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A CODE REPOSITORY AND LICENSING

The code developed for this work is available at https://anonymous.4open.science/r/
norms-5F23.

B LIST OF OUR THEORETICAL RESULTS WITH THE CORRESPONDING PROOFS

Proposition 1. Given a hyperplane H := {x ∈ Rn : x⊤w = γ} and a point a ∈ Rn, the function
dp(a,H) = |w⊤a−γ|

∥w∥p′
, where 1

p + 1
p′ = 1, is a nonconvex function of (w, γ) for every p ∈ N ∪ {∞}.

Proof. By definition, |w⊤a−γ|
∥w∥p′

is a convex function of (w, γ) if and only if the following holds for

every (w1, γ1) and (w2, γ2) ∈ Rn+1 and λ ∈ [0, 1]:

λ
|w⊤

1 a− γ1|
∥w1∥p′

+ (1− λ)
|w⊤

2 a− γ2|
∥w2∥p′

≥

|(λw1 + (1− λ)w2)
⊤a− (λγ1 + (1− λ)γ2)|

∥λw1 + (1− λ)w2∥p′
. (5)

Let a = (0, 0) and consider two hyperplanes of parameters w1 := (1,− 1
5 ), γ1 = 1 and w2 :=

(− 1
5 , 1), γ2 = 1. Let γ := γ1 = γ2. Letting λ = 1

2 , Inequality (5) reads:
1

2

1

p′
√
1 +

(
1
5

)p′
+

1

2

1

p′
√
1 +

(
1
5

)p′
≥ 1

p′
√(

2
5

)p′
+
(
2
5

)p′
, (6)

or, equivalently:

p′

√(
2

5

)p′

+

(
2

5

)p′

≥ p′

√
1 +

(
1

5

)p′

.

Taking both sides to the p′-th power, we have 2
(
2
5

)p′

≥ 1 +
(
1
5

)p′

. After moving 1 to the left-
hand side and multiplying both sides by 5p

′
, we deduce 2 · 2p′ − 1 ≥ 5p

′
, which, if valid, implies

2 · 2p′
> 2 · 2p′ − 1 ≥ 5p

′
. As

(
5
2

)p′

> 2 holds for every p′ ∈ N ∪ {∞} (as one can see by setting
p′ to its smallest value, i.e., setting p′ := 1), Inequality (6) is proven not to hold for any choice of
p ∈ N ∪ {∞}.

Lemma 1. k-HC(2,1) and k-HC2 coincide. Also, k-HC(p,c) is quadratically homogeneous w.r.t. c,
i.e., OPT(k-HC(p,c)) = c2 OPT(k-HC(p,1)).

Proof. We start by showing that k-HC2
≥1 and k-HC2 are equivalent when c = 1 and p = 2.

Indeed, as n points in general position fix a hyperplane in Rn, only n of the n + 1 parameters
in (wj , γj) ∈ Rn+1 are independent. Thus, ||wj ||22 = ||wj ||2 = 1 can be imposed w.l.o.g. for
all j ∈ [k]. Relaxing ||wj ||2 = 1 as ||wj ||2 ≥ 1 is w.l.o.g. as the latter is tight in any optimal
solution—indeed, if not, a strictly better solution is found by scaling (wj , γj) by 1

||wj ||p′
, j ∈ [k].

Let {(wj , γj)}j∈[k] be an optimal solution to k-HCp
≥c. As argued, ∥wj∥p′ = c holds. Let now

(w′
j , γ

′
j) :=

(wj ,γ)
c , j ∈ [k]. Such a scaled solution satisfies ∥w′

j∥p′ = 1 for all j ∈ [k] and, thus, is
feasible for k-HCp

≥1. Its objective function value is 1
c2 times the one of {(wj , γ)}j∈[k]. Since such

a multiplicative difference is a constant, the scaled solution is optimal for k-HC≥1
p . Thus, we have

OPT(k-HCp
≥c) = c2 OPT(k-HCp

≥1).

