
Technical Report: Towards Feasible Higher-Dimensional Potential Heuristics

Primary Keywords: None

Abstract
Potential heuristics assign numerical values (potentials) to
state features, where each feature is a conjunction of facts.
It was previously shown that the informativeness of potential
heuristics can be significantly improved by considering com-
plex features, but computing potentials over all pairs of facts5

is already too costly in practice. In this paper, we investigate
whether using just a few high-dimensional features instead of
all conjunctions up to a dimension n can result in improved
heuristics while keeping the computational cost at bay. We fo-
cus on (a) establishing a framework for studying this kind of10

potential heuristics, and (b) whether it is reasonable to expect
improvement with just a few conjunctions. For (a), we pro-
pose two compilations that encode each conjunction explic-
itly as a new fact so that we can compute potentials over con-
junctions in the original task as one-dimensional potentials15

in the compilation. Regarding (b), we provide evidence that
informativeness of potential heuristics can be significantly in-
creased with a small set of conjunctions, and these improve-
ments have positive impact on the number of solved tasks.

1 Introduction20

In classical optimal planning, potential heuristics (Pom-
merening et al. 2015; Pommerening, Helmert, and Bonet
2017) are a family of admissible (and consistent) heuris-
tics computed as sums of potentials (numerical values) over
state features that are sets of facts (conjunctions). Poten-25

tials ensuring admissibility and consistency can be found
by solving a certain linear program with any optimization
criteria that can be designed to emphasize different prop-
erties of the resulting heuristics (Seipp, Pommerening, and
Helmert 2015; Fišer, Horčı́k, and Komenda 2020). It was30

shown that increasing the size of conjunctions can eventu-
ally lead to optimal heuristics (Pommerening, Helmert, and
Bonet 2017). Computation of potential heuristics over single
facts and pairs of facts is polynomial. However, computing
the heuristics over all pairs of facts is already too computa-35

tionally costly in practice, and for conjunctions of size 3 or
more, it becomes coNP-hard to decide heuristic consistency.

Here, we focus on the question whether computing poten-
tial heuristics over just a few conjunctions can lead to a sig-
nificantly more informed heuristic that can be successfully40

used in practice. We leverage prior work of Steinmetz and
Hoffmann (2018) showing that potential heuristics over con-
junctions can be computed via the so-called ΠC compilation

(Haslum 2012) where conjunctions C are explicitly repre-
sented as facts. Potential heuristics over conjunctions C can 45

be computed as single-fact potential heuristics in ΠC , but the
price we pay is the worst-case exponential blow-up in |C| of
the ΠC encoding. Since ΠC does not preserve state space of
the original task perfectly and thus does not preserve all (po-
tential) heuristics, we introduce a new compilation ΠCexact 50

that remedies this pitfall. This allows us to plug-in a set of
conjunctions C as input, and obtain a potential heuristic over
C as output, while exchanging computational complexity for
blow-up in the task encoding. Moreover, we use prior work
on mutual exclusion state invariants to mitigate the blow-up 55

(Keyder, Hoffmann, and Haslum 2014; Fišer and Komenda
2018; Fišer, Horčı́k, and Komenda 2020).

To test whether it is possible to increase informativeness
of potential heuristics with only few conjunctions, we use
a simple greedy uninformed algorithm to obtain improv- 60

ing conjunctions. We show in our experiments that it is, in-
deed, often the case that a small number of conjunctions
leads to better heuristic estimates. We test this approach
with explicit-state search, but also with symbolic search
where potential heuristics can be used via so-called operator- 65

potential heuristics (Fišer, Torralba, and Hoffmann 2022a,b).
We show that even in this simple setting, we are able to
increase the number of solved tasks in some domains. We
leave the question how to intelligently find the improving
conjunctions to future work. 70

2 Background
We consider the finite domain representation (FDR) of plan-
ning tasks (Bäckström and Nebel 1995). An FDR plan-
ning task is a tuple Π = ⟨V,O, I, G⟩. V is a finite set
of variables, each v ∈ V has a finite domain dom(v). A 75

fact ⟨v, x⟩ is a pair of a variable v ∈ V and one of its
values x ∈ dom(V ). The set of all facts is denoted by
F = {⟨v, x⟩ | v ∈ V, x ∈ dom(V )}, the set of facts of
variable v is denoted by Fv = {⟨v, x⟩ | x ∈ dom(v)}, and
similarly for sets of facts V : FV =

⋃
v∈V Fv . Given p ⊆ F , 80

V(p) denotes all variables appearing in p, i.e., V(p) = {v |
⟨v, x⟩ ∈ p}, and we use a shorthand Fp = FV(p).

A partial state p ⊆ F is a set of facts s.t. there is at most
one fact of each variable, i.e., |p ∩ Fv| ≤ 1 for every v ∈ V .
p[v] denotes the value assigned to v ∈ V(p) in the partial 85

state p. A partial state s is called state if |s| = |V|. I is an



initial state. G is a partial state called goal, and a state s is
a goal state if G ⊆ s. A partial state p ⊆ F is also called a
conjunction, and we say that a conjunction c is true in the
state s if c ⊆ s and we say it is false otherwise. Let p, t be90

partial states. We say that t extends p if p ⊆ t.
O is a finite set of operators, o ∈ O is defined by its par-

tial states precondition pre(o) and effect eff(o), and a cost
cost(o) ∈ R+

0 . We assume pre(o) ∩ eff(o) = ∅. o ∈ O is
applicable in a state s if pre(o) ⊆ s. The resulting state of95

applying an applicable operator o in a state s is another state
oJsK = (s\Feff(o))∪eff(o), i.e., applying o on s changes the
values of variables according to the effect eff(o) and keeps
the variables not mentioned in eff(o) unaffected. We also use
app(o) = (pre(o)\Feff(o))∪eff(o) to denote the partial state100

resulting from o applied to its own precondition.
A sequence of operators π = ⟨o1, . . . , on⟩ is applicable

in a state s0 if there are states s1, . . . , sn such that oi is ap-
plicable in si−1 and si = oiJsi−1K for i ∈ {1, . . . , n}. The
resulting state is πJs0K = sn and cost(π) =

∑n
i=1 cost(oi)105

denotes the cost of π. A sequence of operators π is called
an s-plan iff π is applicable in a state s and πJsK is a goal
state, I-plan is called simply plan. An s-plan π is called op-
timal if its cost is minimal among all s-plans. A sequence of
operators is called path if it is applicable in the initial state.110

A state s is reachable if there exists an operator sequence
π applicable in I such that πJIK = s. R(Π) denotes the set
of all reachable states in Π. An operator o is reachable if it
is applicable in some reachable state. A state s is a dead-end
if G ̸⊆ s and there is no s-plan.115

A heuristic h : R(Π) 7→ R ∪ {∞} estimates the cost
of optimal s-plans. The optimal heuristic h⋆(s) maps each
reachable state s to the cost of the optimal s-plan or to ∞
if s is a dead-end. A heuristic h is called (a) admissible iff
h(s) ≤ h⋆(s) for every reachable state s ∈ R(Π); (b) goal-120

aware iff h(s) ≤ 0 for every reachable goal state s; and (c)
consistent iff h(s) ≤ h(oJsK) + cost(o) for all reachable
states s ∈ R(Π) and operators o ∈ O applicable in s.

Note that we define heuristics over the reachable states
(instead of all states) because we intend to use heuristics125

in a (forward) heuristic search and because we use state
invariants describing the reachable state space for improv-
ing the heuristic values (h-values). Also note that we allow
negative heuristic values as is usual in literature on poten-
tial heuristics (the standard interpretation is that during the130

search, negative heuristic values are interpreted as zero). It
is well-known that goal-aware and consistent heuristics are
also admissible.

3 Mutexes and Disambiguation
It was previously shown that utilizing mutual exclusion in-135

variants (mutexes) significantly improves informativeness of
potential heuristics (Fišer, Horčı́k, and Komenda 2020). A
mutex is a set of facts that is not part of any reachable state,
i.e., M ⊆ F is a mutex if M ̸⊆ s for every s ∈ R(Π).

