HCy coincide. Also, k-HC,, . is quadratically homogeneous w.rt. c,
ie., OPT(k-HC(p7C)) = 02 OPT(k-HC(pJ)).

Proof. We start by showing that k-HC,=! and k-HC, are equivalent when ¢ = 1 and p = 2.
Indeed, as n points in general position fix a hyperplane in R™, only n of the n 4+ 1 parameters
in (wj,v;) € R™! are independent. Thus, ||w,;||3 = ||w;]]2 = 1 can be imposed w.l.o.g. for
all j € [k]. Relaxing ||wj|l2 = 1 as ||w;|]2 > 1is w.l.o.g. as the latter is tight in any optimal
solution—indeed, if not, a strictly better solution is found by scaling (w;, ;) by m J € [k].

Let {(w;,7;)} e[r be an optimal solution to k-HC,=°. As argued, ||w;|,» = c holds. Let now
(wf,7}) = (“%’Y),j € [k]. Such a scaled solution satisfies [|w]||,» = 1 for all j € [k] and, thus, is
feasible for k-HC,=". Its objective function value is % times the one of {(w;,¥)}je[x). Since such
a multiplicative difference is a constant, the scaled solution is optimal for k-HCEl. Thus, we have
OPT(k-HC,=°) = ¢> OPT(k-HC,="). O
Theorem 1. Let p,q € NU {oo} and ¢ > 0. The three positive scalars «(p, q), B(p,q),7(p, q)
which satisfy the congruence relationship

alp, Qllzll, < B(p, Dzllg < v(p Dllzll,  Vz eR" (7

Jorp,q € NU {oo} also satisfy
a(p, q)?
v(p, q)?

~v(p,q)

OPT(k-HC(,..)) < OPT (k-Hc(w,j(p,q))) < OPT(k-HC(, ) ®)
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Proof. The inequality
min f(x) < min f/(x) < min f’(z) )

zeX rzeX reX

holds for any three functions f, f/, f” : X — R satisfying f(z) < f'(z) < f”(x) for all z €
X C R™. Since vector norms in R™ are congruent, for every p,q € N U {oc} there are three
positive scalars «(p, q), B(p, q), v(p, q) which satisfy equation Since, by definition, dy,(a, H) =
minge g ||a—yl|p, equation|9|leads to the following congruence relationship for point-to-hyperplane
distances that holds for every hyperplane H in R™ and point a € R™:

Ol(p, q) dIJ(a’ﬂ H) S B(pa q)dq(a7 H) S P)/(pa Q) dp(a7 H) (10)

Squaring equation [10|and letting H1, ..., H; be an arbitrary choice of £ hyperplanes, another ap-
plication of equation [9|leads to

a(p,q)* min{d*(a;, H;),} < B(p, ) mln{d (ai, Hj)q} < 7(p,q)° mm{d (ai, Hy)p}. (1)
JE[K] €[]

Summing over the data points, we obtain the following surrogate inequality:

Z mln{d (a;, Hj)p}t < B(p.gq me{d (ai, Hj)g} < v(p,q Z mln{d (ai, Hj)p}

JE[K]

Applying again equation g for the choice of the optimal hyperplane equations, we de-
duce a(p,q)? OPT(k-HC,=') < B(p,q)?OPT(k-HC,=') < ~(p,q)? OPT(k-HC,=").
Multiplying through by c2 and using Lemma we obtain a(p,q)? OPT(k-HC,=¢) <
B(p,q)*> OPT(k-HC,=%) < v(p,q)?> OPT(k-HC,=). By using Lemmaone more time, we de-
duce S(p, )2 OPT(k-HC,=¢) = OPT(k—HCqZCB(“q)), which allows us to write:

a(p, q)? OPT(k-HC,=) < OPT(k-HC,Z*P9) < ~(p, q)> OPT(k-HC,=°).
Dividing through by ~(p, ¢) and applying Lemma one last time, the claim is obtained. O

Corollary 1. k-HC( 1) and k-HC(L%) satisfy:

1
— OPT(/{—HC(QJ)) < OPT(k—HC(ooyl)) < OPT(k‘HC(Q,l))
n

1
- < - 1 < - .
—OPT(k-HC(5,) < OPT(L-HC; 1)) < OPT(k-HC(s,)

Proof. We rely on the following congruence relationships:

el <
— Az el
v = n

[zll2 < ll#floe < [l]l2 [l < llz(l2-

L

vn

< LOPT(k-HC,”') <

OPT(k-HCo=') < OPT(k-HCy='). Thanks to Theoremm Fellzlls < Fxllzli < el im-
plies L OPT(k-HC,2') < 1 OPT(k-HC;2') < OPT(k-HC»>') which, due to Lemma ] is
equal to 2 OPT(k-HC,>') < OPT(k-HC; =77 ) < OPT(k-HC,>). O