Theorem 1. Let p, q ∈ N ∪ {∞} and c > 0. The three positive scalars α(p, q), β(p, q), γ(p, q)
which satisfy the congruence relationship

α(p, q)||x||p ≤ β(p, q)||x||q ≤ γ(p, q)||x||p ∀x ∈ Rn (7)
for p, q ∈ N ∪ {∞} also satisfy

α(p, q)2

γ(p, q)2
OPT(k-HC(p,c)) ≤ OPT

(
k-HC

(q,c
β(p,q)
γ(p,q)

)

)
≤ OPT(k-HC(p,c)). (8)
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Proof. The inequality
min
x∈X

f(x) ≤ min
x∈X

f ′(x) ≤ min
x∈X

f ′′(x) (9)

holds for any three functions f, f ′, f ′′ : X → R satisfying f(x) ≤ f ′(x) ≤ f ′′(x) for all x ∈
X ⊆ Rn. Since vector norms in Rn are congruent, for every p, q ∈ N ∪ {∞} there are three
positive scalars α(p, q), β(p, q), γ(p, q) which satisfy equation 7. Since, by definition, dp(a,H) =
miny∈H ||a−y||p, equation 9 leads to the following congruence relationship for point-to-hyperplane
distances that holds for every hyperplane H in Rn and point a ∈ Rn:

α(p, q) dp(a,H) ≤ β(p, q)dq(a,H) ≤ γ(p, q) dp(a,H). (10)

Squaring equation 10 and letting H1, . . . ,Hk be an arbitrary choice of k hyperplanes, another ap-
plication of equation 9 leads to

α(p, q)2 min
j∈[k]

{d2(ai, Hj)p} ≤ β(p, q)2 min
j∈[k]

{d2(ai, Hj)q} ≤ γ(p, q)2 min
j∈[k]

{d2(ai, Hj)p}. (11)

Summing over the data points, we obtain the following surrogate inequality:

α(p, q)2
m∑
i=1

min
j∈[k]

{d2(ai, Hj)p} ≤ β(p, q)2
m∑
i=1

min
j∈[k]

{d2(ai, Hj)q} ≤ γ(p, q)2
m∑
i=1

min
j∈[k]

{d2(ai, Hj)p}.

Applying again equation 9 for the choice of the optimal hyperplane equations, we de-
duce α(p, q)2 OPT(k-HCp

≥1) ≤ β(p, q)2 OPT(k-HCq
≥1) ≤ γ(p, q)2 OPT(k-HCp

≥1).
Multiplying through by c2 and using Lemma 1, we obtain α(p, q)2 OPT(k-HCp

≥c) ≤
β(p, q)2 OPT(k-HCq

≥c) ≤ γ(p, q)2 OPT(k-HCp
≥c). By using Lemma 1 one more time, we de-

duce β(p, q)2 OPT(k-HCq
≥c) = OPT(k-HCq

≥cβ(p,q)), which allows us to write:

α(p, q)2 OPT(k-HCp
≥c) ≤ OPT(k-HCq

≥cβ(p,q)) ≤ γ(p, q)2 OPT(k-HCp
≥c).

Dividing through by γ(p, q) and applying Lemma 1 one last time, the claim is obtained.

Corollary 1. k-HC(∞,1) and k-HC(1, 1√
n
) satisfy:

1

n
OPT(k-HC(2,1)) ≤ OPT(k-HC(∞,1)) ≤ OPT(k-HC(2,1))

1

n
OPT(k-HC(2,1)) ≤ OPT(k-HC(1, 1√

n
)) ≤ OPT(k-HC(2,1)).

Proof. We rely on the following congruence relationships:

1√
n
∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥2

1√
n
∥x∥2 ≤ 1√

n
∥x∥1 ≤ ∥x∥2.

Thanks to Theorem 1, 1√
n
∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥2 implies 1

n OPT(k-HC2
≥1) ≤

OPT(k-HC∞
≥1) ≤ OPT(k-HC2

≥1). Thanks to Theorem 1, 1√
n
∥x∥2 ≤ 1√

n
∥x∥1 ≤ ∥x∥2 im-

plies 1
n OPT(k-HC2

≥1) ≤ 1
n OPT(k-HC1

≥1) ≤ OPT(k-HC2
≥1) which, due to Lemma 1, is

equal to 1
n OPT(k-HC2

≥1) ≤ OPT(k-HC1
≥ 1√

n ) ≤ OPT(k-HC2
≥1).