The most obvious mutex in an FDR task is a set of facts140

containing two facts of the same variable, but more mutexes
can be inferred by the hm heuristic (Bonet and Geffner 2001;
Alcázar and Torralba 2015) or by inference of so called fam-

groups on lifted (Helmert 2009; Fišer 2020, 2023) or ground
(Fišer and Komenda 2018) level. Clearly, every superset of 145

a mutex is also a mutex. For notational convenience, we use
the notion of a mutex-set.

Definition 1. A set of sets of facts M ⊆ 2F is called a
mutex-set if (a) every M ∈M is a mutex, and (b) for every
M ∈ M and every f ∈ F it holds that M ∪ {f} ∈ M, 150

and (c) for every variable v ∈ V and every pair of facts
f, f ′ ∈ Fv , f ̸= f ′, it holds that {f, f ′} ∈ M.

In other words, a mutex-set is an upper set of a set of
mutexes (a,b) and it always contains all mutexes that can be
inferred directly from task’s variables (c). This allows us to 155

write p ∈ M if we want to express that the set of facts p
is not a partial state (i.e., it contains two facts of the same
variable), or that all states extending p are not reachable.
Note also that p ̸∈ M implies p is a partial state.

Mutexes can also be used for inference of disambigua- 160

tions (Fišer, Horčı́k, and Komenda 2020). A disambiguation
of a variable v for a partial state p is a set of facts X ⊆ Fv

from the same variable v such that every reachable state ex-
tending p contains one fact from X . In other words, disam-
biguation of v for p allows us to filter out facts of the variable 165

v that cannot be part of any reachable state extending p.

Definition 2. Let v ∈ V denote a variable, and let p denote
a partial state. X ⊆ Fv is called a disambiguation of v for
p if for every s ∈ R(Π) s.t. p ⊆ s it holds that X ∩ s ̸= ∅.

Disambiguations can also be used for finding unreach- 170

able operators and determining unsolvability of tasks. If, for
some operator o ∈ O, a disambiguation of some v ∈ V for
pre(o) is empty, then o is unreachable; and if a disambigua-
tion of some v ∈ V for G is empty, the task is unsolvable. So,
from now on, we will consider only tasks for which we have 175

non-empty disambiguations of the goal and operators’ pre-
conditions. We use the following disambiguation maps D.
Given a variable v ∈ V , D(v) denotes a disambiguation of v
for G. Given an operator o ∈ O and v ∈ V(eff(o)), D(o, v)
denotes a disambiguation of v for pre(o). 180

4 Potential Heuristics
Potential heuristics (Pommerening et al. 2015) were intro-
duced as admissible and consistent heuristics that assign a
numerical value (potential) to each fact, and the h-value for a
state s is a sum of the potentials of all facts in s. It was shown 185

that potentials can be computed by solving a linear program
(LP) with constraints expressing goal-awareness and con-
sistency of the resulting heuristic. Pommerening, Helmert,
and Bonet (2017) showed that this concept can be extended
to larger sets of facts (higher-dimensional features/conjunc- 190

tions) so that a potential is associated with each conjunction,
and the h-value for a state s is a sum over the potentials cor-
responding to conjunctions that are true in s.

Increasing the size of conjunctions allows to distin-
guish between more states, eventually leading to a potential 195

heuristic that is optimal. However, the computation of poten-
tials becomes significantly more difficult as the size of con-
junctions grows. Pommerening, Helmert, and Bonet (2017)
showed that deciding consistency of a potential heuristic is



coNP-hard in general if we consider all conjunctions of size200

3 or more. They were however able to identify conditions
when the construction of an admissible potential heuris-
tic is tractable, depending on the interactions between the
conjunctions. Steinmetz and Hoffmann (2018) showed that
admissible higher-dimensional potential heuristics can be205

computed via a detour to a single-fact potential heuristics
in the ΠC compilation, which we build upon here. The size
of ΠC grows worst-case exponentially in |C|, yielding an al-
ternative tractability condition—when ΠC does not explode.

Since we plan to compute potential heuristics via compi-210

lations where each conjunction is explicitly represented as a
fact, we formally use only a single-fact potential heuristics.
Definition 3. A potential function is a function P : F 7→ R.
A potential heuristic for P maps each state s ∈ R(Π) to the
sum of potentials of facts in s, i.e., hP(s) =

∑
f∈s P(f).215

Potential functions inducing admissible potential heuris-
tics can be found by solving LPs, and it was shown by Fišer,
Horčı́k, and Komenda (2020) that, if restricted to the reach-
able states, potential heuristics can be strengthened by tak-
ing disambiguations into account. So, given a disambigua-220

tion map D, we can find potential functions P by solving
the following LP: The LP has a variable P(f) for each fact
f ∈ F , the constraint∑

V ∈V
max

f∈D(V )
P(f) ≤ 0

ensuring goal-awareness, and the constraint∑
V ∈V(eff(o))

max
f∈D(o,V )

P(f)−
∑

f∈eff(o)

P(f) ≤ cost(o)

for each operator o ∈ O ensuring consistency. Note that225

the maximization can be easily implemented with auxiliary
variables as described by Pommerening et al. (2015). Since
the aforementioned constraints ensure goal-awareness and
consistency (and therefore admissibility), the objective func-
tion of the LP can be freely chosen (Seipp, Pommerening,230

and Helmert 2015; Fišer, Horčı́k, and Komenda 2020), e.g.,
maximization of

∑
f∈I P(f) will result in a potential heuris-

tic with the maximum possible h-value for the initial state.

5 ΠC Compilation
The first compilation we use for computing potentials over235

conjunctions is the ΠC compilation introduced by Haslum
(2012) in the context of strengthening delete-relaxation
heuristics. Since then, it proved to be useful in different con-
texts too (e.g., Keyder, Hoffmann, and Haslum 2014; Fick-
ert, Hoffmann, and Steinmetz 2016; Steinmetz and Hoff-240

mann 2018). In particular, Steinmetz and Hoffmann (2018)
already showed that potential heuristics over ΠC provide
consistent and admissible estimates for the original task. We
follow up on their work in that we use the ΠC compilation
in the FDR formalism (Haslum (2012) used STRIPS), but245

we also fully utilize mutexes to prune unreachable opera-
tors, as it was already pointed out by Keyder, Hoffmann,
and Haslum (2014) that mutexes are effective in preventing
the compilation to blow-up in practice as the size of ΠC is

worst-case exponential in |C|. Another subtle difference to 250

the work of Steinmetz and Hoffmann is that we consider
heuristics defined over reachable states only. For these rea-
sons, we provide not only the description of the compilation,
but also full proofs showing that the compilation preserves
admissibility and consistency of heuristics. Moreover, we 255

show that ΠC has some disadvantages. Namely, it can in-
duce superfluous paths in the state space. For the rest of this
section, let Π = ⟨V,O, I, G⟩ denote a task with facts F , let
M be a mutex-set, and let C ⊆ 2F be a set of conjunctions
consisting of at least two facts (i.e., |c| ≥ 2 for every c ∈ C). 260

The idea of the ΠC compilation is following. First, we en-
code each conjunction c ∈ C as a binary variable vc: We set
vc to 1 if the conjunction is true in the state s (i.e., c ⊆ s),
and we set it to 0 if c is false (i.e., c ̸⊆ s). Second, we
set the initial state and goal so that every vc has the correct 265

truth value. Finally, we construct multiple operators for each
input operator o ∈ O so that application of at least one of
them maintain the intended values of the vc variables—this
is where the worst-case exponential blow-up comes from as
we need to enumerate possible contexts in which each oper- 270

ator can be applied. Before we get to the formal definition of
ΠC , we need to introduce some auxiliary notation that will
be helpful in the construction of operators.