Thanks to Theorem lels < lzlle < llzl2 implies

Lemma 2. Imposing min{||wl||1, vn||w||ec} > 1 coincides with accounting for each point-t-
hyperplane distance as max{d(a;, H;), ﬁdl(ai, H;)}, which translates in measuring the dis-

tance between a; and the closest point on Hj, call it y, as max{||a; — y||co, ﬁ“ai — 9|1}

Proof. In the context of point-to-hyperplane distances, min{||w||1,v/n||w||cc} = 1 implies
law; — | = Loy w; —1] We can rewrite the latter as max{1% %= |“1Twa—’7|} _
J min{l\Tth\/ﬁHMIm}' Mol Vallwlle
max{ 1% ||ZH1’Y| , o= |a|i|$|"'77|} = max{do(a;, H;), ﬁdl (a;, Hj)}. Such a multi orthogonal dis-
tance clearly stems from the norm max{]|z|| s, ﬁ llz||1}- O
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Figure 4: Sets of points satisfying ||x||o = 1 (outer) and max{||z||s, ﬁHle = 1} (inner).

Lemma 3. max{||z||oo, ﬁ [|z||1} is @ norm and it satisfies the congruence relationship

—1)2 1
1/ 1+({fl))|x||2Smax{||x||oo,ﬁnxh}suxnz Vr € R™.

Proof. Let us show that max{||:v|\oo7ﬁ||x||1} is a norm. First, it is clear that
max{||x\|oo,ﬁ|\x||1} = 0 if and only if x = 0. Second, it is also clear that
)\maX{HxHOO,ﬁHle} = max{/\||x||oo,)\ﬁ||x\|1}. Third, we must show max{||z +

Ylloos ﬁHeryHl} < max{||z||co, ﬁ|\x||1}+max{||y||oo, ﬁ”y“l} To see this, we first notice
that

12 + Ylloo < l2lloo + |[Ylloc

1H+|I<1IIH+1H|I
R IRINTINTR
Jn = iz Tyl

hold since these functions are norms. Taking the maximum of the left-hand and right-hand sides, we
have:

N R
Vi va R

To show that this implies that the triangle inequality is satisfied, we show that, for any a, b, c,d > 0,
we have max{a+c, b+d} < max{a,b}+max{c, d}. Note that a < max{a,b}, b < max{a,b},c <
max{c,d}, and d < max{c, d}. Adding the inequalities, we have: a + ¢ < max{a, b} + max{c, d}
and b + d < max{a,b} + max{c,d}. Taking the maximum of the left- and right-hand sides, we
have proven the property we sought to prove.

max{[|z + ylloo, —=[lz + yll1} < max{||z[loc + [|ylloc, —=l2ls + —=Ilyll1}-

We are now looking to prove a congruence of type

1
aof|z|lz < Bmax{[|z(|o, ﬁHfElll} <Al

for some «, 3,y > 0. We can split it as follows:

B

(67

[|l2

- <
max{||z[|oo, 77 |l2[l1}

1
allzllz < f max{]|z[]o, %Ilfﬂ\ll} &
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and
||]|2

max{||zloo, Z=llzlli}’

1 B8
m = < & — <
gmax{lalle, llell} < Allallz ¢ - <

Now, max{||z||co, ﬁHle} is a convex function (it is the maximum of two convex functions).
Hence its level curves are convex—see Figure ]

The maximum of ||x||s over max{||z||oo, ﬁ”x”l} = 1 is at the breakpoints of the border of
the level curve of the latter where the two norms are both equal to 1, i.e., where ||z||cc = 1 and
ﬁ“x”l = 1, ie, [|z]i = v/n. A) We impose z; = 1. B) We impose 1 + > ", |z;| = v/n
and assume (w.lo.g) w > 0,1+ Z?:z xzj = y/n. C) We maximize ||z||o by maximizing 1 +
di_o a3 i >y w; = /n—1. D) The Lagrangian function is: Y 7_, w} +A(3_7_, wj —y/n+1).