Lemma 2. Imposing min{||w||1,
√
n||w||∞} ≥ 1 coincides with accounting for each point-t-

hyperplane distance as max{d∞(ai, Hj),
1√
n
d1(ai, Hj)}, which translates in measuring the dis-

tance between ai and the closest point on Hj , call it y, as max{||ai − y||∞, 1√
n
||ai − y||1}.

Proof. In the context of point-to-hyperplane distances, min{||w||1,
√
n||w||∞} = 1 implies

|a⊤i wj − γ| =
|a⊤

i wj−γ|
min{||w||1,

√
n||w||∞} . We can rewrite the latter as max{ |a⊤

i wj−γ|
||w||1 ,

|a⊤
i wj−γ|√
n||w||∞

} =

max{ |a⊤
i wj−γ|
||w||1 , 1√

n

|a⊤
i wj−γ|
||w||∞ } = max{d∞(ai, Hj),

1√
n
d1(ai, Hj)}. Such a multi orthogonal dis-

tance clearly stems from the norm max{||x||∞, 1√
n
||x||1}.

13
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x

y

Figure 4: Sets of points satisfying ||x||2 = 1 (outer) and max{||x||∞, 1√
n
||x||1 = 1} (inner).

Lemma 3. max{||x||∞, 1√
n
||x||1} is a norm and it satisfies the congruence relationship

1

/√
1 +

(
√
n− 1)2

(n− 1)
||x||2 ≤ max{||x||∞,

1√
n
||x||1} ≤ ||x||2 ∀x ∈ Rn.

Proof. Let us show that max{||x||∞, 1√
n
||x||1} is a norm. First, it is clear that

max{||x||∞, 1√
n
||x||1} = 0 if and only if x = 0. Second, it is also clear that

λmax{||x||∞, 1√
n
||x||1} = max{λ||x||∞, λ 1√

n
||x||1}. Third, we must show max{||x +

y||∞, 1√
n
||x+y||1} ≤ max{||x||∞, 1√

n
||x||1}+max{||y||∞, 1√

n
||y||1}. To see this, we first notice

that

||x+ y||∞ ≤ ||x||∞ + ||y||∞
1√
n
||x+ y||1 ≤ 1√

n
||x||1 +

1√
n
||y||1

hold since these functions are norms. Taking the maximum of the left-hand and right-hand sides, we
have:

max{||x+ y||∞,
1√
n
||x+ y||1} ≤ max{||x||∞ + ||y||∞,

1√
n
||x||1 +

1√
n
||y||1}.

To show that this implies that the triangle inequality is satisfied, we show that, for any a, b, c, d ≥ 0,
we have max{a+c, b+d} ≤ max{a, b}+max{c, d}. Note that a ≤ max{a, b}, b ≤ max{a, b}, c ≤
max{c, d}, and d ≤ max{c, d}. Adding the inequalities, we have: a+ c ≤ max{a, b}+max{c, d}
and b + d ≤ max{a, b} + max{c, d}. Taking the maximum of the left- and right-hand sides, we
have proven the property we sought to prove.

We are now looking to prove a congruence of type

α||x||2 ≤ βmax{||x||∞,
1√
n
||x||1} ≤ γ||x||2

for some α, β, γ ≥ 0. We can split it as follows:

α||x||2 ≤ βmax{||x||∞,
1√
n
||x||1} ⇔ ||x||2

max{||x||∞, 1√
n
||x||1}

≤ β

α

14
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and

βmax{||x||∞,
1√
n
||x||1} ≤ γ||x||2 ⇔ β

γ
≤ ||x||2

max{||x||∞, 1√
n
||x||1}

.

Now, max{||x||∞, 1√
n
||x||1} is a convex function (it is the maximum of two convex functions).

Hence its level curves are convex—see Figure 4.