It is easy to see that an operator o can make a conjunction
c true or false only if eff(o) and c share some variables: 275

Ceff(o) = {c ∈ C | V(c) ∩ V(eff(o)) ̸= ∅}.
Nevertheless, we are interested only in conjunctions whose
truth values are actually changed by the operator o. Namely,
conjunctions c ∈ Ceff(o) that are either true before o is
applied and false after, or false before and true after. For
every c ∈ C that is true before applying o it holds that 280

c ∪ pre(o) ̸∈ M (as the opposite implies c is false). More-
over, o can make c false only if c ∪ app(o) ∈ M (as o
must affect c by changing at least one variable of c to a dif-
ferent value). Unfortunately, we do not have any means to
reliably test whether c is false before the operator’s applica- 285

tion, but we at least know that c can be made true by o only
if c ∪ app(o) ̸∈ M. This leads to the set of conjunctions
possibly affected by o ∈ O (reduced using mutexes):

Ca(o) = {c ∈ Ceff(o) | c ∪ pre(o) ̸∈ M, c ∪ app(o) ∈M}
∪ {c ∈ Ceff(o) | c ∪ app(o) ̸∈ M}.

Ca(o) can be partitioned into the set of conjunctions al-
ways made true by o no matter what was their truth values 290

before applying o:

Ct(o) = {c ∈ Ca(o) | c ⊆ app(o)},
the set of conjunctions always made false by o:

Cf(o) = {c ∈ Ca(o) | c ∪ app(o) ∈M},
and the set of conjunctions potentially made true by o de-
pending on the state where o is applied:

Cp(o) = {c ∈ Ca(o) | c ∪ app(o) ̸∈ M, c ̸⊆ app(o)}.
Lastly, for every subset X ⊆ C, we define the extension 295

of the precondition of o by parts of conjunctions from X



unaffected by o (i.e., facts from X that if true before the
application, are true also after the operator’s application):

ext-pre(o,X) = pre(o) ∪
⋃
c∈X

(c \ eff(o)).

Now we are ready to formally define the ΠC compilation.
Definition 4. Given a planning task Π, a mutex-setM, and300

a set of conjunctions C ⊆ 2F s.t. |c| ≥ 2 for every c ∈ C, the
planning task ΠC = ⟨VC ,OC , IC , GC⟩ is defined as follows.

(1) VC extends V with a fresh binary variable vc for each
conjunction c ∈ C, i.e., VC = V ∪ {vc | c ∈ C}, and, for
each c ∈ C, vc ̸∈ V , dom(vc) = {0, 1}.305

(2) The initial state is extended with the correct truth val-
ues of vc variables, i.e.,

IC = I ∪{⟨vc, 1⟩ | c ∈ C, c ⊆ I}∪{⟨vc, 0⟩ | c ∈ C, c ̸⊆ I}.

(3) The goal is extended with vc set to 1 whenever c is
true in G, i.e., GC = G ∪ {⟨vc, 1⟩ | c ∈ C, c ⊆ G}.

(4) For every operator o ∈ O and every subset of con-310

junctions X ⊆ Cp(o) potentially made true by o such that
(i) ext-pre(o,X) ̸∈ M, and (ii) X is downward closed on
Cp(o) (i.e., for every c ∈ Cp(o) such that there exists c′ ∈ X
such that c ⊆ c′ it holds that c ∈ X), OC has the operator
oX with cost(oX) = cost(o),315

pre(oX) = ext-pre(o,X)

∪ {⟨vc, 1⟩ | c ∈ C, c ⊆ ext-pre(o,X)},
eff(oX) = (eff(o) ∪ {⟨vc, 1⟩ | c ∈ Ct(o) ∪X}

∪ {⟨vc, 0⟩ | c ∈ Cf (o)}) \ pre(oX).

ΠC is well-defined as all variables have finite domains, IC
is defined over all variables, and pre(oX) ∩ eff(oX) = ∅
for all oX ∈ OC . Note that the blow-up of the compila-
tion comes from enumerating all possible combinations of
conjunctions that are potentially made true by an opera-320

tor (4). It is, however, mitigated by skipping operators that
can be proved to be unreachable (4i), and by considering
only downward closed sets (4ii). The later comes from a
simple observation that having c, c′ ∈ C such that c′ ⊆ c
and c is true, then c′ is also necessarily true and therefore325

there is no reason for splitting the context where c is true, c′
is true, and both are true.

Given a state s from Π, we define the shorthand

C[s] = s∪{⟨vc, 1⟩ | c ∈ C, c ⊆ s}∪{⟨vc, 0⟩ | c ∈ C, c ̸⊆ s}

that can be used for translating a state s from Π to a state in
ΠC where all variables vc have assigned the correct values.330

Now, we show that every path in ΠC corresponds to a path
in Π, i.e., the construction of ΠC preserves applicability of
the original operators from Π.

Proposition 5. Let π = ⟨oX1
1 , . . . , oXn

n ⟩ denote a path in
ΠC . Then π′ = ⟨o1, . . . , on⟩ is a path in Π and π′JIK =335

πJICK ∩ F .

Proof. Let s0, s1, . . . , sn denote the intermediate states of π
applied on the initial state of ΠC , i.e., s0 = IC and for every
i ∈ {1, . . . , n} it holds that oXi

i Jsi−1K = si. Moreover, let

s′i = si ∩ F for every i ∈ {0, 1, . . . , n}. Now, we show that 340

s′0 = I and every s′i, 1 ≤ i ≤ n, is a state in Π reachable by
the sequence of operators ⟨o1, . . . , oi⟩.

From the definition of ΠC we have that IC ∩F = I = s0.
Since, for every i ∈ {1, . . . , n}, it holds that pre(oi) ⊆
ext-pre(oi, Xi) ⊆ pre(oXi

i ) ⊆ si−1 and ext-pre(oi, Xi) = 345

pre(oXi
i )∩F , it follows that pre(oi) ⊆ s′i−1, i.e., oi is appli-

cable in s′i−1. Since eff(oi)\ext-pre(oi, Xi) = eff(oXi
i )∩F

and ext-pre(oi, Xi) ⊆ si−1, we have that oXi
i Jsi−1K∩F =

((si−1 \ Feff(o
Xi
i )

) ∪ eff(oXi
i )) ∩ F = (s′i−1 \ Feff(oi)) ∪

eff(oi) = oiJs′i−1K = s′i = si ∩ F . 350

Next, we show that for every path π in the original task Π,
there is a corresponding path π′ in ΠC that has exactly the
same length, cost, and it leads to a state in ΠC with correctly
set variables vc, i.e., π′JICK = C[πJIK].
Proposition 6. Let π = ⟨o1, . . . , on⟩ denote a path in Π. 355

Then there exists a path π′ = ⟨oX1
1 , . . . , oXn

n ⟩ in ΠC such
that π′JICK = C[πJIK].

Proof. Let s0, s1, . . . , sn denote the intermediate states of π
applied on the initial state of Π, i.e., s0 = I and for every
i ∈ {1, . . . , n} it holds that oiJsi−1K = si. Moreover, let 360

s′i = C[si] for every i ∈ {0, 1, . . . , n}. From the definition
of ΠC it directly follows that s′0 = IC .

Let assume that there exists a sequence of operators π′ =
⟨oX1

1 , . . . , o
Xi−1

i−1 ⟩, for some i < n, such that π′ is applicable
in s′0 and π′Js′0K = s′i−1. Now, we show that there exists oXi

i 365

such that oXi
i is applicable in s′i−1 and oXi

i Js′i−1K = s′i.
Let X f = {c ∈ C | ⟨vc, 1⟩ ∈ s′i−1, ⟨vc, 0⟩ ∈ s′i}, Xt =

{c ∈ C | ⟨vc, 0⟩ ∈ s′i−1, ⟨vc, 1⟩ ∈ s′i}, XT = {c ∈ C |
⟨vc, 1⟩ ∈ s′i−1, ⟨vc, 1⟩ ∈ s′i}, and XF = {c ∈ C | ⟨vc, 0⟩ ∈
s′i−1, ⟨vc, 0⟩ ∈ s′i}. It is easy to see that X f , Xt, XT, XF 370

form a partitioning of C, and X f ⊆ Ca(oi) and Xt ⊆ Ca(oi)
as any variable assignment can be changed only by the effect
of the operator oi.