E) The KKTs are: (i) 2w; = —A\ (gradient of the Lagrangian equal to 0) and (ii) Z?:2 w; =
v/n — 1 (primal constraint). F) From (i), we deduce wj = f%)\. G) Plugging such a value into
(ii), we obtain: —(n — 1)%)\ = /n — 1; this implies A = 72%. H) Thus, we have w; =
2
E{f:l; D In turn: ||w|lz = \/1 +(n—-1) (Z{f:ﬁ) =,4/1+ (‘(/5:11))2. Since this quantity is
=2 B _ (Vn-1)2 FRER Y
larger than 1, we have shown e (Tl loer 2T < & =/ 1+ “G=5 This implies [lz]]2 <
n—1)2 T .
1+ %;1)) maxw|‘|‘w|7l%llxul}' Since both [[w||ec < [Jw]|2 and J|[wl]y < [[wl]2, we deduce
[zl2

max{||z||co, ﬁ“x”l} < ||z||]2 (which implies 1 =

2

). Combining the

= max{|[z[loo, 7 l2ll1}
two, we have:

1 [ (/n—1)2 1
max{||z|[oo; %Hxﬂl} <Jlzll2 <41+ WmaX{Hme %HQEHl}' (12)

Now, we multiply through by the inverse of the coefficient /1 + (‘(f 1))2 and obtain:

n—
n—1

_ lefloos —=llelh} €~ fellz < max{lal oo, —=llal|1}
— max{||7||e, —=||7 < ———lzlls < max{||7||oo, —=||7]|]1}.
(/12 v O Wokals
L Y 1+ =60
(13)
Combining the second part of with the first part of (12), we obtain:
1 1
- < —_ < .
el < max{lelle, =} < el
1+ 50—
0

Corollary 2. k-HC (1,1 enjoys the following approximation relationship:

—1)2
1/ <1 + (\(/5_1))> OPT(k-HC(gJ)) < OPT(k—HC(muhi,l)) < OPT(k-HC(m)).

Proof. A direct consequence of applying Theorem [I] to the congruence relationship derived in
Lemma[3 O

Proposition 2. Under Assumption|l| when solving k-HC (3 1) a nonzero lower bound is obtained
only after generating Q(2F("=1) nodes.

Proof. By assumption, each branching operation decides the sign of a component of w; for some
Jj € [k] by splitting (with a half-space constraint) its feasible region with a hyperplane containing the
origin. As long as the cone, call it C, obtained by intersecting such half-spaces is not pointed, the
convex hull of its intersection with the feasible region of the problem contains the origin. Thus, the
solution with (w;,v;) = 0 and x;; = 1, ¢ € [m], which coincides with assigning every data point to
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the degenerate hyperplane of index j (thus achieving a d; = 0, ¢ € [m]), is optimal regardless of the
convex envelope that is employed. Only after branching has been carried out on each component
of w; for each j € [k], the cone C' is pointed and, thus, the convex hull of its intersection with the
feasible region of the problem renders the trivial solution (w;, ;) = 0, j € [k], infeasible, leading

to a nonzero lower bound. This amounts to generating Q(2°("~1)) nodes. O

Proposition 3. Assume that the constraint ||w;||1 > 1, j € [k], is imposed and that branching takes
place on the s;;, variables first. Then, a nonzero global lower bound is calculated after generating

@(2’“(”_1)) nodes; after this, no further branching on w takes place.

1

Proof. Let s, = 4 forall h € [n], which implies w3, < § and wj, < 3. Letting w}, = w}, = 3

3
we have w;.“h +w;, =1 This feasible solution trivially satisfies the 1-norm constraint equation
with w;.rh—wj_h = wjp, = 0. Thus, (w;, ;) =0, j € [k], is optimal. By branching on a variable s,
we impose either w;;, < 0 (with s;, = 0) or w;;, > 0 (with 55, = 1). In both cases, the solution
where w;.rh =wy, = % and w;, = 0 becomes infeasible due either wjh or w;h being forced to 0,
but the solution with w;;,, = 0, for any other &’ € [n] \ {h}, remains feasible as long as branching
on it has not taken place. Thus, a nonzero lower bound is obtained only in Q(2¥("~1)) nodes. When
such an exponentially-large tree of depth k(n — 1) is complete, though, ||w;||1 > 1, j € [k], holds
in each leaf node and, thus, no further branching on w is necessary. O

Proposition 4. Assume that ||w;| e > ﬁ, J € [k, is imposed and that branching takes place on

the w;y, variables first. Then, O(nk) nodes suffice to obtain a nonzero lower bound; after this, no
further branching on w takes place.