The maximum of ||x||2 over max{||x||∞, 1√
n
||x||1} = 1 is at the breakpoints of the border of

the level curve of the latter where the two norms are both equal to 1, i.e., where ||x||∞ = 1 and
1√
n
||x||1 = 1, i.e., ||x||1 =

√
n. A) We impose x1 = 1. B) We impose 1 +

∑n
j=2 |xj | =

√
n

and assume (w.l.o.g.) w ≥ 0, 1 +
∑n

j=2 xj =
√
n. C) We maximize ||x||2 by maximizing 1 +∑n

j=2 x
2
j :

∑n
j=2 wj =

√
n−1. D) The Lagrangian function is:

∑n
j=2 w

2
j +λ(

∑n
j=2 wj−

√
n+1).

E) The KKTs are: (i) 2wj = −λ (gradient of the Lagrangian equal to 0) and (ii)
∑n

j=2 wj =√
n − 1 (primal constraint). F) From (i), we deduce wj = − 1

2λ. G) Plugging such a value into
(ii), we obtain: −(n − 1) 12λ =

√
n − 1; this implies λ = −2

√
n−1

(n−1) . H) Thus, we have wj =

√
n−1

(n−1) . I) In turn: ||w||2 =

√
1 + (n− 1)

(√
n−1

(n−1)

)2

=
√
1 + (

√
n−1)2

(n−1) . Since this quantity is

larger than 1, we have shown ||x||2
max{||x||∞, 1√

n
||x||1}

≤ β
α =

√
1 + (

√
n−1)2

(n−1) . This implies ||x||2 ≤√
1 + (

√
n−1)2

(n−1)
||x||2

max{||x||∞, 1√
n
||x||1}

. Since both ||w||∞ ≤ ||w||2 and 1√
n
||w||1 ≤ ||w||2, we deduce

max{||x||∞, 1√
n
||x||1} ≤ ||x||2 (which implies 1 = β

γ ≤ ||x||2
max{||x||∞, 1√

n
||x||1}

). Combining the

two, we have:

max{||x||∞,
1√
n
||x||1} ≤ ||x||2 ≤

√
1 +

(
√
n− 1)2

(n− 1)
max{||x||∞,

1√
n
||x||1}. (12)

Now, we multiply through by the inverse of the coefficient
√

1 + (
√
n−1)2

(n−1) and obtain:

1√
1 + (

√
n−1)2

(n−1)

max{||x||∞,
1√
n
||x||1} ≤ 1√

1 + (
√
n−1)2

(n−1)

||x||2 ≤ max{||x||∞,
1√
n
||x||1}.

(13)
Combining the second part of (13) with the first part of (12), we obtain:

1√
1 + (

√
n−1)2

(n−1)

||x||2 ≤ max{||x||∞,
1√
n
||x||1} ≤ ||x||2.

Corollary 2. k-HC(multi,1) enjoys the following approximation relationship:

1
/(

1 +
(
√
n− 1)2

(n− 1)

)
OPT(k-HC(2,1)) ≤ OPT(k-HC(multi,1)) ≤ OPT(k-HC(2,1)).

Proof. A direct consequence of applying Theorem 1 to the congruence relationship derived in
Lemma 3.

Proposition 2. Under Assumption 1, when solving k-HC(2,1) a nonzero lower bound is obtained
only after generating Ω(2k(n−1)) nodes.

Proof. By assumption, each branching operation decides the sign of a component of wj for some
j ∈ [k] by splitting (with a half-space constraint) its feasible region with a hyperplane containing the
origin. As long as the cone, call it C, obtained by intersecting such half-spaces is not pointed, the
convex hull of its intersection with the feasible region of the problem contains the origin. Thus, the
solution with (wj , γj) = 0 and xij = 1, i ∈ [m], which coincides with assigning every data point to

15
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the degenerate hyperplane of index j (thus achieving a di = 0, i ∈ [m]), is optimal regardless of the
convex envelope that is employed. Only after branching has been carried out on each component
of wj for each j ∈ [k], the cone C is pointed and, thus, the convex hull of its intersection with the
feasible region of the problem renders the trivial solution (wj , γj) = 0, j ∈ [k], infeasible, leading
to a nonzero lower bound. This amounts to generating Ω(2k(n−1)) nodes.