Let Xi = Cp(oi) ∩ (Xt ∪ XT). We show that (i) Xi is
downward closed on Cp(oi) and (ii) ext-pre(oi, Xi) ̸∈ M 375

and (iii) Xt \ Ct(oi) ⊆ Xi and (iv) Xi ⊆ Xt ∪XT.
(i) Xt, XT, and Xt ∪ XT are all downward closed by

the construction of s′i, therefore Cp(oi)∩ (Xt ∪XT) is also
downward closed.

(ii) For every c ∈ Xt ∪ XT it holds that c ⊆ si by the 380

construction of s′i, therefore c\eff(oi) ⊆ si−1 therefore also⋃
c∈Xi

(c \ eff(oi)) ⊆ si−1, therefore ext-pre(oi, Xi) ̸∈ M
because si−1 is reachable.

(iii) It is easy to see that Xt ⊆ Ca(oi) and also that Xt ∩
Cf(oi) = ∅ because c∪app(oi) ̸∈ M for every c ∈ Xt∪XT. 385

So, since Ct(oi), Cf(oi), Cp(oi) form a partitioning of Ca(oi)
it follows that Xt \ Ct(oi) ⊆ Xi.

(iv) It follows directly from the construction of Xi.
From (i) and (ii) it follows there exists an operator oXi

i
and since ext-pre(oi, Xi) consists of facts unaffected by the 390

operator oi, it follows that oXi
i is applicable in s′i−1.

From the construction of Ct(oi) it follows that Ct(oi) ⊆
Xt, and from (iii) and (iv) it follows that (Ct(oi) ∪ Xi) ⊆



Xt ∪XT. Finally, since X f ⊆ Ca(oi) and for every c ∈ X f

it holds that c ∪ app(oi) ∈ M, we have that X f ⊆ Cf(oi),395

so it follows that oXi
i Js′i−1K = s′i.

Propositions 5 and 6 are enough to show that ΠC preserves
consistency and admissibility of heuristics. To be precise,
we show that if we have an admissible (consistent) heuristic
hC for ΠC , then we can cast any state s reachable in Π to400

another state C[s] in ΠC and use hC(C[s]) as an admissible
(consistent) estimate for s in Π.

Theorem 7. Let hC : R(ΠC) 7→ R+
0 be a heuristic for ΠC ,

let h : R(Π) 7→ R+
0 be a function s.t. h(s) = hC(C[s]) for

every reachable state s ∈ R(Π). If hC is admissible (consis-405

tent) heuristic for ΠC , then h is an admissible (consistent)
heuristic for Π.

Proof. From Proposition 6 it follows that h is well-defined,
because C[s] ∈ R(ΠC) for every s ∈ R(Π). From Propo-
sition 5 we have that every plan in ΠC has its corresponding410

plan in Π with the same cost, and from Proposition 6 we
have that every plan in Π has its corresponding plan in ΠC

with the same cost. So, admissibility and consistency fol-
lows.

ΠC also has some pitfalls. Consider a task with a plan415

π = ⟨o1, . . . , on⟩ and C = {c} such that c ̸⊆ I and c ⊆ G
and c ̸⊆ eff(oi) for every i ∈ {1, . . . , n}. From the construc-
tion of ΠC it follows that for every oi ∈ O there is o∅i ∈ OC
constructed from the empty subset of Cp(oi), and the se-
quence π′ = ⟨o∅1, . . . , o∅n⟩ is applicable in IC . Therefore,420

the resulting state s = π′JICK contains all goal facts from
Π, i.e., G ⊆ s, but vc is set to zero in s, i.e., ⟨vc, 0⟩ ∈ s,
even though c ⊆ G ⊆ s. In other words, we have that
s = π′JICK ̸= C[πJIK]. This does not contradict the propo-
sitions above. There still is another sequence of operators425

π′′ ̸= π′ from ΠC s.t. π′′JICK = C[πJsK] (Proposition 6),
and it, indeed, holds that π′JICK∩F = πJIK (Proposition 5).
However, it shows that the construction of ΠC can induce
superfluous paths in the state space. These paths cannot be
shortcuts, but they can be detours or lead to dead-ends.430

6 ΠC
exact Compilation

Here, we introduce a new compilation ΠCexact that, in con-
trast to ΠC , preserves the reachable part of the state space
exactly. ΠCexact follows ΠC in that it also encodes each c ∈ C
as a binary variable vc, but it differs from ΠC in the way435

operators are encoded. Each operator o in ΠCexact explicitly
encodes truth values of all conjunctions potentially affected
by o in both precondition and effect. This can lead to even
larger blow-up than in ΠC , but allows us to prove that not
only all paths from Π are preserved in ΠCexact, but also that440

every reachable state s in ΠCexact is of a form s = C[s ∩ F ],
i.e., in every reachable state, every vc is set to 1 whenever
c ⊆ s, and it is set to 0 otherwise. Therefore, the reachable
parts of state spaces of Π and ΠCexact are isomorphic: There
is one-to-one mapping between reachable states in Π and445

ΠCexact, one-to-one mapping between paths preserving costs,
and therefore also one-to-one mapping between heuristics.

From now on, let Π = ⟨V,O, I, G⟩, F ,M, and C ⊆ 2C be
as in the previous section. We use some auxiliary notation:

We use the same set Ca(o) ⊆ C of conjunctions possi- 450

bly affected by o ∈ O. Moreover, we use total functions
f : Ca(o) 7→ {0, 1} for generating possible assignments to
variables vc for all c ∈ Ca(o). So, given o ∈ O and a total
function f : Ca(o) 7→ {0, 1}, we define sets of conjunctions
affected by o mapped by f to 1 and 0, respectively: 455

Cf,1(o) = {c ∈ Ca(o) | f(c) = 1},

Cf,0(o) = {c ∈ Ca(o) | f(c) = 0},
and the set of variables from Cf,0(o) that are not part of the
precondition or effect of o:

Vf,0(o) =
⋃

c∈Cf,0(o)

V(c) \ V(pre(o) ∪ eff(o)).

Moreover, for every partial state p over variables Vf,0(o)
(i.e., for every partial state s.t. V(p) = Vf,0(o)), we define 460

expre(o, f, p) = pre(o) ∪ p ∪
⋃

c∈Cf,1(o)

c,

exapp(o, f, p) = (expre(o, f, p) \ Feff(o)) ∪ eff(o).

The idea of the construction of operators is that for ev-
ery operator o ∈ O, we consider all possible assignments
to variables vc corresponding to possibly affected conjunc-
tions c ∈ Ca(o). For each such assignment (a total function
f : Ca(o) 7→ {0, 1}), we create a set of operators based 465

on o applicable only in states where the assignment holds.
Each of these operators correspond to a possible change
of the vc variables. An operator o changes the value of vc
from 1 to 0 whenever eff(o) has at least one common vari-
able with c but the values differ. Changing the value of vc 470

from 0 to 1 is more complicated. Clearly, o can change vc
to 1 only if eff(o) and c agree on all common variables, but
we also need to consider an additional context of assign-
ments to variables from c that are not in pre(o) or eff(o)
(i.e., variables Vf,0(o) ∩ V(c)). Consider a conjunction c = 475

{⟨a, 0⟩, ⟨b, 0⟩} and an operator o with pre(o) = {⟨a, 1⟩} and
eff(o) = {⟨a, 0⟩}. If c is false in some state s, then either
⟨a, 0⟩ ̸∈ s or ⟨b, 0⟩ ̸∈ s. So clearly, o can make c true only
if ⟨b, 0⟩ ∈ s, as the effect assigns 0 to the variable a, but the
value of b is not specified in the precondition of the operator. 480