Proof. After branching on u, for any pair j, h, the (left, w.l.o.g.) child node with u;;, = 1 satisfies
wjp, > y/n. This guarantees ||w;||oc > v/ and, thus, no further branching is needed on w; in the
descendants of the left node. Further branching operations on w; are only necessary on the right
child node where wu;;, = 0 has been imposed. By iteratively applying this reasoning, we obtain
a tree with exactly two nodes per level (except for the root node) where each left node satisfies
the ||wj||oc > +/n constraint for at least a j € [k]. Therefore, when the three has depth nk,
[|wj||lse > v/m is satisfied for all j € [k]. When such an polynomially-sized tree of depth k(n — 1)
is complete, ||wj||sc > /1, j € [k], holds in each leaf node and, thus, no further branching on w is
necessary. O

C PROOF OF THE APPROXIMATION FACTORS AND OF THEIR TIGHTNESS

We will rely on the following Lemma:
Lemma 4. Given two functions f, g : R™ — R with g surjective we have:
,mauxM :max{max{‘]cigc) :g(x)zy}}. (14)
If, forall x € R™, f(z) = f(|x] ), then:
maxﬁz max{max{f(x):g(x)zu}}. (15)

v

Proof. If g is surjective, then U,cr{z € R" : g(z) = v} = R™. We can therefore partition R"
into infinitely many subsets of type {z € R™ : g(x) = v}. An optimal solution to max,cgn %

thus corresponds to the best solution over all such subsets. The special case in Equation equation [I3]
follows by a similar argument. O

Proposition 5. The following relationships are satisfied for every x € R™:
lzllz < llzlls < vl

1
—=lzllz < llzlloo < il

and the factors \/n and ﬁ are tight.
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Proof. We are looking for four positive coefficients a1, 51, (oo, S0 that satisfy the following rela-
tionships for all x € R™:

arllzll2 < lzfli < Billzl2

Aoollzllz < f[#lloc < Boollzl2-

Assuming x # 0 as, for z = 0, oz, < ||z]ly < Bllz|l, holds for all «, 8 and for all p,q €
N U {oc}, the tightest values for a1, 81, aoo, S0 must satisfy the following relationships:

el el

b= 18 1zl Poo = 18 e

el el
L

zeR™ ||z |2 zeRm ||z|o

|l |E]

As max =l = min TET holds for all p,q € N U {cc}, we need to solve the following four
q P
problems:
51 a2l 5 mane Il
[2]]2 [2]]2
_ o Izl _ ]2
] = max Qoo = Max .
214 2o

2
llzllq

Let us consider the case of a1, ao, for which we are solving max
Lemmald] we are thus solving:

for ¢ = 1, co. By virtue of

1
g = max { L ma (ol <ol = ) |

As the maximum of a convex function (such as ||z||2) over a closed, convex set is achieved on the
border of the latter and, if we are optimizing over a polytope, over its extreme vertices, we can
w.lo.g. relax ||z||; = v into ||z||; < v.

For ay, the extreme points of {x € R™ : ||z|; < v} are of the form: ve, for all £ € [n], with

e¢ being the ¢-th canonical vector of R™. For each of them, we have ||veg|ls = Vv2 = v. Thus,

ap = max zlz =z =1
I llzllh — v )

For o, the extreme points of {z € R" : |z||ec < v} are of the form: (+v,...,=+v) for all
possible choices of +. For each of them, we have ||(+v,...,+v)|ls = Vr2n = v/n. Thus,
Qoo = max JZlz = vvin V.

2]l v

Let us now consider the case of 31 and (3., for which we are solving max H;E:HZ for g = 1,00. By
virtue of Lemma] we are thus solving:

1
6y = max {3 max (el < el = v}
IER+

veER 12
For 3, the problem reads:

1 T T 2
= —_ N = . 16
h =g {70 = 2) (10
The KKT conditions for the relaxation of the inner problem of equation [I6] obtained after dropping
the nonnegativity on z read:

Ve(elz = AzTz —v?) =0
wle =12
with A unrestricted in sign. From the first equation, we deduce © = 5. By substituting it in the
eTe

e = V2, thatis, A = % Thus, we have x = ﬁu. Since the latter

second equation, we obtain
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is nonnegative, it is an optimal solution to both the relaxation of the inner problem of equation [I6]
with z € R™ and its unrelaxed version with 2 € R’;. We thus have ||z||; = ﬁ”eHl =2 =y /n.

Jn
We conclude that 31 = # =/n.
For S, the problem reads:

Boo = max {1 max {max{xg} cale = 1/2}} .

v>0 |V z€R} (L€[n]

The optimal solutions to the inner problem are of the form ve,, where e, is a canonical vector of

R™, for which we have ||ve/||oc = v. We conclude that 3, = £ = 1. O
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