Proposition 3. Assume that the constraint ∥wj∥1 ≥ 1, j ∈ [k], is imposed and that branching takes
place on the sjh variables first. Then, a nonzero global lower bound is calculated after generating
Θ(2k(n−1)) nodes; after this, no further branching on w takes place.

Proof. Let sjh = 1
2 for all h ∈ [n], which implies w+

jh ≤ 1
2 and w−

jh ≤ 1
2 . Letting w+

jh = w−
jh = 1

2 ,
we have w+

jh + w−
jh = 1. This feasible solution trivially satisfies the 1-norm constraint equation 3d

with w+
jh−w−

jh = wjh = 0. Thus, (wj , γj) = 0, j ∈ [k], is optimal. By branching on a variable sjh,
we impose either wjh ≤ 0 (with sjh = 0) or wjh ≥ 0 (with sjh = 1). In both cases, the solution
where w+

jh = w−
jh = 1

2 and wjh = 0 becomes infeasible due either w+
jh or w−

jh being forced to 0,
but the solution with wjh′ = 0, for any other h′ ∈ [n] \ {h}, remains feasible as long as branching
on it has not taken place. Thus, a nonzero lower bound is obtained only in Ω(2k(n−1)) nodes. When
such an exponentially-large tree of depth k(n − 1) is complete, though, ∥wj∥1 ≥ 1, j ∈ [k], holds
in each leaf node and, thus, no further branching on w is necessary.

Proposition 4. Assume that ∥wj∥∞ ≥ 1√
n

, j ∈ [k], is imposed and that branching takes place on
the ujh variables first. Then, O(nk) nodes suffice to obtain a nonzero lower bound; after this, no
further branching on w takes place.

Proof. After branching on ujh for any pair j, h, the (left, w.l.o.g.) child node with ujh = 1 satisfies
wjh ≥

√
n. This guarantees ||wj ||∞ ≥

√
n and, thus, no further branching is needed on wj in the

descendants of the left node. Further branching operations on wj are only necessary on the right
child node where ujh = 0 has been imposed. By iteratively applying this reasoning, we obtain
a tree with exactly two nodes per level (except for the root node) where each left node satisfies
the ||wj ||∞ ≥

√
n constraint for at least a j ∈ [k]. Therefore, when the three has depth nk,

||wj ||∞ ≥
√
n is satisfied for all j ∈ [k]. When such an polynomially-sized tree of depth k(n− 1)

is complete, ∥wj∥∞ ≥
√
n, j ∈ [k], holds in each leaf node and, thus, no further branching on w is

necessary.

C PROOF OF THE APPROXIMATION FACTORS AND OF THEIR TIGHTNESS

We will rely on the following Lemma:
Lemma 4. Given two functions f, g : Rn → R with g surjective we have:

max
x∈Rn

f(x)

g(x)
= max

ν∈R

{
max
x∈Rn

{
f(x)

ν
: g(x) = ν

}}
. (14)

If, for all x ∈ Rn, f(x) = f(|x|) and g(x) = g(|x|), then:

max
x∈Rn

f(x)

g(x)
= max

ν∈R+

{
max
x∈Rn

+

{
f(x)

ν
: g(x) = ν

}}
. (15)

Proof. If g is surjective, then ∪ν∈R{x ∈ Rn : g(x) = ν} = Rn. We can therefore partition Rn

into infinitely many subsets of type {x ∈ Rn : g(x) = ν}. An optimal solution to maxx∈Rn
f(x)
g(x)

thus corresponds to the best solution over all such subsets. The special case in Equation equation 15
follows by a similar argument.

Proposition 5. The following relationships are satisfied for every x ∈ Rn:
∥x∥2 ≤ ∥x∥1 ≤

√
n∥x∥2

1√
n
∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥2

and the factors
√
n and 1√

n
are tight.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. We are looking for four positive coefficients α1, β1, α∞, β∞ that satisfy the following rela-
tionships for all x ∈ Rn:

α1∥x∥2 ≤ ∥x∥1 ≤ β1∥x∥2
α∞∥x∥2 ≤ ∥x∥∞ ≤ β∞∥x∥2.