In other words, o makes c true depending on the additional
context which is not explicitly specified in its precondition.
Therefore, the construction iterates over all possible contexts
of variables Vf,0(o) so that we are able to exactly determine
when the variables vc change their values from 0 to 1. 485

So, the blow-up of the ΠCexact compilation is worst-case
exponential in |C| and |V|, but we can mitigate it by using
mutexes as we need to consider only contexts that can co-
occur with operator’s precondition.
Definition 8. Given a planning task Π, a mutex-set M, 490

and a set of conjunctions C ⊆ 2F s.t. |c| ≥ 2 for every
c ∈ C, the planning task ΠCexact = ⟨VC ,OCexact, IC , GC⟩ is
defined as follows. VC , IC , and GC are exactly the same as
for ΠC , but OCexact is constructed differently: For every op-
erator o ∈ O and every total function f : Ca(o) 7→ {0, 1} 495



and every partial state p over variables Vf,0(o) such that (i)
expre(o, f, p) ̸∈ M and (ii) for every c ∈ Cf,0(o) it holds
that c ̸⊆ expre(o, f, p), OCexact has the operator of,p such
that cost(of,p) = cost(o),

pre(of,p) = expre(o, f, p) ∪ {⟨vc, f(c)⟩ | c ∈ Ca(o)},
eff(of,p) = eff(o) \ pre(of,p)

∪ {⟨vc, 0⟩ | c ∈ Cf,1(o), c ∪ app(o) ∈M}
∪ {⟨vc, 1⟩ | c ∈ Cf,0(o), c ⊆ exapp(o, f, p)}.

As for ΠC , it is easy to see that ΠCexact is well-defined.500

Note that the condition (ii) makes sure that we consider
only compatible (downward closed) assignments to vari-
ables, i.e., whenever we have two conjunctions c, c′ ∈ C
such that c′ ⊆ c and f(vc) = 1, then the compilation con-
siders only the functions f where also f(vc′) = 1. Also note505

that effects set vc to 1 only if vc is set to 0 in the precondition
and vice versa ⟨vc, 0⟩ ∈ eff(of,p) only if ⟨vc, 1⟩ ∈ pre(of,p).

Analogously to the previous section, we use C[s] to trans-
late states from Π to ΠCexact. Now, we show that every path
in ΠCexact has its counterpart with the same cost in Π.510

Proposition 9. Let π = ⟨of1,p1

1 , . . . , ofn,pn
n ⟩ denote a path

in ΠCexact. Then π′ = ⟨o1, . . . , on⟩ is a path in Π and
π′JIK = πJICK ∩ F .

Proof. Let s0, s1, . . . , sn denote the intermediate states of π
applied on the initial state of ΠCexact, i.e., s0 = IC and for ev-515

ery i ∈ {1, . . . , n} it holds that ofi,pi

i Jsi−1K = si. Moreover,
let s′i = si ∩ F for every i ∈ {0, 1, . . . , n}. Now, we show
that s′0 = I and, for every i ∈ {1, . . . , n}, s′i is a state in
Π reachable by the sequence of operators ⟨o1, . . . , oi⟩, and
s′i = si ∩ F .520

From the definition of ΠCexact we have that IC ∩ F =
I = s′0. Since, for every i ∈ {1, . . . , n}, it holds that
pre(oi) ⊆ expre(oi, fi, pi) ⊆ pre(ofi,pi

i ) ⊆ si−1, it fol-
lows that pre(oi) ⊆ s′i−1, i.e., oi is applicable in s′i−1. Since
eff(ofi,pi

i )∩F = eff(o)\pre(ofi,pi

i ) it follows that for every525

f ∈ eff(o) it holds that either f ∈ pre(ofi,pi

i ) (and therefore
also f ∈ s′i−1 and f ∈ s′i) or f ∈ eff(ofi,pi

i ) (and there-
fore f ∈ s′i). Finally, since eff(ofi,pi

i )∩F ⊆ eff(o) we have
ofi,pi

i Jsi−1K ∩ F = oiJs′i−1K = s′i.

Next, we show that for every reachable state s in ΠCexact it530

holds that vc is set to 1 whenever c is true in s, and vc is set
to 0 whenever c is false in s. In other words, in contrast to
ΠC , all paths in ΠC lead to states with correctly set vc values.

Proposition 10. Let s ∈ R(ΠCexact) denote a reachable
state in ΠCexact. Then s = C[s ∩ F ].535

Proof. Since IC = C[IC ∩ F ] by construction, it follows
that if there exists a reachable state s ∈ R(ΠCexact) such
that s ̸= C[s ∩ F ], then there also exist a reachable state
s′ ∈ R(ΠCexact) and an operator of,p ∈ OCexact applicable in
s′ such that s′ = C[s′ ∩ F ] and of,pJs′K = s.540

We need to investigate four cases:

(i) There exists c ∈ C such that c ⊆ s′ and ⟨vc, 1⟩ ∈ s′

and c ⊆ s and ⟨vc, 0⟩ ∈ s: The assignment to vc can change
to ⟨vc, 0⟩ only if c ∪ app(o) ∈ M which is in contradiction
with c ⊆ s because app(o) ⊆ s. 545

(ii) There exists c ∈ C such that c ⊆ s′ and ⟨vc, 1⟩ ∈ s′

and c ̸⊆ s and ⟨vc, 1⟩ ∈ s: From c ⊆ s′ and c ̸⊆ s we have
that c ∪ app(o) ∈ M, therefore ⟨vc, 0⟩ ∈ s by construction
of eff(of,p), which is in contradiction with ⟨vc, 1⟩ ∈ s.

(iii) There exists c ∈ C such that c ̸⊆ s′ and ⟨vc, 0⟩ ∈ s′ 550

and c ̸⊆ s and ⟨vc, 1⟩ ∈ s: The assignment to vc can change
to ⟨vc, 1⟩ only if c ⊆ exapp(o, f, p) which is in contradic-
tion with c ̸⊆ s because exapp(o, f, p) ⊆ s.

(iv) There exists c ∈ C such that c ̸⊆ s′ and ⟨vc, 0⟩ ∈ s′

and c ⊆ s and ⟨vc, 0⟩ ∈ s: From c ̸⊆ s′ and c ⊆ s and 555

Proposition 9 it follows that c \ s′ ⊆ eff(o), and from the
construction expre(o, f, p) we have that V(c \ eff(o)) ⊆
V(expre(o, f, p)), therefore V(c) ⊆ V(exapp(o, f, p)),
therefore c ⊆ exapp(o, f, p) because exapp(o, f, p) ⊆ s,
therefore ⟨vc, 1⟩ ∈ s which contradicts ⟨vc, 0⟩ ∈ s. 560

Next, we show that for every path in Π there is a corre-
sponding path in ΠCexact with exactly the same cost.

Proposition 11. Let π = ⟨o1, . . . , on⟩ denote a path in Π.
Then there exists a path π′ = ⟨of1,p1

1 , . . . , ofn,pn
n ⟩ in ΠCexact

and π′JICK = C[πJIK]. 565

Proof. Let s0, s1, . . . , sn denote the intermediate states of π
applied on I , i.e., s0 = I and for every i ∈ {1, . . . , n} it
holds that oiJsi−1K = si. Moreover, let s′i = C[si] for every
i ∈ {0, 1, . . . , n}. From Definition 8 it follows that s′0 = IC .

Let assume that there exists a sequence of operators 570

π′ = ⟨of1,p1

1 , . . . , o
fi−1,pi−1

i−1 ⟩, for some i < n, such that
π′ is applicable in s′0 and π′Js′0K = s′i−1. Now, we show
that there exists ofi,pi

i such that ofi,pi

i is applicable in s′i−1
and ofi,pi

i Js′i−1K = s′i. From Proposition 9 we have that
pre(oi) ⊆ si−1 = s′i−1 ∩ F . Let fi : Ca(o) 7→ {0, 1} 575

denote a total function such that for every c ∈ Ca(o) it holds
that ⟨vc, f(c)⟩ ∈ s′i−1, and let pi = s′i−1 ∩ FVfi,0(oi). It is
easy to see that fi is well-defined because V(s′i−1) = V . It
is also easy to see that pi is a partial state, and since we
have that pre(oi) ⊆ s′i−1 and p ⊆ s′i−1 and, for every 580

c ∈ Cfi,1(oi), c ⊆ s′i−1, it follows that expre(oi) ̸∈ M
and therefore ofi,pi

i ∈ OCexact, and for the same reasons we
have that pre(ofi,pi

i ) ⊆ s′i−1. Therefore ofi,pi

i is applicable
in s′i−1 and the rest follows from Proposition 10.

Finally, we show that there is a one-to-one correspon- 585

dence between heuristics in Π and ΠCexact preserving admis-
sibility and consistency. It is because every path in Π can be
mapped to a path in ΠCexact (Proposition 11), every path in
ΠCexact can be mapped back to a path in Π (Proposition 9),
and there is a bijective mapping between all intermediate 590

states of all paths in Π and ΠCexact (Proposition 10).

Theorem 12. (A) If hCex : R(ΠCexact) 7→ R+
0 is an admissible

(consistent) heuristic for ΠCexact, then h : R(Π) 7→ R+
0 such

that h(s) = hCex(C[s]) for every s ∈ R(Π) is an admissible
(consistent) heuristic for Π. 595



(B) If h : R(Π) 7→ R+
0 is an admissible (consistent)

heuristic for Π, then hCex : R(ΠCexact) 7→ R+
0 such that

hCex(s) = h(s ∩ F) for every s ∈ R(ΠCexact) is admissible
(consistent) heuristic for ΠCexact.

Proof. Let T (Π) denote the set of all paths in Π, and let600

T (ΠCexact) denote the set of all paths in ΠCexact. From Propo-
sitions 9, 10, and 11, it follows there are bijective functions
ft : T (Π) 7→ T (ΠCexact) and fs : R(Π) 7→ R(ΠCexact) such
that cost(π) = cost(ft(π)) for every π ∈ T (Π).

Despite the encouraging theoretical result formulated in605

Theorem 12, the construction of ΠCexact can result in hav-
ing unreachable operators (as the input Π can have unreach-
able operators too). Therefore, inferring potential heuristics
as described in Section 4 does not guarantee we are able to
find all possible potential heuristics (as it is not guaranteed610

in general even for Π).

7 Potential Heuristics over Conjunctions
Using potential heuristics over conjunctions in explicit-state
search is straightforward. Given a set of conjunctions C, we
construct either ΠC or ΠCexact compilation of the input plan-615

ning task Π, compute a potential heuristic hC in ΠC or ΠCexact
as described in Section 4, and finally use the heuristic h such
that h(s) = hC(C[s]) for all reachable states s ∈ R(Π)
when running search in Π. Theorems 7 and 12 show that
such heuristic h is admissible and consistent.620

Moreover, ΠC and ΠCexact compilations are ordinary FDR
tasks that preserve all optimal plans (and do not induce any
shortcuts), therefore we can plan directly in them. Such ap-
proach does not offer many benefits for explicit-state search
as the larger number of operators makes generating succes-625

sor states slower, more variables lead to larger memory con-
sumption for storing generated states, and the state space of
ΠC is possibly larger than the state space of Π (although this
is not the case for ΠCexact). However, there are planning tech-
niques that might benefit from this approach.630

Fišer, Torralba, and Hoffmann (2022a,b) showed that po-
tential heuristics can be transformed into operator-potential
heuristics associating each operator o with the change of
heuristic value of the corresponding potential heuristic in-
duced by o. Consequently, operator-potential heuristics can635

be used to significantly improve performance of symbolic
search that searches over sets of states (represented as bi-
nary decision diagrams (Bryant 1986)) rather than individ-
ual states. So, we can run this planning technique directly
on ΠC and ΠCexact where the increased informativeness of640

potential heuristics automatically translates into operator-
potential heuristics. This, of course, does not mean that the
symbolic search will not suffer from using larger planning
tasks. Also note that different variants of operators oX in ΠC

(of,p in ΠCexact) corresponding to the same operator o from645

Π can induce a different change of heuristic values. There-
fore, we cannot directly translate potential heuristics over
conjunctions obtained via compilations to operator-potential
heuristics in the original task Π.

Next question is how to obtain conjunctions C improv-650

ing potential heuristics. As we already indicated before, we

Algorithm 1: Inference of improving conjunctions.
Input: A task Π with facts F , an optimization criteria Opt
Output: A set of conjunctions Co

1 Co ← ∅; P← potential function for Π maximizing Opt;
2 for each k = 2, . . . , |V| do
3 for each c ⊆ F , |c| = k, c ̸∈ M do
4 if time limit reached then return Co ;
5 C ← Co ∪ {x ⊆ c | |x| ≥ 2};
6 P′ ← potential func. for ΠC (or ΠC

exact) max. Opt;
7 if P′ is improvement over P then
8 Co ← C; P← P′;
9 go to 2;

10 return Co

do not attempt do design an efficient way to do it here. In-
stead, we aim at gathering evidence that it is, indeed, com-
mon that there are small sets of conjunctions that can signifi-
cantly improve potential heuristics. So, here we use a simple 655

greedy algorithm (Algorithm 1) that systematically tries to
test conjunctions one by one starting from the smallest ones
(lines 2 and 3). For each tested conjunction and all its subsets
(line 5), a compilation is constructed and the corresponding
potential heuristic inferred using the LP described in Sec- 660

tion 4 (line 6). Finally, if the potential heuristic is improve-
ment over the current one, we extend the set of conjunctions
(lines 7 and 8) and restart the whole process (line 9).

Potential heuristics can be computed by maximizing dif-
ferent optimization criteria—in our experiments we focus on 665

the maximization of the h-value for the initial state only. The
improvement of the resulting heuristics can also be mea-
sured in different ways. Here, we simply compare objec-
tive values of the corresponding LPs—since we maximize,
higher values indicate a better heuristic. However, note that 670

the inference using LP cannot guarantee dominance between
potential heuristics in a general sense (one upper-bounds the
other in all reachable states). It can only ensure dominance
with respect to the optimization criteria (e.g., h-value for the
initial state, or average h-value over all syntactic states). 675

8 Experimental Evaluation
The proposed method was implemented in C (source codes
and data will be released) and evaluated on a cluster with In-
tel Xeon E5-2650v3 processors and 4 GB memory limit for
each process. We used all planning domains from the op- 680

timal track of International Planning Competitions (IPCs)
from 1998 to 2023 excluding the ones containing condi-
tional effects after translation. We merged, for each domain,
all benchmark from different IPCs leaving 54 domains and
1 806 tasks overall. Operators and facts are pruned with the 685

h2 heuristic in forward and backward direction (Alcázar and
Torralba 2015), and the translation from PDDL to FDR uses
the mutex groups inference proposed by Fišer (2020, 2023).

For explicit-state search, we ran A⋆ algorithm (Hart, Nils-
son, and Raphael 1968) with two variants of potential heuris- 690

tics: I denotes maximization of the h-value of the initial
state (Pommerening et al. 2015), and A denotes maximiza-
tion for the average (syntactic) state while enforcing the



0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1

Π

Π
C

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1

Π

Π
C e
x
a
c
t

0 .2 .4 .6 .8 1
0

.2

.4

.6

.8

1

ΠC

Π
C e
x
a
c
t

Figure 1: Comparison of h-values for initial states as ratios
to the h⋆-values for tasks where h⋆-values are known. ΠC
vs. ΠCexact is compared over the same set of conjunctions
inferred using ΠCexact.

maximum h-value for the initial state (Seipp, Pommeren-
ing, and Helmert 2015; Fišer, Horčı́k, and Komenda 2020).695

We also evaluated symbolic search with operator-potential
heuristics (Fišer, Torralba, and Hoffmann 2022a,b): We used
forward search with A (denoted by

−→
A ), backward search

with I (
←−
I ) and the combination of the two in the bidirec-

tional search (
−→
A -
←−
I ). We use 30 minutes time limit for all700

search variants (not counting the inference of conjunctions).
Since A⋆ with potential heuristics tend to terminate

quickly, we also consider simple portfolios PCand PCex: We
run A⋆ with I or A in Π until it terminates. Then, in the re-
mainder of the 30 minutes time budget, we run Algorithm 1705

for 5 minutes to infer conjunctions C, and then run A⋆ again
this time with potential heuristics over C using ΠC (PC) or
ΠCexact (PCex). These portfolios count the time spent in the
inference of conjunctions into the whole time limit.