Assuming x ̸= 0 as, for x = 0, α∥x∥p ≤ ∥x∥q ≤ β∥x∥p holds for all α, β and for all p, q ∈
N ∪ {∞}, the tightest values for α1, β1, α∞, β∞ must satisfy the following relationships:

β1 = max
x∈Rn

∥x∥1
∥x∥2

β∞ = max
x∈Rn

∥x∥∞
∥x∥2

α1 = min
x∈Rn

∥x∥1
∥x∥2

α∞ = min
x∈Rn

∥x∥∞
∥x∥2

.

As max
∥x∥p

∥x∥q
= min

∥x∥q

∥x∥p
holds for all p, q ∈ N ∪ {∞}, we need to solve the following four

problems:

β1 = max
∥x∥1
∥x∥2

β∞ = max
∥x∥∞
∥x∥2

α1 = max
∥x∥2
∥x∥1

α∞ = max
∥x∥2
∥x∥∞

.

Let us consider the case of α1, α∞, for which we are solving max ∥x∥2

∥x∥q
for q = 1,∞. By virtue of

Lemma 4, we are thus solving:

αq = max
ν∈R+

{
1

ν
max
x∈Rn

+

{∥x∥2 : ∥x∥q = ν}
}
.

As the maximum of a convex function (such as ∥x∥2) over a closed, convex set is achieved on the
border of the latter and, if we are optimizing over a polytope, over its extreme vertices, we can
w.l.o.g. relax ∥x∥q = ν into ∥x∥q ≤ ν.

For α1, the extreme points of {x ∈ Rn : ∥x∥1 ≤ ν} are of the form: νeℓ for all ℓ ∈ [n], with
eℓ being the ℓ-th canonical vector of Rn. For each of them, we have ∥νeℓ∥2 =

√
ν2 = ν. Thus,

α1 = max ∥x∥2

∥x∥1
= ν

ν = 1.

For α∞, the extreme points of {x ∈ Rn : ∥x∥∞ ≤ ν} are of the form: (±ν, . . . ,±ν) for all
possible choices of ±. For each of them, we have ∥(±ν, . . . ,±ν)∥2 =

√
ν2 n = ν

√
n. Thus,

α∞ = max ∥x∥2

∥x∥∞
= ν

√
n

ν =
√
n.

Let us now consider the case of β1 and β∞, for which we are solving max
∥x∥q

∥x∥2
for q = 1,∞. By

virtue of Lemma 4, we are thus solving:

βq = max
ν∈R+

{
1

ν
max
x∈Rn

+

{∥x∥q : ∥x∥2 = ν}
}
.

For β1, the problem reads:

β1 = max
ν≥0

{
1

ν
max
x∈Rn

+

{
eTx : xTx = ν2

}}
. (16)

The KKT conditions for the relaxation of the inner problem of equation 16 obtained after dropping
the nonnegativity on x read:

∇x(e
Tx− λ(xTx− ν2)) = 0

xTx = ν2,

with λ unrestricted in sign. From the first equation, we deduce x = e
2λ . By substituting it in the

second equation, we obtain eT e
22λ2 = ν2, that is, λ =

√
n

2ν . Thus, we have x = e√
n
ν. Since the latter

17
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is nonnegative, it is an optimal solution to both the relaxation of the inner problem of equation 16
with x ∈ Rn and its unrelaxed version with x ∈ Rn

+. We thus have ∥x∥1 = ν√
n
∥e∥1 = νn√

n
= ν

√
n.

We conclude that β1 = ν
√
n

ν =
√
n.

For β∞, the problem reads:

β∞ = max
ν≥0

{
1

ν
max
x∈Rn

+

{
max
ℓ∈[n]

{xℓ} : xTx = ν2
}}

.

The optimal solutions to the inner problem are of the form νeℓ, where eℓ is a canonical vector of
Rn, for which we have ∥νeℓ∥∞ = ν. We conclude that β∞ = ν

ν = 1.

18