To obtain conjunctions C, we ran Algorithm 1 for 5 min-710

utes for each task, and we set the optimization criteria to the
maximization of the h-value for the initial state. Improving
conjunctions were found with ΠC (ΠCexact) in 47 (50) do-
mains and 794 (844) tasks. So, ΠCexact seems to be slightly
more successful in this respect. The maximum size of the715

found conjunction per task ranged from 2 to 8 for ΠC and
from 2 to 5 for ΠCexact. The average (median) was 2.5 (2)
for ΠC and 2.6 (2) for ΠCexact meaning most of the improve-
ment comes from pairs of facts which is not surprising given
Algorithm 1 tests all pairs first. The minimum, maximum,720

average and median size of the resulting C was, respectively,
1, 28, 3.9 and 3 for ΠC , and 1, 38, 3.8 and 3 for ΠCexact. This
indicates that both compilations used small sets of conjunc-
tions in most cases. Fig. 1 compares h-values for initial states
as ratios to the optimal heuristic on tasks where we knew h⋆725

(1 333 tasks). These results show that it, indeed, is possible
to obtain significantly more informative potential heuristics
via ΠC and ΠCexact with just few additional conjunctions.

To get some indication which compilation tends to lead
to more informative heuristics, the comparison between ΠC730

and ΠCexact in Fig. 1 is done with the same C (inferred with
ΠCexact) in each task for both. It seems ΠCexact is more suc-
cessful than ΠC in this respect too. However, ΠCexact also
tends to generate larger task representations than ΠC : The
minimum, maximum, average and median ratio between the735

number of operators in the compilation and in the original
planning task was 1, 7.9, 1.2 and 1 for ΠC , and 1, 46.4, 2.8
and 1.4 for ΠCexact. This is also reflected in the speed of com-
puting potential heuristics. We were able to evaluate on av-

domain A⋆ with I A⋆ with A

Π ΠC ΠC
ex PC PC

ex Π ΠC ΠC
ex PC PC

ex

depot (22) 6 5 6 6 6 11 11 11 11 11
driverlog (20) 8 9 9 9 9 13 13 13 13 13
elevators (50) 28 31 31 31 31 28 35 33 35 33
freecell (80) 48 49 47 49 48 70 70 70 70 70
ged (20) 15 19 19 19 19 15 19 19 19 19
logistics (63) 12 17 17 17 17 21 25 25 25 25
nomystery (20) 9 10 9 10 9 14 14 14 14 14
openstacks (100) 54 53 53 54 54 54 53 53 54 54
parking (40) 0 1 1 1 1 14 14 15 14 15
pipesw-notank (50) 24 24 24 25 24 26 26 27 26 27
pipesw-tank (50) 15 16 15 16 15 17 18 17 18 17
rovers (40) 6 6 7 6 7 8 8 8 8 8
slitherlink (20) 4 4 3 4 4 4 4 4 4 4
spider (20) 14 13 14 14 14 15 15 15 15 15
tidybot (40) 32 32 30 32 32 32 32 32 32 32
tpp (30) 6 8 8 8 8 8 8 8 8 8
visitall (40) 23 23 24 23 24 29 29 29 29 29
woodworking (50) 17 19 19 19 19 27 39 31 39 31

others (1051) 571 571 571 571 571 614 614 614 614 614

Σ (1806) 892 910 907 914 912 1 020 1 047 1 038 1 048 1 039

Table 1: Coverage for explicit-state search.

erage 64.4 conjunctions per second in case of ΠC (median 740

was 32.7), and 55.3 with ΠCexact (median 27.6).
Table 1 shows the number of solved tasks (coverage) by

the explicit-state search configurations. We are able to in-
crease the coverage in some domains even with a small set of
conjunctions inferred with a simple greedy uninformed algo- 745

rithm. (Note that A⋆ with I over all pairs of facts solves only
451 tasks.) ΠC and ΠCexact perform similarly, and the base-
line (Π) rarely solves more tasks. The biggest difference be-
tween ΠC and ΠCexact seems to be in A and the woodworking
domain where ΠC managed to obtain more informed heuris- 750

tics mainly due to the fact that Algorithm 1 with ΠC was able
to test larger number of conjunctions within the time limit.

Portfolio results (PC , PCex) show that 30 minutes time bud-
get is plenty for A⋆ with potential heuristics to conduct addi-
tional analysis to find improving conjunctions. Considering 755

we are typically able to test thousands of different conjunc-
tions within 5 minutes, these results suggest we could obtain
better conjunctions by just slightly modifying Algorithm 1
so that it prioritizes more promising conjunctions instead of
blindly trying all of them one by one. 760

The comparison of coverage of symbolic search config-
urations in Table 2 paints quite different picture from the
explicit-state search. Planning directly in ΠC or ΠCexact does
not seem to have significant effect on

−→
A overall although

there are few domains where it is beneficial, and it seems to 765

be mostly detrimental for
−→
A -
←−
I . The reason is that planning

directly in ΠC and ΠCexact tends to consume more memory
because all binary decision diagrams (BDDs) grow as the
task grows, therefore also manipulating BDDs is slower. In
some tasks, there is also an issue with the ordering of BDD 770

variables (corresponding to facts in the task) causing signif-
icant blow-up of the BDD encodings. This, unfortunately,
makes it harder to apply potential heuristics over conjunc-
tion in this setting, because we would need to consider con-
junctions that not only improve the informativeness of the 775

heuristics, but also induce a good ordering of BDD variables.
Nevertheless, at least the symbolic backward search

←−
I

seems to benefit from the compilations (more often from



domain Symb.
−→
A Symb.

←−
I Symb.

−→
A -
←−
I

Π ΠC ΠC
ex Π ΠC ΠC

ex Π ΠC ΠC
ex

agricola (20) 19 16 18 4 0 1 18 12 16
barman (34) 16 15 18 4 3 4 14 11 12
childsnack (20) 2 2 3 0 0 0 2 2 3
depot (22) 10 10 11 4 4 4 10 10 10
driverlog (20) 13 13 13 10 11 11 13 13 13
elevators (50) 35 39 37 10 12 14 41 34 33
floortile (40) 17 16 19 26 25 27 26 22 27
freecell (80) 68 68 68 27 28 27 67 67 66
ged (20) 15 15 15 10 10 13 19 19 15
logistics (63) 28 28 28 19 24 23 28 28 28
nomystery (20) 18 18 18 14 13 14 19 19 19
openstacks (100) 90 89 86 73 75 73 89 88 86
parking (40) 13 13 13 6 6 6 12 12 13
pegsol (50) 48 48 48 30 31 34 48 48 46
petri-net-align (20) 11 11 10 1 1 1 8 6 5
pipesw-notank (50) 24 24 24 9 9 10 24 24 24
pipesw-tank (50) 21 20 18 7 7 7 20 20 19
quantum-layout (20) 14 14 15 13 13 13 14 14 15
ricochet-robots (20) 2 1 1 0 0 0 2 1 2
rovers (40) 14 13 14 10 9 10 14 14 14
slitherlink (20) 5 6 5 0 0 0 5 6 5
snake (20) 8 11 11 0 0 0 8 7 7
sokoban (50) 50 50 50 38 37 38 50 50 50
termes (20) 12 10 11 7 13 13 13 13 13
tidybot (40) 34 34 32 8 8 10 30 30 32
tpp (30) 12 12 12 8 7 8 12 12 12
visitall (40) 22 22 22 18 18 19 22 22 23
woodworking (50) 46 48 44 34 46 40 46 49 48

others (757) 469 469 469 342 342 342 449 449 449

Σ (1806) 1 136 1 135 1 133 732 752 762 1 123 1 102 1 105

Table 2: Coverage for symbolic search.

ΠCexact than from ΠC). The main reason is that the backward
search usually generates a smaller number of BDDs repre-780

senting sets of states than the forward direction, but they typ-
ically encapsulate larger number of states. So, it seems hav-
ing more informative heuristics is able to push this method a
little bit further, but enough to see a difference in coverage.

9 Conclusion and Future Work785

In this work, we focus on higher-dimensional potential
heuristics computed via a small number of conjunctions ex-
plicitly represented as facts in compilations of the input
planning tasks. We propose to use two variants of compi-
lations: a well known ΠC compilation (Haslum 2012), and a790

newly introduced ΠCexact compilation. We compute potential
heuristics over conjunctions as single-fact potential heuris-
tics in the compilations. Instead of trying to figure out how
to find “good” conjunctions guaranteeing increased informa-
tiveness of the resulting heuristics, we focus on a basic ques-795

tion whether heuristic estimates can be improved with just
few conjunctions and without significantly increasing com-
putational cost in practice. To this end, we use a very simple
greedy algorithm that blindly tries small conjunctions one
by one, accepting the conjunction if its addition increases h-800

value for the initial state. We conclude that even in this sim-
ple setting, we can, indeed, increase informativeness of po-
tential heuristics with just few conjunctions. Moreover, we
provide a machinery for computing potential heuristics over
conjunctions requiring only conjunctions to be plugged-in.805

We leave many questions unanswered for future work.
The first one is how to determine which conjunctions lead
to an improvement. Possible directions for answering this
question might be previous works on the selection of im-
proving conjunctions for delete-relaxed heuristics (Fickert810

and Hoffmann 2017) or for learning no-goods using state-
equation heuristics (Steinmetz and Hoffmann 2018). Selec-
tion of patterns for pattern databases might also be relevant
(Edelkamp 2006; Haslum et al. 2007; Franco et al. 2017;
Rovner, Sievers, and Helmert 2019). Another question is 815

the exact relationship between ΠC and ΠCexact compilations
with respect to the possible potential heuristics that they can
express via linear programs (LPs). It would also be inter-
esting to know their relationship to the direct encoding in
LP described by Pommerening, Helmert, and Bonet (2017). 820

Lastly, it is not entirely clear how to successfully transfer the
increased informativeness of potential heuristics to operator-
potential heuristics in the context of symbolic search (Fišer,
Torralba, and Hoffmann 2022a,b).

References 825

Alcázar, V.; and Torralba, Á. 2015. A Reminder about the Im-
portance of Computing and Exploiting Invariants in Planning. In
Proceedings of the 25th International Conference on Automated
Planning and Scheduling (ICAPS’15), 2–6.

Bäckström, C.; and Nebel, B. 1995. Complexity Results for SAS+
830

Planning. Computational Intelligence, 11(4): 625–655.

Bonet, B.; and Geffner, H. 2001. Planning as Heuristic Search.
Artificial Intelligence, 129(1–2): 5–33.

Bryant, R. E. 1986. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Transactions on Computers, 35(8): 677–691. 835

Edelkamp, S. 2006. Automated Creation of Pattern Database
Search Heuristics. In Proceedings of the 4th Workshop on Model
Checking and Artificial Intelligence (MoChArt 2006), 35–50.

Fickert, M.; and Hoffmann, J. 2017. Ranking Conjunctions for
Partial Delete Relaxation Heuristics in Planning. In Proceedings of 840

the 10th Annual Symposium on Combinatorial Search (SOCS’17).

Fickert, M.; Hoffmann, J.; and Steinmetz, M. 2016. Combining the
Delete Relaxation with Critical-Path Heuristics: A Direct Charac-
terization. Journal of Artificial Intelligence Research, 56(1): 269–
327. 845

Fišer, D.; and Komenda, A. 2018. Fact-Alternating Mutex Groups
for Classical Planning. Journal of Artificial Intelligence Research,
61: 475–521.

Fišer, D. 2020. Lifted Fact-Alternating Mutex Groups and Pruned
Grounding of Classical Planning Problems. In Proceedings of the 850

34th AAAI Conference on Artificial Intelligence (AAAI’20), 9835–
9842.

Fišer, D. 2023. Operator Pruning Using Lifted Mutex Groups
via Compilation on Lifted Level. In Proceedings of the 33nd
International Conference on Automated Planning and Scheduling 855

(ICAPS’23), 118–127.

Fišer, D.; Horčı́k, R.; and Komenda, A. 2020. Strengthening Poten-
tial Heuristics with Mutexes and Disambiguations. In Proceedings
of the 30th International Conference on Automated Planning and
Scheduling (ICAPS’20), 124–133. 860

Fišer, D.; Torralba, Á.; and Hoffmann, J. 2022a. Operator-Potential
Heuristics for Symbolic Search. In Proceedings of the 36th AAAI
Conference on Artificial Intelligence (AAAI’22), 9750–9757.

Fišer, D.; Torralba, Á.; and Hoffmann, J. 2022b. Operator-
Potentials in Symbolic Search: From Forward to Bi-directional 865

Search. In Proceedings of the 32nd International Conference on
Automated Planning and Scheduling (ICAPS’22), 80–89.



Franco, S.; Torralba, A.; Lelis, L. H.; and Barley, M. 2017. On
Creating Complementary Pattern Databases. In Proceedings of the
26th International Joint Conference on Artificial Intelligence (IJ-870

CAI’17), 4302–4309.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics, 4(2): 100–107.
Haslum, P. 2012. Incremental Lower Bounds for Additive Cost875

Planning Problems. In Proceedings of the 22nd International Con-
ference on Automated Planning and Scheduling (ICAPS’12), 74–
82.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig, S.
2007. Domain-Independent Construction of Pattern Database880

Heuristics for Cost-Optimal Planning. In Proceedings of the 22nd
National Conference of the American Association for Artificial In-
telligence (AAAI’07), 1007–1012.
Helmert, M. 2009. Concise Finite-Domain Representations for
PDDL Planning Tasks. Artificial Intelligence, 173: 503–535.885

Keyder, E.; Hoffmann, J.; and Haslum, P. 2014. Improving Delete
Relaxation Heuristics Through Explicitly Represented Conjunc-
tions. Journal of Artificial Intelligence Research, 50: 487–533.
Pommerening, F.; Helmert, M.; and Bonet, B. 2017. Higher-
Dimensional Potential Heuristics for Optimal Classical Planning.890

In Proceedings of the 31st AAAI Conference on Artificial Intelli-
gence (AAAI’17), 3636–3643.
Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015.
From Non-Negative to General Operator Cost Partitioning. In Pro-
ceedings of the 29th AAAI Conference on Artificial Intelligence895

(AAAI’15), 3335–3341.
Rovner, A.; Sievers, S.; and Helmert, M. 2019. Counterexample-
Guided Abstraction Refinement for Pattern Selection in Optimal
Classical Planning. In Proceedings of the 29th International Con-
ference on Automated Planning and Scheduling (ICAPS’19), 362–900

367.
Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New Optimiza-
tion Functions for Potential Heuristics. In Proceedings of the 25th
International Conference on Automated Planning and Scheduling
(ICAPS’15), 193–201.905

Steinmetz, M.; and Hoffmann, J. 2018. LP Heuristics over Con-
junctions: Compilation, Convergence, Nogood Learning. In Pro-
ceedings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI’18), 4837–4843.


